
D
ra

ft

Sensor fusion of IMU and GPS for geofencing on an industrial control
system for safe mowing in road areas

Stefan Dumberger1, Raimund Edlinger1, Philipp Bauer1, Michael Zauner1, Andreas Nüchter2

Abstract— The paper presents the implementation of geofenc-
ing on a mobile industrial controller for the automation of
a mobile carrier vehicle for agricultural use. This system is
used to prevent collision with well-known obstacles as well as
avoid the accidental run-away of the vehicle under autonomous
operation. It describes the mathematical principle used, as well
as the additional features needed for a practical implementation
on an industrial controller. As it is necessary to ensure the
operation under real-world conditions, the paper also handles
the data acquisition, pre-filtering and sensor fusion for system.
Finally the correct behavior of the system is evaluated with
multiple test-cases as well as experimental field tests.

I. INTRODUCTION

This publication is part of a larger research project, where
the goal is autonomous mulching of highway embankments
using the agricultural tool carrier platform Reform Metron
P48RC, depicted in Fig. 1. The focus of this paper in
particular is the usage of geofencing by defining a limited
area of operation and by extend preventing the robot to work
in sections not intended to be mulched, collide with well
known obstacles (e.g.: trees, pipes, trees, ditches, ...) or in
the worst case drive onto the motorway.

The term geofencing, referring to the definition taken from
Koch [2, p 11], describes a service for monitoring of a virtual
boundary related to a physical area and raising a signal once
a relevant object ether enters or leaves this area. While most
geofencing systems use a geographical border defined via
WGS84 coordinates, the concept itself can be used in any
coordinate system where both the perimeter as well as the
current position itself can be expressed relative to a common
point of reference (e.g. a local map of a building).

The main complexity in our case is the reliability on
this system to prevent potentially dangerous situations while
being aware that the area of operation will contain a variety
of objects, like trees or bridges, which will temporary in-
terfere or completely block the reception of GNSS signals.
Therefore an additional sensor fusion to bridge temporary
outages was implemented.

II. RELATED WORK

Geofencing has a wide array of application on different
scales in modern technologies. Fundamentally it can be
divided into two main categories: The monitoring of entering

1Authors are with University of Applied Sciences Upper Austria, 4600
Wels, Austria forename.sirname@fh-wels.at

2Andreas Nüchter is with Faculty Informatics VII - Robotics and Telem-
atics, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
andreas.nuechter@uni-wuerzburg.de

Fig. 1: Carrier platform with attachment and automation kit

a specific area and the check that a object or mobile platform
is not leaving a specific area.

The first use case is mainly used in logistics, where a
region is formed around the destination of a delivery. Once
the truck enters this region, a signal is sent to the logistics
center, which can better plan the immanent arrival [7].
Another application is the collection of tolls. Once a vehicle
gets into the vicinity of a tollbooth (approx. 200m), the
system automatically requests the corresponding data from
the provider. This results in the transaction already being
handled once the vehicle reaches the tollbooth and the gate
can open without any delay. This approach provides a high
density of up to 300 vehicles per hour while providing
individual billing conditions for different companies [3].

For the second category a variety of use cases can be found
in various fields. For example [1] describes a method to use
geofencing in agriculture for the monitoring of animal herds.
In an logistical context the check for exiting a specific area
can be used to examine if a vehicle is on its correct route or
help in the case of theft of a vehicle [5].

When combining both the entering and leaving of a spe-
cific area, new applications arise for example when handling
dangerous areas, emergencies or natural disasters. in these
scenarios the systems described in [8] and [6] help in
distributing information quickly, gathering information about
the situation as well as self-organization for affected persons.

However in most of these examples the systems expect
the equipment to have access to a GNSS signal all the
time. When this assumption cannot be guaranteed the system
can only provide convenience features, which may not work

D
ra

ft

all the time. Whenever a geofencing application must work
under all circumstances, the system cannot rely on GNSS
alone and in most cases additional infrastructure sensors to
guard the perimeter are required (See [3] and [1]).

