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Abstract

Over ten years ago, Lu and Milios presented a prob-
abilistic scan matching algorithm for solving the simul-
taneous localization and mapping (SLAM) problem with
2D laser range scans, a standard in robotics. This paper
presents an extension to this GraphSLAM method. Our it-
erative algorithm uses a sparse network to represent the re-
lations between several overlapping 3D scans, computes in
every step the 6 degrees of freedom (DoF) transformation
in closed form and exploits efficient data association with
cached k-d trees. Our approach leads to globally consis-
tent 3D maps, precise 6D pose and covariance estimates,
as demonstrated by various experimental results.

1 Introduction

Complex 3D digitalization without occlusions requires
multiple 3D scans. Globally consistent scan matching is
the problem of aligning the poses of n partially overlap-
ping 3D scans such that the resulting model does not show
any inconsistencies. Incremental methods like ICP [3] lead
to inconsistencies, due to limited precision of each match-
ing and accumulation of registration errors. Examples are
pairwise matching, i.e., each new scan is registered against
the scan with the largest overlapping area, and metascan
matching, i.e., the new scan is registered against a so-called
metascan [5], which is the union of the previously acquired
and registered scans. However, for a point cloud consisting
of several scans, a new scan might contain information that
improves previous registrations. Globally consistent scan
matching methods regard this fact: They transform all scans
by minimizing an error function that takes all 3D scans into
account.

Lu and Milios [11] proposed a probabilistic approach
that builds a network of laser scans and their corresponding
pose differences to form a linear equation system. Its solu-
tion corresponds to the optimal pose estimates of all laser
scans. As most approaches, this algorithm is restricted to

2D laser scan data. In this paper, we present an extension
to 3D scans and poses with 6 DoF, following the style of
argumentation in [11].

2 State of the Art

Bergevin et al. [2], Benjemaa and Schmitt [1], and
Pulli [14] presented iterative approaches for 3D scan match-
ing. Based on networks representing overlapping parts of
images, they used the ICP algorithm for computing transfor-
mations that are applied after all correspondences between
all views have been found. However, the focus of reseach
is mainly 3D modelling of small objects using a stationary
3D scanner and a turn table; therefore, the used networks
consist mainly of one loop [14]. A probabilistic approach
was proposed by Williams et al., where each scan point is
assigned a Gaussian distribution in order to model statisti-
cally the errors made by laser scanners [18]. In practice,
this causes high computation time due to the large amount
of data. Krishnan et al. presented a global registration algo-
rithm that minimizes the global error function by optimiza-
tion on the manifold of 3D rotation matrices [10].

In robotics, many researchers consider similar problems
when solving the SLAM (simultaneous localization and
mapping) problem [15]. Here an autonomous vehicle builds
a map of an unknown environment while processing inher-
ently uncertain sensor data. So-called GraphSLAM tech-
niques represent the global robotic map in a flexible graph
structure [8, 9, 11, 13]. However, most of these approaches
consider 2D scans and pose esimates with 3 DoF, i.e., mo-
tion in a planar environment.

We extend this state of the art by a GraphSLAM method,
similar to the approach presented in [17]. Their work, how-
ever, is based on a gradient-descent algorithm to minimize
the global error function, instead of a closed-form solu-
tion. In addition, poses, local point correspondences and
global constraints are estimated iteratively, thus increasing
the computation requirements of their algorithm and render-
ing it impractical for a large amount of data.



3 The Estimation Problem

3.1 Problem Formulation

Consider a scanning system traveling along a path, and
traversing the n + 1 poses V0, . . . , Vn. At each pose Vi,
it takes a laser scan of its environment. By matching two
scans made at two different poses, we acquire a set of rela-
tions between those poses. In the resulting network, poses
are represented as nodes, and relations between them as
edges. Given such a network with nodes X0, . . . , Xn and
directed edges Di,j , the task is to estimate all poses opti-
mally to build a consistent map of the environment. For
simplification, the measurement equation is assumed to be
linear:

Di,j = Xi −Xj .

The observation D̄i,j of the true underlying difference is
modeled as D̄i,j = Di,j + ∆Di,j , where the error ∆Di,j is
a Gaussian distributed random variable with zero mean and
a known covariance matrix Ci,j .

