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Abstract

This paper presents a novel object recognition approach

based on range images. Due to its insensitivity to illumina-

tion, range data is well suited for reliable silhouette extrac-

tion. Silhouette or contour descriptions are good sources of

information for object recognition. We propose a complete

object recognition system, based on a 3D laser scanner, re-

liable contour extraction with floor interpretation, feature

extraction using a new, fast Eigen-CSS method, and a su-

pervised learning algorithm. The recognition system was

successfully tested on range images acquired with a mobile

robot, and the results are compared to standard techniques,

i.e., Geometric features, Hu and Zernike moments, the Bor-

der Signature method and the Angular Radial Transforma-

tion. An evaluation using the receiver operating character-

istic analysis completes this paper. The Eigen-CSS method

has proved to be comparable in detection performance to

the top competitors, yet faster than the best one by an order

of magnitude in feature extraction time.

1. Introduction

A basic part of perception is to learn, detect and recog-

nize objects, which has to be done with limited resources.

Especially in mobile robotics there is a need for online capa-

ble object detection and environment interpretation. Mean-

ing becomes inevitable if the robot has to interact with its

environment. The robot is then able to reason about the

objects; its knowledge becomes inspectable and communi-

cable.

A wide variety of techniques for object detection have

been developed. They can be classified into template

matching, feature matching and appearance based methods.

Contour-based algorithms have been of particular interest

since the middle of the last century, resulting in a multi-

plicity of available methods, e.g., moment, ART and CSS

based methods, as well as Fourier descriptors. However,

contour extraction has to cope with inherent problems orig-

inating mainly from changing lighting conditions and envi-

ronment texturing when applied to real images. Using depth

images avoids these problems but introduces other chal-

lenges, e.g., the reliable generation of range images. The

segmentation of objects in natural environments is simpli-

fied by using range images, since they are distinguishable

iff the spatial distance between object and background is

sufficiently high. The contour extraction of objects from

range images is relatively simple because scan points be-

longing to the same object show smooth changes in their

distance values. At object borders, discontinuities emerge

that cause an edge in the range image that in turn is identi-

fied by segmentation algorithms. Nevertheless, all standing

objects cannot easily be separated from floor. We overcome

this problem by introducing a novel technique to identify

the ground based on local gradients. Contour or silhouette

based object recognition in range images is view dependent.

Hence, view invariant recognition is reached by generating

several object views from the original object and training

different classifiers.

This paper presents a complete object recognition system

for mobile robots. The system consists of four major parts:

First, a reliable, cost-effective 3D laser range finder for gen-

erating range images. Second, contour extraction based on

adaptive thresholding combined with floor detection and

morphological opening. Third, feature extraction using

a new Eigen-Curvature Scale Space (Eigen-CSS) method.

Hereby we extend the method proposed by Drew, Lee and

Rova [8] by generating several Eigen-spaces. Fourth, the

classification using support vector machines (SVMs) with

different kernels.

To provide some background for assessing the quality of

the Eigen-CSS method, this paper evaluates contour based

object recognition in range images with standard methods,

namely, geometric features, Hu and Zernike moments, An-

gular Radial Transformations (ART) and the Border Signa-

ture method. In the following paragraph we give a sketch

of the state of the art in object recognition in range images,



focusing on contour recognition. Section 2 describes the

contour extraction, followed by the feature extraction and

a brief description of SVMs. The experimental results and

comparisons with the reference methods are given in sec-

tion 5. Section 6 concludes.

1.1. State of the Art

Campbell and Flynn review object detection algorithms

in range images and classify them into three approaches [6]:

appearance-based recognition, recognition from 2D silhou-

ettes, and free form object recognition:

Appearance-based recognition represents the object in a

high dimensional space and uses principal component anal-

ysis on a set of training image data This recognition ap-

proach has already been tested on range images (yielding

the so-called eigenshapes) [5].

According to Campbell and Flynn and to our knowledge,

recognition from 2D silhouettes extracted from range im-

ages has not been realized before. However, shape recog-

nition in images is well researched for the past decades.