III. ALGORITHMIC APPROACH

The core principle of geofencing is to check whether or
not a POI (point of interest) is within a predefined region.
In our case the region is given via a list of boundary points
creating a closed polygon.

However the simple check for the point to be inside the
polygon is not enough in a practical use-case considering
measurement uncertainty and the dynamics of the robotic
systems. The border polygon needs to be scaled inwards to
generate a buffer zone. In addition the current distance to the
border can be interesting for adapting the maximum speed
of the vehicle.

A. point-in-polygon algorithm

To decide whether or not a POI is inside the polygon, the
Jordan curve theorem for polygons [4] is used. It generates
a ray beginning at the POI and counts the intersections
against all polygon edges

−−−−→
PnPn+1. Whenever the total count

of intersections is odd, the POI is inside the polygon. To
check for intersection the following equation can be used,
using C = Pn, D = Pn+1, A = POI and the arbitrary point

B =

(
POIx

POIy +1000

)
.

(
α

β

)
=

1
(By −Ay)(Dx −Cx)− (Bx −Ax)(Dy −Cy)

·
(
−(Dy −Cy) (Dx −Cx)
−(By −Ay) (Bx −Ax)

)(
Cx −Ax
Cy −Ay

) (1)

An intersection can be found whenever α,β ∈ [0,1].

B. polygon scaling

The generation of the scaled down polygon needs to be
handled with care, as this procedure can generate overlaps,
as can be seen in Fig. 2a. If not removed, these overlaps will
break the point-in-polygon algorithm for the newly created
polygon. Therefore the following steps need to be taken:

1) transforming points inwards: In the first step four
temporary points need to be generated for each polygon
corner B using the previous corner A and next corner C.
When ordering the corners in a counterclockwise manner,
these points can be calculated using

(
Px
Py

)
=

(
Xx
Xy

)
+d ·

(−→e ⊥
XY y

−−→e ⊥
XY x

)
with

{
X = A,Y = B for P1

X = B,Y =C for P3(
Px
Py

)
=

(
Yx
Yy

)
+d ·

(−→e ⊥
XY y

−−→e ⊥
XY x

)
with

{
X = A,Y = B for P2

X = B,Y =C for P4

(2)

Afterwards a new corner B′ can be calculated using the
intersection between the two straight lines g1 and g2, defined

(a) scaled polygon overlap (b) distance problem

Fig. 2: visualization of mathematical problems encountered
in the algorithm

as

g1(x) =
P2y −P1y

P2x −P1x · x+
P2x·P1y−P1x·P2y

P2x−P1x

g2(x) =
P4y −P3y

P4x −P3x · x+
P4x·P3y−P3x·P4y

P4x−P3x

(3)

and Cramer’s rule to calculate the x- and y- component.
2) removing overlaps: As stated beforehand, this reduc-

tion of the polygon can lead to overlaps. To remove these
phenomenons a section of four neighbouring corners A′. B′,
C′ and D′ is evaluated for each corner. Whenever the two
vectors

−−→
A′B′ and

−−→
C′D′ intersect, using equation (1), the two

inner points B′ and C′ are removed and replaced by the
intersection point S.

C. shortest distance to polygon

When determining the distance between the POI and
the polygon, two scenarios can occur: The nearest polygon
feature is ether a edge or a corner. Our approach assumes
the nearest feature to be an edge in the first place and checks
if this assumption was correct afterwards.

1) distance to edge: To calculate the minimal distance
between the POI and an polygon edge, the edge is interpreted
as a straight line defined by the two neighbouring corners.
Then the normal distance between this line and the POI
is calculated. However, as can be seen on the example of
P2 in Fig. 2b, this calculated distance can lay outside the
confined section between the two polygon corners. To filter
these outliers a rotated bounding box is used.