Maximum likelihood estimation is used to approximate
the optimal poses Xi. Under the assumption that all errors
in the observations are Gaussian and distributed indepen-
dently, maximizing P (Di,j |D̄i,j) is equivalent to minimiz-
ing the following Mahalanobis distance:

W =
∑
(i,j)

(Di,j − D̄i,j)T C−1
i,j (Di,j − D̄i,j). (1)

3.2 Solution as given by Lu and Milios

We consider the simple linear case of the estimation
problem. Without loss of generality we assume that the net-
work is fully connected, i.e., each pair of nodes Xi, Xj is
connected by a link Di,j . In the case of a missing link Di,j

we set the corresponding C−1
i,j to 0. Eq. (1) unfolds to:

W =
∑

0≤i<j≤n

(Xi −Xj − D̄i,j)T C−1
i,j (Xi −Xj − D̄i,j).

(2)

To minimize the Eq. (2), a coordinate system is defined by
setting one node as a reference point. Setting X0 = 0, the n
free nodes X1, . . . , Xn denote the poses relative to X0. Us-
ing the signed incidence matrix H, the concatenated mea-
surement equation D is written as

D = HX,

with X the concatenation of X1 to Xn. The Mahalanobis
distance equation can be written as:

W = (D̄−HX)T C−1(D̄−HX).

The concatenation of all observations D̄i,j forms the vector
D̄, while C is a block-diagonal matrix comprised of the
covariance matrices Ci,j as submatrices. The solution X
that minimizes the equation (2) and its covariance CX is
given by

X = (HT C−1H)−1HT C−1D̄

CX = (HT C−1H)−1.

The matrix G = HT C−1H and the vector B = HT C−1D̄
simplify the solution. G consists of submatrices

Gi,i =
n∑

j=0

C−1
i,j (3)

Gi,j = C−1
i,j (i 6= j). (4)

The entries of B are obtained by:

Bi =
n∑

j=0
j 6=i

C−1
i,j D̄i,j . (5)

Solving the linear optimal estimation problem is equivalent
to solving the following linear equation system:

GX = B. (6)

3.3 The Extension to 6 DoF

The solution of Sec. 3.2 requires the linearization of the
pose difference equation. The 3 DoF case, i.e., (x, y, θ)T

poses, was solved by Lu and Milios [11]. Our algorithm
derives relations for 6 DoF poses, i.e., (x, y, z, θx, θy, θz)T ,
by matching data obtained by a 3D laser range finder. The
challenges of this extension are:

1. The amount of data: A 3D laser range finder scans the
environment with a large number of samples.

2. Linearization of the rotation must regard the 3
DoF. The rotation consist of the three Euler angles
(θx, θy, θz), and the multiplication of the correspond-
ing three rotation matrices result in the desired overall
rotation. By using linearization of the Euler angles, we
enforce valid rotation matrices.

3. The additional three DoF result in an exponentially
larger solution space. The solution is computationally
more complex.

We define a 6D pose relation as follows: Assume the
first pose to be Vb = (xb, yb, zb, θxb

, θyb
, θzb

)T , the second
Va = (xa, ya, za, θxa , θya , θza)T , with a pose change of
D = (x, y, z, θx, θy, θz)T of Va relative to Vb. The poses Va



and Vb are related by the compound operation Va = Vb⊕D.
Similarly, a 3D position vector u = (xu, yu, zu) is com-
pounded with the pose Vb by u′ = Vb ⊕ u:

x′
u = xb − zu sin θyb + cos θyb(xu cos θzb − yu sin θzb)

y′u = yb + zu cos θyb sin θxb + cos θxb(yu cos θzb + xu sin θzb)

+ sin θxb sin θyb(xu cos θzb − yu sin θzb)

z′u = zb − sin θxb(yu cos θzb + xu sin θzb)

+ cos θxb

`
zu cos θyb + sin θyb(xu cos θzb − yu sin θzb)

´
This operation is used to transform a non-oriented point
(from the range finder) from its local to the global coor-
dinate system.