A wide range of contour describing features does exist,

common techniques being Fourier descriptors [7], moments

[10], geometric features, and contour functions. Beside

these features, the Angular Radial Transformation (ART)

[3] as a region based, and the Curvature Scale Space (CSS)

[13] as a contour based feature extraction method are of-

ten used; due to their good performance, they are standard-

ized in the MPEG-7 multimedia content description lan-

guage [3].

Most of the work has been done in the area of free

form object recognition and classification in 3D range data.

Johnson and Hebert use the well-known ICP algorithm [2]

for registering 3D shapes into a common coordinate sys-

tem [11]. The necessary initial guess of the ICP algorithm is

done by detecting the object with spin images [11]. Besides

spin images, several surface representation schemes are in

use for computing an initial alignment. Stein and Medioni

presented the notion of “splash” to represent the normals

along a geodesic circle of a center point, which is the local

Gauss map for 3D object recognition with a database [14].

Ashrock et al. have proposed a pairwise geometric his-

togram to find corresponding facets between two surfaces

that are represented by triangle meshes [1]. Harmonic maps

and their use in surface matching have been used by Zhang

and Hebert [19]. Recently, Sun and colleagues have sug-

gested so-called “point fingerprints”: They compute a set of

2D curves that are projections of geodesic circles onto the

tangent plane and compute similarities between them [15].

All these approaches take the local geometry of the surfaces

into account, i.e., meshes.

Figure 1. Left: The 3D laser scanner is built

of 2D laser scanner and a servo motor step-

rotating the scanner. Right: Mounted on the
robot Kurt3D.

1.2 Range Image Generation

The data acquisition in our experiments was performed

with the AIS 3D laser range finder (Fig. 1) [16] mounted

on the autonomous mobile robot Kurt3D. It is built on the

basis of a 2D range finder by extension with a mount and

a small servomotor step-rotating the scanner around a hor-

izontal axis. The area of 180◦(h)×120◦(v) is scanned with

different horizontal (181, 361, 721 pts) and vertical (250,

500 pts) resolutions. The depth information of the 3D data

is visualized as a gray-scale image: each scan point is as-

signed with a gray value, according to its distance to the

scanner position,

Afterwards a range image is rendered under a specific

view. Since the range image’s resolution is in general

greater than the scanner’s, the program interpolates between

the scan points’ gray values to assign a gray value to each

pixel. A resulting range image is shown in Fig. 4 (left).

2 Contour Extraction

When segmenting the resulting range image, a problem

arises with objects standing on the floor. For example, the

feet of a human have the same gray value, i.e., distance val-

ues, as the floor at the point he is standing on. The feet and

the floor form only a crease edge, no jump edge. This prob-

lem is solved by segmenting the floor in the range data prior

to generating the range image:

Based on the idea of Wulf et al. [18] we designed an

algorithm for labelling floor points in 3D scans. This is

done by computing the gradient between a point pi,j =
(φi, ri,j , zi,j), given in a cylindrical coordinate system, and

its nearest neighbor within the vertical sweep plane, i.e., a

search region around φi, according to the following equa-



Figure 2. Cascade for contour extraction. From left to right: (1) Scanned scene as point cloud. (2)
Point cloud with removed floor points. (3) Generated range image without interpolation at jump

edges. (4) Binarized image using adaptive thresholding. (5) Morphological opening of the image. (6)

Final contour representation.

tion (cf. Fig. 3):

αi,j = arctan

(

zi,j − zi,j−k

ri,j − ri,j−k

)

with

−
1

2
π ≤ αi,j <

3

2
π .

In comparison with a fixed threshold τ (here: τ = 20◦) each

3D point is assigned to one of these three groups:

1. αi,j < τ : pi,j is a ground point

2. τ ≤ αi,j ≤ π − τ : pi,j is an object point

3. π − τ < αi,j : pi,j is a ceiling point

This labelling proved to be robust against uneven and

non-horizontal ground and against data jitter.