2) rotated bounding box: We define a rotated bounding
box as a square around two points A and B. The length is
equal to the distance between the two points, the orientation
is the same as the vector

−→
AB and the width is defined two

times the arbitrary distance d. With these constraints the four
corners of the box can be calculated as follows:(

p0x
p0y

)
=

(
Ax
Ay

)
+d ·

(−→e ⊥
AB y

−−→e ⊥
AB x

)
(4)

(
p1x
p1y

)
=

(
Ax
Ay

)
+d ·

(
−−→e ⊥

AB y−→e ⊥
AB x

)
(5)

D
ra

ft

(
p2x
p2y

)
=

(
Bx
By

)
+d ·

(−→e ⊥
AB y

−−→e ⊥
AB x

)
(6)

(
p3x
p3y

)
=

(
Bx
By

)
+d ·

(
−−→e ⊥

AB y−→e ⊥
AB x

)
(7)

Using the normal distance calculated in the last step as d,
this value is valid minimal distance as long as the POI is
inside the polygon defined by P1. P2, P3 and P4.

3) distance to corner: If no suitable candidate is found
using this method on all corners of the polygon, the nearest
feature to the POI is by definition a corner. This distance can
now be calculated using the pythagorean theorem between
the POI and every polygon corner. The lowest result is
automatically the globally smallest distance.

IV. IMPLEMENTATION

The POI algorithm was implemented on an industrial con-
troller communicating with an external GNSS module. For
the analysis of accuracy and repeatability, the measurement
system has been prototyped for the first outdoor tests.

A. Hardware Architecture

The hardware implementation for this project is shown
in Fig. 4 and split into two dedicated hardware modules to
maximize flexibility.

1) Sensor board: Raw sensor data acquisition is done
on its own PCB to allow the independent data access over
network from multiple computation units. In addition to the
sensors, the board contains multiple voltage regulators and
an ATMEL ATxmega32A4 microcontroller, which reads out
all sensor values in an fixed frequency and provides the
measurements over the network.

The inertial measurement unit (IMU) on the board is a
TDK InvenSense MPU9250. It can measure linear acceler-
ations up to ±16g, angular velovity up to ±2.000 degrees
per second, and a magnetic field strength up to ±4900µT .

Finally the board uses a u-blox NEO-M8N module for
global positioning. This module is technically able to use
the free services provided by GPS, GLONASS, Galileo and
BEIDOU. However in the scope of this project only GPS and
GLONASS were enabled to test whether the system could
also work on low-cost hardware.

2) Industrial controller: All further data processing and
computation is done on a X90CP174.24-001. This industrial
controller is based on an 650 MHz ARM processor with 256
MB SDRAM and was chosen due to its IP 67 rating and
optional support for a dedicated and certified safety CPU
module.

All code is written in ANSI C and uses the B&R Automa-
tion real-time operating system to communicate between the
individual software modules and also interact with other
software running on the controller at the same time (e.g.
robot controller, data logging, ...).

1https://www.br- automation.com/de/produkte/steuerungssysteme/x90-
mobile- steuerungssystem/x90-mobile-steuerung/x90cp17424-00/

3) Communication: To transmit data between the sensor
board and the X90 controller can be achieved via two
different modes: The first method uses a TCP connection
between both partners. This allows the detection of a new
connection, synchronization and automatic retransmission of
lost or corrupted packets. On the other the second method
uses UDP broadcasts. While this mode cannot correct any
transmission errors, it is possible to provide the data to mul-
tiple participants simultaneously and not affect the overall
network load.

B. Software Architecture
While the algorithm described in section III describes

the core approach of geofencing, it cannot be used directly
and additional preprocessing of the data needs to happen
beforehand. The overall software architecture is split into
multiple modules and their interaction depicted in Fig. 3.

C. IMU parser
The IMU parser module converts the incoming data stream

from the sensor board into individual data packets. In Ad-
dition this module is responsible to filter corrupted packets
and obvious measurement errors. Handling these errors and
outliers in the very front of the processing pipeline helps to
produce a overall smoother position estimation.