Scan matching computes a set of m corresponding point
pairs ua

k, ub
k between two scans, each representing a single

physical point. The positional error made by these point
pairs is described by:

Fab(Va, Vb) =
m∑

k=1

∥∥Va ⊕ ua
k − Vb ⊕ ub

k

∥∥2
(7)

=
m∑

k=1

∥∥(Va 	 Vb)⊕ ua
k − ub

k

∥∥2
. (8)

Based on these m point pairs, the algorithm computes the
matrices D̄i,j and Ci,j for solving Eq. (1). D̄i,j is derived
as follows:

Let V̄a = (x̄a, ȳa, z̄a, θ̄xa
, θ̄ya

, θ̄za
) and V̄b =

(x̄b, ȳb, z̄b, θ̄xb
, θ̄yb

, θ̄zb
) be close estimates of Va and Vb.

If the global coordinates of a pair of matching points uk =
(xk, yk, zk) then (ua

k, ub
k) fulfill the equation

uk ≈ Va ⊕ ua
k ≈ Vb ⊕ ub

k.

For small errors ∆Va = V̄a − Va and ∆Vb = V̄b − Vb, a
Taylor expansion leads to:

∆Zk = Va ⊕ ua
k − Vb ⊕ ub

k := Fk(Va, Vb)

≈ Fk(V̄a, V̄b)−
[
∇V̄a

(
Fk(V̄a, V̄b)

)
∆Va

−∇V̄b

(
Fk(V̄a, V̄b)

)
∆Vb

]
= V̄a ⊕ ua

k − V̄b ⊕ ub
k −

[
∇V̄a

(V̄a ⊕ ua
k)∆Va

−∇V̄b
(V̄b ⊕ ub

k)∆Vb

]
(10)

where ∇V̄a

(
Fk(V̄a, V̄b)

)
is the gradient of the pose com-

pounding operation. By matrix decomposition

MkHa = ∇V̄a

(
Fk(V̄a, V̄b)

)
MkHb = ∇V̄b

(
Fk(V̄a, V̄b)

)
,

Eq. (10) simplifies to:

∆Zk ≈ V̄a ⊕ ua
k − V̄b ⊕ ub

k −Mk[Ha∆Va −Hb∆Vb]
= Z̄k −MkD.

with

Z̄k = V̄a ⊕ ua
k − V̄b ⊕ ub

k

D = (Ha∆Va −Hb∆Vb) (11)

Mk =

 1 0 0 0 −yk −zk

0 1 0 zk xk 0
0 0 1 −yk 0 xk

 .

Ha as per Eq. (9), Hb respectively. D, defined by the
Eq. (11), is the new linearized measurement equation. To
calculate both D̄ and CD, (8) is rewritten in matrix form

Fab(D) ≈ (Z−MD)T (Z−MD).

M is the concatenated matrix consisting of all Mk’s, Z the
concatenated vector consisting of all Zk’s. The vector D̄
that minimizes Fab is given by

D̄ = (MT M)−1MT Z. (12)

Since minimizing Fab constitutes a least squares linear
regression, we model the Gaussian distribution of the solu-
tion with mean D̄ and standard covariance estimation

CD = s2(MT M). (13)

s2 is the unbiased estimate of the covariance of the identi-
cally, independently distributed errors of Zk, given by:

s2 =
(Z−MD̄)T (Z−MD̄)

2m− 3
=

Fab(D̄)
2m− 3

.

The error term Wab, corresponding to the pose relation, is
defined by:

Wab = (D̄ −D)T C−1
D (D̄ −D).

3.4 Transforming the Solution

Solving the linear equation (6) leads to an optimal es-
timate of the new measurement equation of D (Eq. (11)).
To yield an optimal estimation of the poses, it is neces-
sary to transform D and compute a set of solutions via
Xi = Hi∆Vi, each corresponding to a node in the network.
Assuming that the reference pose V0 = 0, the pose Vi and
its covariance Ci are updated by:

Vi = V̄i −H−1
i Xi,

Ci = (H−1
i )CX

i (H−1
i )T .

If V0 is non-zero, the solutions have to be transformed by:

V ′
i = V0 ⊕ Vi

C ′
i = K0CiK

T
0

with

K0 =
(

Rθx0 ,θy0 ,θz0
0

0 I3

)
,

Rθx0 ,θy0 ,θz0
denoting a rotation matrix.