In order to enhance segmentation of objects against

their background, we skip the interpolation as described in

Sec. 1.2 if the range difference between two neighboring

points is above a fixed threshold. This method yields a range

image in which each object that has a sufficient distance to

its background is enclosed by a black contour. Fig. 4 (right)

shows the result.

The actual contour extraction is done after applying a

binarization filter with an adaptive threshold [12]. Each im-

age pixel is set to 1 or 0 in comparison with a local threshold

computed with respect to the local neighborhood. In areas

with homogeneously distributed gray values, this threshold

is close to the pixel’s grey value, leading to a random as-

signment of 1 or 0. Therefore, the local, adaptive threshold

is combined with a global threshold that is subtracted from

the center pixel before comparison. The resulting binary

image typically contains many small structures, leading to

a large number of contours and a slow object detection sys-

tem. We overcome this problem by convolving the image

with the nonlinear filter “morphological opening”, resulting

in an image without small structures. As an additional bene-

fit, structures get separated that are connected only by a few

pixels. Finally, contours are extracted from the binarized

image using a contour following algorithm. Fig. 2 shows

the overall image contour extraction process.

3 Feature Extraction

Here we present the Eigen-CSS feature extraction

method to describe a contour. This method improves the

original CSS method by Mokhtarian [8,13]. The CSS repre-

sentation interprets the contour as a curve depending on the

parameter u. The curve is repeatedly smoothed by convolu-

tion with a gauss function (⊗g(u, σ)) of increasing standard

deviation σ. In each iteration step the curvature, depending

on σ, is computed according to the following equation:

κ(u, σ) =
Xu(u, σ)Yuu(u, σ) − Xuu(u, σ)Yu(u, σ)

(Xu(u, σ)2 + Yu(u, σ)2)1.5

with

Xu(u, σ) =
∂

∂u
(x(u) ⊗ g(u, σ)) = x(u) ⊗ gu(u, σ)

Xuu(u, σ) =
∂2

∂u2
(x(u) ⊗ g(u, σ)) = x(u) ⊗ guu(u, σ).

Yu(u, σ) and Yuu(u, σ) are defined analogously. The

CSS representation is obtained by plotting the solution of

κ(u, σ) = 0, using the curve parameter u as ordinate and σ

as abscissa, as shown in Fig. 5 (top).

The main problem with feature extraction from the CSS

representation is that a rotated contour causes a horizon-

tally shifted representation. To solve this problem Drew,

Lee and Rova proposed in 2005 the Eigen-CSS feature ex-

traction method [8], consisting of three simple techniques:

marginal-sums, phase correlation and singular value de-

composition. The first two are used to solve the shift prob-

lem, the latter one is used to map the rotation invariant fea-

ture vector into its eigenspace.



The marginal-sums are used to transfer the CSS repre-

sentation into a rotation invariant column-sum vector c and

a rotation sensitive row-sum vector r. The rotation invari-

ance of r is obtained by using phase correlation, i.e., con-

verting the vector to the frequency domain, calculating the

magnitude as a function of frequency, and transforming the

results back to the spatial domain, according to

r̃ = |F−1(|F (r)|)|.

The rotation invariant row- and column-sum vectors are

combined into a contour describing feature vector x (cf.

Fig. 5) by x = [r̃c]T . The feature vector x is mapped in

its eigenspace using the following procedure:

1. Determine the feature vector x for a fixed number n of

examples (from one object class).

2. Subtract from each vector x its mean value x̄.

3. Construct a matrix X as

X = [x1 − x̄1, x2 − x̄2, . . . , xn − x̄n].

Each vector x normalized by its mean corresponds to a

column in the matrix X.

4. Execute Singular Value Decomposition (SVD) on X,

i.e.,

X = UWVT

5. Reduce the matrix U to the columns j, whose corre-

sponding singular values wj are unequal to zero.

6. Form the eigenspace from the column vectors of the

reduced matrix U.