D. AVD module
The AVD (Acceleration - Velocity - Distance) module

calculates speed and distance travelled based on the IMU
data. As this process depends heavily on integration of
measurements, of all modules it is the most susceptible to
sporadic sensor errors. A special consideration has to be
taken during the initialization of this module. As the whole
software uses geo-referenced coordinates, the default value
of (0,0) would let the system start somewhere in the Atlantic
Ocean and would result in a gradual adjustment over approx.
half an hour until the position is usable. To prevent this
behavior, the AVD module is reset whenever a positional
error of more then 500m is detected and re-initialized with
the current measured GPS position.

E. Kalman filter
This module combines the measurement from the GPS

sensor with the output from the AVD module to determine
the current position of the robot and by extension to generate
a POI for the geofencing point-in-polygon algorithm. The
combination of both independent data sources enables the
filtering of the random walk inherently present in every
GNSS system, the compensation of temporary drift near
building or large objects and the bridging of short events
without GNSS information like driving under a bridge.

F. CoordTransform
The CoordTransform module translates all GPS positions

from Cartesian coordinates into the UTM reference frame.
This transformation is necessary as working in the nonlienear
cartesian space would violate some mathematical assump-
tions of independence and by extension would break or at
least impair the results of both AVD and kalman filter.

D
ra

ftFig. 3: Software architecture on the X90 controller

V. EXPERIMENTAL RESULTS

In this section, both lab and real-world test results are dis-
cussed. The detailed evaluation of all hardware and software
components would exceed the scope of this paper, therefore
we focus mainly on the newly developed point-in-polygon
module.

A. Evaluation of algorithm and implementation

For the evaluation of the algorithm a black box test-
ing approach was chosen. The X90 Controller is fed with
synthetic data from a Matlab script and the results are
checked automatically against the Matlab implementation of
the algorithm and manually by visualizing the results as a
plot, where the polygon is drawn in black, the POI in red, an
the scaled polygon in green. In addition the nearest polygon
feature in each plot is highlighted in purple.

For debugging purposes the values chosen for both
polygon points and the POI do not use reasonable UTM
coordinates, but an arbitrary reference frame around the
point (250,250). However relative distances between points

Fig. 4: Hardware and network configuration

Fig. 5: Test against a polygon with four edges.

correspond to the scale expected in real-world scenarios.
Examples of relevant test cases are listed below.

1) Simple polygon: The first test case checks the basic
operation of the algorithm. In this case the number of
polygon edges was limited to four. Fig. 5 shows the correct
behaviour: The POI was evaluated both inside the original
as well as the scaled polygon and the correct nearest feature
was recognized, marked by the blue rotated bounding box.

2) Polygon scaling: In the next test case the main focus
was, whether the implementation could handle a variable
number of polygon edges and if the calculation of the scaled
down polygon worked as expected. Therefore polygons with
both convex and concave corners were generated. The result
in Fig. 6 shows the correct scaling and expected behaviour.

D
ra

ft
Fig. 6: Example of a scaling test case.

Fig. 7: Overlap test case

3) Overlaps and distance to corner: The final use case
depicted in Fig. 7 depicts the evaluation of two functions.
On the one hand the plot shows the nearest detected poly-
gon feature to be a corner which is correct. On the other
hand the distance for the scaled polygon was increased to
force overlaps to occur. The algorithm filtered everything
as expected, indicated by the sections marked in red being
removed.

B. Field tests

To test the system under real-world conditions, all compo-
nents were mounted on the mobile cattier platform depicted
in Fig. 1 as part of the automation kit. A local and freely
accessible meadow was chosen as a test location due to
the combination of open field and some trees which may
interfere with the GNSS signal. The perimeter polygon was
created using coordinated taken from Google Maps and
consists of the eight points listed in Table I.