Ha =


1 0 0 0 z̄a cos(θ̄xa) + ȳa sin(θ̄xa) ȳa cos(θ̄xa) cos(θ̄ya)− z̄a cos(θ̄ya) sin(θ̄xa)
0 1 0 −z̄a −x̄a sin(θ̄xa) −x̄a cos(θ̄xa) cos(θ̄ya)− z̄a sin(θ̄ya)
0 0 1 ȳa −x̄a cos(θ̄xa) x̄a cos(θ̄ya) sin(θ̄xa) + ȳa sin(θ̄ya)
0 0 0 1 0 sin(θ̄ya)
0 0 0 0 sin(θ̄xa

) cos(θ̄xa
) cos(θ̄ya

)
0 0 0 0 cos(θ̄xa) − cos(θ̄ya) sin(θ̄xa)

 (9)

3.5 The Algorithm

Iterative execution of Algorithm 1 yields a successive
improvement of the global pose estimation. Step 2 is sped
up by component-wise computation of G and B. The com-
ponents C−1

i,j = (MT M)/s2 and C−1
i,j D̄i,j = (MT Z)/s2

are expanded into simple summations, as shown in the ap-
pendix A.2. The most expensive operation are solving the
linear equation system GX = B and the computation of
correspondences. Since G is a positive definite, symmetric
6n× 6n matrix, this is done by Cholesky decomposition.

Algorithm 1 Optimal estimation algorithm (LUM)

1. Compute the point correspondences ua
k, ub

k.

2. For any link (i, j) in the given graph, compute the mea-
surement vector D̄ij by (12) and its covariance Cij

by (13).

3. From all D̄ij and Cij form the linear system GX = B,
with G and B as given in (3)–(5), and solve it for X.

4. Update the poses and their covariances, as explained in
Sec. 3.4.

3.6 Invertibility of G

The proposed algorithm depends on the invertibility of
matrix G, which is the case if:

1. All covariances are positive or negative definite, and

2. The pose graph is connected, i.e., there exist no two
separate subgraphs.

The second condition is met trivially in practice since at
least all consecutive poses are linked. The inductive proof
over the number of nodes is given in appendix A.1.

4 Performance

The large amount of data to be processed makes com-
puting time an issue in globally consistent range scan

matching. The first step in reducing the computing time
is achieved by replacing matrix multiplications by simple
summations, as explained in appendix A.2. Again our al-
gorithm benefits from the network structure. Each scan has
to be aligned to only few neighbors in the graph. Links ex-
ist between consecutive scans in the robot’s path and addi-
tionally those scans that are spatially close. Consequently,
most entries of matrix G are zero, e.g., G is sparse (cf.
Fig. 1). Since G is also positive definite (cf. appendix A.1),
we apply a sparse Cholesky decomposition to speed up the
matrix inversion [6]. Alternative approaches are described
in [9, 13].

4.1 Sparse Cholesky Decomposition

By symbolic analysis of the non-zero pattern of matrix
G, a fill-reducing permutation P and an elimination tree
are calculated. We use the minimum degree algorithm [7], a
heuristic brute force method, to determine the fill-reducing
permutation, e.g., a matrix P for which the factorization
PGPT contains a minimal number of non-zero entries.
The elimination tree, a pruned form of the graph GL that is
equivalent to the Cholesky decomposition L, gives the non-
zero pattern of L (cf. Fig. 1). The sparse system GX = B
becomes PGPT PX = PB, which is solved efficiently
with the Cholesky factorisation LLT = PGPT [7]. After
solving the equation system Ly = PB for y, LT z = y is
solved for z, resulting in the solution X = PT z. Sparse
Cholesky factorisation is done in O(FLOPS), i.e., is linear
in the number of graph edges.

4.2 Fast Computation of Correspondences

According to our experience, the most computing time
was spent in step 2 of Algorithm 1. While our matching al-
gorithm spendsO(n) time on matrix computation, calculat-
ing the corresponding points for a link needs O(N log N),
using cached k-d tree search [12]. N denotes the number of
points per 3D scan, n � N . To avoid recomputing the k-d
trees in each iteration, the query point is transformed into
the local coordinate system according to the current scan



Figure 1. Sparse Matrix G (top right) and its
elimination tree generated for the University
building data set (cf. Fig. 2, 3). Blue dots
in the matrix represent negative, yellow dots
positive entries. White spaces are filled with
zeros. The numbers on the edges of the
tree indicate the number of linearly arranged
nodes, removed to improve visibility. The
nodes represent the columns of the matrix.

pose. By this means, the k-d trees only have to be com-
puted once at the beginning of global optimization, caching
proceeds as described in [12].