7. Project x in its eigenspace through a multiplication

with the transposed matrix U, i.e.,

u = UT x .

z

floor points

points

object

ceiling points
y

Figure 3. Left: 3D scan planes due to the ro-

tation of the 2D laser range finder (tilt around

horizontal axis) vs. 3D sweep planes (turn
around vertical axis). Right: Interpretation

example, based on scan points of one ver-
tical sweep plane.

Figure 4. Left: Range image generated with

all 3D scan points. Right: Range image

with removed ground points and without gray
value interpolation at range jumps.

Figure 5. Construction of the Eigen-CSS fea-
ture vector.

In contrast to the method proposed in [8] our algorithm

does not group phase correlated feature vectors from differ-

ent object classes in one matrix X. Thus, we use a matrix

that consists only of feature vectors from one object class,

and every object has its own eigenspace and matrix U.

Following the results in [8], we start the Eigen-CSS pro-

cedure with a smoothed version of the CSS object represen-

tation, using a standard deviation σ = 5. This eliminates

small peaks in the CSS representation. To ensure that all

feature vectors have a constant length for the contours, the

procedure also starts with a normalized contour, i.e., a fixed

parameter length is used (u = 100). This normalization af-

fects the ordinate. The abscissa has to be normalized, too,

since different contours yield different curvatures resulting

in variable heights of the representations. For this normal-

ization the abscissa in each CSS representation is padded to

100, before computing the marginal sum vectors.



4 Object Learning and Classification

Object learning and classification using the constructed

feature vectors is done with Support Vector Machines

(SVMs). SVMs are supervised learning methods used for

classification and regression. When used for classification,

the SVM algorithm creates a hyperplane that separates the

data into two classes with the maximum margin. Given

training examples labelled either “yes” or “no”, a maximum

margin hyperplane is identified which splits the two regions

such that the distance between the hyperplane and the sup-

port vectors (the margin) is maximized. The parameters of

the hyperplane are derived by solving a quadratic program-

ming optimization problem.

The original hyperplane algorithm, restricted to linear

classification problems only, was augmented by Boser et

al. to allow non-linear classification by applying the kernel

trick [4]: Replacing every dot product by a non-linear ker-

nel function allows the algorithm to fit the maximum margin

hyperplane in the transformed feature space and leads to a

non-linear separation of the data in the original input space.

Our algorithm uses three different kernel functions, namely,

a radial kernel function (here: σ = 1):

k(x, x) = exp

(

||x − x′||

2σ

)

, (1)

a polynomial kernel (here: d = 2)

k(x, x) = (x · x′)d (2)

and a linear kernel

k(x, x) = x · x′. (3)

5 Experimental Results

Results of our proposed classification system are shown

in Fig. 6. Our method is evaluated against the following five

standard methods: geometric features, Hu [10] and Zernike

moments [17], the Angular Radial Transformation [3] and

the Border Signature algorithm.

Geometric features with Hu moments: The 13 dimen-

sional vector consists of 6 geometric features: area-

perimeter ratio, aspect ratio, rectangularity, eccentric-

ity, orientation and radii ratio. These features are com-

bined with 7 Hu moments to a feature vector.

Zernike moments: Zernike moments map the contour

onto the unit circle using orthogonal Zernike polyno-

mials. We compute the first 42 invariant Zernike mo-

ments.

Figure 6. Example scenes with detected ob-

jects (human & robot Kurt3D). The 4th picture
shows a false detection of a wrongly recog-

nized human above the table. See the text for

explanations.

Angular Radial Transformation: The ART is a region

orientated feature. Due to its performance it is stan-

dardized in the MPEG-7 language. Like Zernike mo-

ments, it maps the contour onto the unit circle, but uses

simpler basis functions. Like proposed in the MPEG-7

standard, we compute 36 coefficients using the first to

normalize the others.

As an alternative to the ART as defined in MPEG-7,

orthogonal ARTs that feature orthogonal radial com-

ponents are evaluated in this paper, too.