TABLE I: Coordinates of the test area

Point Coordinates in degrees Coordinates in UTM (U33)
North East North East

P0 48.22060 14.10073 5341210.375 433205.289
P1 48.22060 14.10053 5341210.549 433190.534
P2 48.22097 14.10053 5341251.674 443190.915
P3 48.22097 14.09995 5341252.178 443147.836
P4 48.22158 14.099450 5341320.414 433111.493
P5 48.22177 14.09972 5341327.472 433173.232
P6 48.22165 14.10028 5341312.353 433230.254
P7 48.22152 14.10105 5341312.353 433230.254

Fig. 8: Representation of the test area

The vehicle was placed on the start position T0 (see Fig. 8)
and the autonomous operation was activated. However this
resulted in an emergency stop due to the current position
being outside the perimeter. The error could be traced back to
the GNSS module measuring a position off by about 30 meter
in reference to the actual location and therefore physically
outside the perimeter. Forcing the correct GPS data by
hand using a debugger, showed the geofencing to work as
expected. However for a reliable and long term solution,
the change to a DGPS system as positional reference will
probably be necessary.

VI. SUMMARY AND OUTLOOK

In summary this work shows a software system for reliable
geofencing running on an industrial grade controller provided
the sensor measurements being correct. While not pursued
at the moment, due to current lack of practical tests, the
approach also shows potential for being moved to the safety
CPU of the X90 controller to provide a functionally safe and
certifiable module in the future.

D
ra

ft

ACKNOWLEDGMENT

The research of these results has been accomplished within
the SMARTER - Slope Maintenance Automation using Real-
Time Telecommunication and advanced Environment Recog-
nition project. This work has been funded by the Austrian
Research Promotion Agency (FFG) within the program ”Mo-
bility of the future” nr. 879646.

REFERENCES

[1] Q. M. Ilyas and M. Ahmad, “Smart Farming: An Enhanced
Pursuit of Sustainable Remote Livestock Tracking and Geofencing
Using IoT and GPRS,” Wireless Communications and Mobile
Computing, vol. 2020, pp. 1–12, Dec. 2020. [Online]. Available:
https://www.hindawi.com/journals/wcmc/2020/6660733/

[2] F. Koch, K. Lakkaraju, and F. Meneguzzi, Eds., Agent Technology
for Intelligent Mobile Services and Smart Societies: Workshop on
Collaborative Agents, Research and Development, CARE 2014, and
Workshop on Agents, Virtual Societies and Analytics, AVSA 2014, Held
as Part of AAMAS 2014, Paris, France, May 5-9, 2014. Revised Selected
Papers, 1st ed., ser. Communications in Computer and Information
Science. Berlin, Heidelberg: Springer Berlin Heidelberg : Imprint:
Springer, 2015, no. 498.

[3] S. K. Nagothu, “Automated toll collection system using gps and
gprs,” in 2016 International Conference on Communication and Signal
Processing (ICCSP), 2016, pp. 0651–0653.

[4] L. Narens, “A nonstandard proof of the Jordan curve theorem,” Pacific
Journal of Mathematics, vol. 36, no. 1, pp. 219–229, Jan. 1971.
[Online]. Available: http://msp.org/pjm/1971/36-1/p20.xhtml

[5] R. R. Oliveira, I. M. Cardoso, J. L. Barbosa, C. A.
da Costa, and M. P. Prado, “An intelligent model for
logistics management based on geofencing algorithms and
RFID technology,” Expert Systems with Applications, vol. 42,
no. 15-16, pp. 6082–6097, Sept. 2015. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0957417415002316

[6] R. Passarella, S. P. Raflesia, D. Lestarini, Taufiqurrahman, R. F. Malik,
Sutarno, H. Ubaya, and A. Rifai, “Disaster mitigation management
using geofencing in indonesia,” in 2017 11th International Conference
on Telecommunication Systems Services and Applications (TSSA), 2017,
pp. 1–4.

[7] F. Reclus and K. Drouard, “Geofencing for fleet amp; freight manage-
ment,” in 2009 9th International Conference on Intelligent Transport
Systems Telecommunications, (ITST), 2009, pp. 353–356.

[8] A. Suyama and U. Inoue, “Using geofencing for a disaster information
system,” in 2016 IEEE/ACIS 15th International Conference on Com-
puter and Information Science (ICIS), 2016, pp. 1–5.