5 Experiments and Results

The proposed algorithm has been tested in various ex-
periments. The test strategy consist of two parts: First,
3D environment data has been acquired, collected in a pla-
nar indoor environment, enabling a comparison with eas-
ily obtainable ground truth. As a second test, we present
results from mapping outdoor environments, showing full
functionality of the algorithm in all 6 degrees of freedom.

5.1 3D Mapping of Indoor Environments

We used data from the Kurt3D robot, acquired in a Uni-
versity building in Osnabrück. The robot’s path, following
the shape of an eight, is shown in the upper left corner of
Fig. 3. Fig. 2 displays a top view of the floor. The left side
shows the prearranged laser scans, the right shows the re-
sulting alignment after correction with 900 iterations of our
algorithm. A more detailed view of the map is presented
in Fig. 3. The initial error of up to 18 degrees is reduced

Figure 2. Top view of 3D laser scans before
(left) and after correction (right) with 900 it-
erations of LUM. The data results from 64
scans each containing 81225 (225× 361) data
points.

Table 1. Comparison of computing times
of different matrix inversion and point pair
search techniques.

Absolute
time in
ms

Relative
time
in %

Absolute
time in
ms

Relative
time
in %

Simple matrix
inversion

11709 100 1867 100

Cholesky
decomposition

4437 37.89 912 48.84

Sparse Chol.
decomposition

1010 8.63 336 17.99

Standard k-d
tree search

263551 100 375606 100

k-d trees as of
Sec. 4.2

160151 60.78 193066 51.4

University building Bridge

significantly during global registration. The total error is
distributed over all laser scans rather than to be summed up
with each additional laser scan as is the case in iterative scan
matching approaches.



Figure 3. Final 3D map. 3D points are classified as ground (brown), walls (blue) and ceiling (grey).
Non-classified points are painted yellow. The closeups on the right correspond to the rectangles
marked in the map. Top: Robot soccer field. Middle: Start and end of the robot path, showing
a stair rail and a person standing in a doorway. Bottom: Part of the hall where the robot path
intersects. The blue squares indicate the robot poses. In the top left corner, the complete robot path
of approximately 127 meters is shown, starting at the red arrow.

5.2 6D SLAM in Outdoor Environments

The difference between incremental ICP based mapping
and full 6D SLAM becomes obvious in outdoor environ-
ments, where the robot motion occurs in all 6 degrees of
freedom. The path of the robot led over a bridge (Fig. 4,
right), down the hill, underneath the bridge and back up the
hill to the starting point. Fig. 4 presents the results of match-
ing the 36 3D scans. In addition to sequential scan match-
ing as with ICP, the network contains links connecting the
scans taken on the bridge to those taken from below. ICP
scan matching shows poor results, i.e., the bridge appears
twice in the resulting point cloud. Our algorithm maps the
bridge correctly, including the real thickness of the bridge

(Fig. 4). Further experimental results are reported in [4].
Table 1 shows the computing time needed for matching

the two data sets, with different techniques. Of the three ap-
proaches to matrix inversion, the sparse Cholesky decom-
position is substantially the fastest. Use of the improved
k-d tree based point pair calculation further accelerates the
algorithm by approximately 40 percent.

6 Conclusions

This paper has presented a method to register laser range
scans globally consistent, i.e., without accumulated errors.
After building a network of pairwise relations between sev-
eral laser scans, the solution of a linear system of equations



Figure 4. Left and Middle: Closeups on parts of the resulting 3D maps after ICP (left) and LUM
(middle) scan matching. LUM has shifted the bridge bottom to the correct distance of the bridge
surface. Right: Photo of the outdoor scene that was mapped.

of distance measurements between those scans optimizes
the poses by minimizing the distances. As all poses are
modified simultaneously, accumulations of local errors are
eliminated.