Border Signature: The Border Signature method divides

the area enclosed by the contour into radial segments,

whose common origin is the contour’s center of grav-

ity. The feature is the contour points average distance

in each segment. These distances are normalized over

the whole contour area. We use 32 segments which

lead to the same number of contour describing fea-

tures.

Eigen-CSS: The feature vector is the Eigen-CSS vector as

described above. We do not truncate the matrix U,

therefore gaining a 200 dimensional feature vector.

The different feature vectors are classified using an

SVM. To compare the classifier’s performance we use the

receiver operating characteristics (ROC) Analysis [9].



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Eigen−CSS ROC curves

fp rate

tp
 ra

te

linear kernel
radial kernel
polynomial kernel

Figure 7. ROC curves for three classifiers

trained with linear, radial and polynomial ker-

nel.

In the training phase, test scans are taken from each ob-

ject. We generate three range images from each scan un-

der different views. Afterwards every range image is seg-

mented, then stored as positive example in case of correct

segmentation. Each classifier was trained using 200 positive

and 700 negative examples.

For performance evaluation, we take test scans for each

object with 100 positive and about 1800 negative exam-

ples. Only one range image is generated from one scan.

We mark the positive contours in the range image, then ap-

ply the corresponding classifiers and count the true positive

(tp), false positive (fp), true negative (tn) and false nega-

tive (fn) classifications. The ROC metrics TP and FP rate

are calculated according to

TP rate =
tp

tp + fn
FP rate =

fp

fp + tn
.

Afterwards we produce a ROC curve for each classifier

to determine the best kernel for the respective feature ex-

traction method. The performance is measured by the AUC

metric, i.e., the area below the ROC curve (cf. Fig. 7).

Table 1 shows the results for a human standing frontal to

the scanner with the legs apart. For this setup, orthogonal

ART provides the best classification results, being followed

closely by the methods c2 – c5, while c1, using geometric

features, shows significant drawbacks. Note the extensive

differences in computation time. Combining the classifiers

c1 – c6, as done for classifier c7, proved to be not prof-

itable, due to the dominating high performance of the ART

method. The combination is done like a classifier voting as

follows:

1. Apply each classifier to the current contour. The result

is a number that encodes the degree of membership for

the object class.

0 50 100 150 200
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0.7
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0.8
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0.9

0.95

1

number of basis vectors

A
U

C

X matrix size: 200
X matrix size: 100

Figure 8. AUC value depending on the num-

ber of basis vectors. Each point in this graph
belongs to a different classifier. Solid line:

Using 200 positive and 700 negative exam-
ples for training the SVMs and all 200 posi-

tive have been used to create the eigenspace.

Dotted line: 200 positive and 700 negative ex-
amples for training the SVMs and 100 posi-

tive have been used to create the eigenspace.

2. In case of positive classification add the result of the

SVM for the contours. In case of negative subtract the

result.

3. After all classifiers were applied to the contour, assign

the contour to the membership class with the highest

overall value.

The computing time for this combination is the sum of the

computing times for each classifier. However, adding fur-

ther objects only increases the computational time slightly,

since the feature vectors have already been extracted. The

computational times of the non-combined methods as well

as their classification results are shown in table 2.

In addition to the classifier’s performance, the Eigen-

CSS algorithm has been evaluated in terms of the number

of eigenvectors. 200 classifiers, i.e., SVMs, using again

200 positive and 700 negative examples were learned, each

of these classifiers uses a different number of basis vectors.

Thus, the number of basis vectors for matrix U was trun-

cated to values between 1 and 200 (cf. step 5 on page 4). We

have computed the ROC curve for each classifier and have

determined the according AUC value. Fig. 8 shows the the

resulting AUC curve. The performance increases very fast

between 5 and 20 basis vectors. From 20 to 100 basis vec-

tors there is only a slight improvement. Between 100 and

150 basis vectors there is another increase of performance

from 0.85 to 0.98, followed by a constant performance.

The dotted line in Fig. 8 represents classifiers for which

the matrix X is the concatenation of a reduced number of



Table 1. Classification performance of the classifiers using different contour describing features; c7
is the classifier combined from c1 – c6. Each classifier was trained with 200 positive and 700 negative

examples, the best SVM has been selected. The stated time is the duration needed to classify one

contour on a standard Pentium-IV-3000.

extracted feature c1 c2 c3 c4 c5 c6 c7

geometric features1 × – – – – – ×
Hu moments 7 – – – – – 7

Zernike moments – 42 – – – – 42

CSS – – × – – – ×
U matrix examples – – 200 – – – 200

number of basis vectors – – 200 – – – 200

Border signature – – – 32 – – 32

ART – – – – 35 – 35

ortho. ART – – – – – 35 35

time [ms] 7 187 4 0.4 32 32 Σ 2

optimal kernel poly. poly. lin. rad. poly. rad. (comb.)

optimal threshold 0.98 0.15 0.76 0.97 0.77 0.78 0.40

accuracy 0.964 0.982 0.989 0.963 0.990 0.995 0.996

AUC 0.685 0.980 0.986 0.990 0.991 0.999 0.999

Table 2. Classification results of 30 exam-

ple images, containing one positive example
each. The mean computation time per image

is composed of the rendering time (286 ms),
contour extraction (193 ms), feature extrac-

tion (see table ) and classification (12.6 ms).

tp fp feature extraction

time [ms]

geometric features 22 1 146.4

Eigen-CSS 27 11 87.4

Zernike moments 23 2 3876.4

ART 28 3 658.4

ortho. ART 29 0 658.4

Border Signature 26 1 5.4

positive examples (cf. step 3, page 4). Therefore, classifiers

are trained with positive examples that have not been used

for creating the eigenspace, similar to the online classifica-

tion phase. However, it turned out that the mean AUC value

is not higher than the one of the solid line.

Although the classifiers have not been specially designed

to deal with occlusions, the experiment showed that the

Eigen-CSS method performs best with partly occluded ob-

jects. Fig. 9 presents the performance of all tested features.

The lines mark the maximal cutting level above or below

which the rest of the object can be classified.

6. Summary and Conclusions

This paper has presented a novel object recognition ap-

proach in range images from a 3D laser scanner. The al-

gorithm utilizes a contour-based technique applied to depth

information, resulting in a new, reliable and fast detection

approach. Various real world experiments showed that the

system is capable of stable object detection, applicable for

environment cognition of autonomous mobile robots. Our

approach benefits from a reliable 3D laser scanner that is

the emerging sensing technology in robotics.

The key innovation presented in this paper is the combi-

nation of reliable contour extraction with a new Eigen-CSS

method for feature extraction. The computed features are of

high quality, resulting in an object detection that achieves a

classification performance comparable to the MPEG-7 stan-

dard method ART. However, our method is nearly one or-

der of magnitude faster. The only method being faster than

Eigen-CSS, i.e., Border Signature, shows difficulties with

occlusions (cf. Fig. 9).

Future work in our robotics context will concentrate on

three aspects:

1. The detected objects will be used as an index to a

database of 3D models. The model and the position

of the detected object can be used as a start position

for an ICP based matching in the range data.

1The following geometric features have been used: area-perimeter ra-

tio, aspect ratio, rectangularity, eccentricity, orientation, and radii ratio.
2In practice, the actual time of the combined classifiers lie below the

sum of the single times due to hashing.



Figure 9. Comparison of the classifiers’ ro-

bustness against occlusions.Top: maximal
occlusion from below; down: maximal occlu-

sion from above.

2. Integration of camera information for detecting objects

that are difficult to process by a laser scanner, e.g., due

to their small size.

3. Using bimodal laser data, i.e., combining range and re-

flectance data for an even more robust object segmen-

tation.

The overall goal is to use an autonomous mobile robot to

build 3D semantic maps that contain temporal and spatial

3D information with descriptions and labels about the envi-

ronment.
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