ICP is unable to recover from an incorrect scan match-
ing. In addition, errors in laser scan data and impre-
cise matching methods lead to accumulated errors in the
progress of building large maps, causing inaccuracies in re-
gions where loops are closed. In contrast, our algorithm
proved to be more robust due to multiple scan connections
in the graph. The instabilities reported in [16] for 2D scans
and 3D poses did not occur in the 3D scan/6D pose case.
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A Appendix

A.1 Proof of Invertibility

The algorithm described in this paper is based on the inversion
of matrix G. We prove that G is positive definite and therefore
invertible using complete induction. In order to simplify the proof,
we show that changing the reference pose does not change the
positive definite properties of G. Without loss of generality G is



a positive definite matrix of the form (3), (4), with the reference
node X0. Switching the reference node to Xi results in the matrix
G′. These two matrices are related by

G′ = IiG

where Ii is an identity matrix of size (dn × dn) with a row of
negative (d× d) identity matrices of the form:

Ii =

0@ Id(i−1) 0 0
−Id . . . −Id

0 0 Id(n−i+1)

1A .

Multiplication with Ii corresponds to replacing the submatrices at
(i, j) with the negative sum of all submatrices at row j. Since Ii
is invertible, G′ remains positive definite.

Induction base k = n Assuming a graph with n + 1 nodes
and n links. The matrix G is transformed into the block diagonal
matrix G′, composed of covariance matrices by

G′ = IDGITD,

with an upper-right triangular matrix ID of d-dimensional identity
matrices

ID =

0B@ Id . . . Id

. . .
...

0 Id

1CA .

Since G′ is given by

G′
i,i = C−1

i−1,i

G′
i,j = 0 (i 6= j)

and all covariances are positive definite, G′ itself is positive defi-
nite. The same holds for G, as ID is invertible.

Inductive step k → k + 1 Let G be a positive definite ma-
trix that corresponds to a graph with n + 1 nodes and k links.
An additional link between the nodes Xi and Xj is inserted, with
positive definite covariance Ci,j . Without restriction, Xi is the
reference node of the given graph, since the reference pose is ar-
bitrary. Thus, the resulting matrix G′ is changed only at the d× d
submatrix G′

j,j:

G′
j,j = Gj,j + C−1

i,j .

In case Ci,j is positive definite, G′∗ is positive definite, too, iff

XT G′X > 0 X ∈ Rd·n X 6= 0,

which is equivalent to

nX
k,l=1

XT
k G′

k,lXl > 0, (14)

where Xk are the d-dimensional subvectors of X. Expanding
Eq. (14) to

nX
k,l=1

XT
k G′

k,lXl = XT
j G′

j,jXj +

nX
k,l=1

k 6=l6=j

XT
k Gk,lXl

= XT
j C−1

i,j Xj +

nX
k,l=1

XT
k Gk,lXl

= XT
j C−1

i,j Xj + XT GX > 0.

G′ is a positive definite matrix. �

A.2 Fast construction of the linear equa-
tion system

To solve the linear equation system GX = B,

C−1
D = (MT M)/s2 and C−1

D D̄ = (MT Z)/s2

are needed. To calculate these efficiently, summations are sub-
stituted for matrix multiplication by using the regularities in the
matrix M. MT M is represented as a sum over all corresponding
point pairs: MT M =

mX
k=1

0BBBBBB@
1 0 0 0 −yk −zk

0 1 0 zk xk 0
0 0 1 −yk 0 xk

0 zk −yk y2
k + z2

k xkzk −xkyk

−yk xk 0 xkzk y2
k + x2

k ykzk

−zk 0 xk −xkyk ykzk x2
k + z2

k

1CCCCCCA .

Similarly, MT Z is calculated as follows:

MT Z =

mX
k=0

0BBBBBB@
∆xk

∆yk

∆zk

−zk ·∆yk + yk ·∆zk

−yk ·∆xk + xk ·∆yk

zk ·∆xk − xk ·∆zk

1CCCCCCA
with 0@ ∆xk

∆yk

∆zk

1A = Z̄k = V̄a ⊕ ua
k − V̄b ⊕ ub

k

and an approximation for each point:0@ xk

yk

zk

1A = uk ≈
`
V̄a ⊕ ua

k + V̄b ⊕ ub
k

´
/2.

Finally s2 is a simple summation using the observation of the lin-
earized measurement equation D̄ = (MT M)−1MT Z:

s2 =
mP

k=0

`
∆xk − (D̄0 − yk · D̄4 + zk · D̄5)

´2

+
`
∆yk − (D̄1 − zk · D̄3 + xk · D̄4)

´2

+
`
∆zk − (D̄2 + yk · D̄3 − xk · D̄5)

´2
.

D̄i denotes the i-th entry of the vector D̄. Summation of C−1
D and

C−1
D D̄ yields B and G.


