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Abstract

Laser scanners are often used nowadays to create accurate 3D models of buildings for civil engi-
neering purposes, but the process is currently done manually and proves to be time consuming
and error-prone [4]. Therefore, the need to characterize and quantify such complex environments
arises, posing challenges for data analysis.

This thesis presents a method to reliably detect planes in 3D point clouds [9], based on which
the scene will be reconstructed at a high architectural level by removing clutter and foreground
data. The implemented software will detect openings, such as windows and doors, in order to
complete the architectural model. In addition, it will label detected planes accordingly to floor,
ceiling or wall.

Extracting such components from the 3D data proves to be difficult due to various reasons such
as boundary detection of openings. Occlusions need to be distinguished from actual openings
and occupied regions in openings need to be disregarded completely. Methods for overcoming
such impediments are also presented here, aiming to overcome drawbacks imposed by missing
data by filling in occluded regions and accurately detecting openings.
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Chapter 1

Introduction

The laser scanner has been one of the most used sensors in robotics, and so far many algorithms
for manipulating 3D point cloud data exist, but very few of them tackle the idea of semantics, the
idea of what do these point clouds actually represent. One example of such algorithm that does
not tackle the idea of semantics is the 6D Simultaneous Mapping and Localization Algorithm
such as the one used for the DARPA Urban Challenge [1]. On the other hand, some advances
have been made in the field of object recognition by the people at Willow Garage using their
famous robot, the PR2, and their Point Cloud Library [15]. Jacobs University Bremen also has
made some advances in the field through its Robotics Group at the ICRA Robot Challenge by
placing second in this contest [11].

But these are just a few minute examples of tackling the idea of semantics in point cloud data.
This research proposes the analysis of 3D point cloud data on a larger scale. It will focus on
interior reconstruction from 3D point cloud data and the main tool of achieving this goal will
be the 3D Hough Transform aiding in the efficient extraction of planes. The proposed software
environment is the 3D Toolkit [18] which already contains an efficient plane extraction from
3D point clouds feature developed by Prof. Dr. Andreas Nüchter et al. at Jacobs University
Bremen [9].

Furthermore, Adan and Huber state [4] that there have been attempts to automate interior and
exterior reconstruction, but most of these attempts have tried to create realistic models, instead
of trying to achieve a geometrically accurate one. Also they state that other approaches exist,
such as image and video-based approaches, but these are not accurate enough, with the exception
of Manhattan world stereo, which shows some promise. Now that laser scanner technology has
progressed researchers have started to show more interest in it. But with this technology new
problems arise, such as occlusions and cluttering. Their paper proposes an efficient way on how
to reconstruct the scene and how to fill in the missing information created by occlusion and
cluttering.

All in all, this research proposes to extend the work of Nüchter [9] and that of Adan and
Huber [4, 5] by combining Nüchter’s approach of plane extraction and Adan’s and Huber’s
approach to 3D reconstruction of interiors under occlusion and clutter, in order to reconstruct
the scene at a high architectural level.
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2 CHAPTER 1. INTRODUCTION

1.1 Problem Definition

1.1.1 Goal

The goal is to reconstruct the scene, here a point cloud scan of the interior of a building, at high
architectural level. The main idea is that planes will be detected using the 3D Hough Transform
already implemented in the 3D Toolkit [9], and using these planes, the developed software will
decide if the plane actually defines a wall of the interior. The Hough Transform is well known
to be used in the processing of 2D data for detecting lines and circles [9], but Nüchter noticed
the potential of it in 3D in order to detect planes in point clouds. This will prove to be a very
powerful tool in this proposed research as interiors mostly comprise of planar surfaces, with the
exception of certain modern architectural approaches such as curved walls or textured surfaces,
but such impediments will be discussed in the next section.

Figure 1.1: Contribution.

The research provided by Nüchter et al. mainly focuses on various implementations of the 3D
Hough Transform. All these implementations are included in the 3D Toolkit and will be at
our disposal during the proposed research. In the end, only the Randomized Hough Transform
(RHT) will be used since as the paper concludes, it performs the best.

On the other hand, besides determining the planes that resemble the walls of an interior, we must
also determine what is an occlusion and what is actually empty space, in order to accurately
determine the position of openings such as windows and doors. Thus, in this case missing
information drastically affects the outcome of the reconstruction. Interpreting an occlusion as
an opening is certainly not desired. Adan and Huber propose a few simple steps in overcoming
impediments such as missing information [4, 5]:

a. Wall detection - in this research we propose to use the plane detection already implemented
in 3DTK [9]

b. Occlusion labeling - for each wall surface, ray-tracing is used to determine which surface
regions are sensed, which are occluded, and which are empty space [4]

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
Transform



1.1. PROBLEM DEFINITION 3

c. Opening Detection - a learning-based method is used to recognize and model openings in
the surface based on the occlusion labeling [4]

d. Occlusion Reconstruction - occluded regions not within an opening are reconstructed using
a hole-filling algorithm [4]

Therefore, the pipeline described above will be used to fill in the missing information in order
to accurately detect the openings. Obviously it is expected that better results will be achieved
for simple, normal buildings, and the less occlusions there are, e.g. the less furniture there is,
and the simpler the structure of the building is, the better the results will be.

In the end, our aim is to combine these two methods and yield a piece of software (part of
3DTK) that will be able to take as input a point cloud of an interior and in the end output a
geometrically accurate model of that interior, removing cluttering and foreground data, filling
in the gaps, placing walls and labeling them appropriately, distinguishing between wall, ceiling,
floor etc., detecting openings and placing windows in the appropriate location with correct size;
we will ignore the shape for now and assume all windows are rectangular.

1.1.2 Possible Impediments

It is clear that the outcome of the research will closely depend on the performance of the plane
extraction algorithm and on the quality of the scans taken. To begin with, we have taken a
few scans around the interior of the Research 1 building at Jacobs University Bremen using a
RIEGL VZ-400 laser scanner. The scans prove to be very accurate, and multiple scans can be
taken and put together using the scan registration feature of the 3DTK. How accurately the plane
extraction algorithm is will drastically affect the outcome of the proposed research. Also, the
performance of the pipeline proposed in [4, 5] is another factor, but experimental results of the
researchers has proven that overall their approaches provide valid results.

Putting performance issues aside and focusing on various details of the interiors, it must be
added that variables such as the following will affect the outcome:

• overall shape of the interior
• number of walls (4 expected, typical room)
• wall texture (affects plane detection)
• unexpected architectural shapes (e.g. The Gates Building at CMU)
• shape of the openings (possible round windows)
• opening transparency
• mirrors, or glass objects
• window frame thickness (may lead into thinking window is not an opening)
• irregularities in the openings (e.g. window mounted objects)
• furniture (adding to the number of occlusions)
• number of scans taken (the more scans we have, the better outcome, after registration)
• resolution of the scans

The list is easily extensible, and these are some of the few important features that may simply
lead the algorithm into taking an invalid decision.

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
Transform



4 CHAPTER 1. INTRODUCTION

1.2 Scientific Contribution

As [4] states, there is a large body of research on reconstruction of building interiors and exteriors
using laser scanners such as [6–8, 12, 14, 16, 20, 21, 24, 25], but much of this work focuses on
creating a visually realistic model, rather than a geometrically correct one. Thus our work will
aim at filling in these gaps, and provide a software implementation that constructs an accurate
architectural model from a geometrical point of view.

1.3 Motivation

What drives us into pursuing this research is the small number of contributions to this field and
the need for such a software to exist. There is an increasing need for rapid characterization and
quantification of complex environments driven by important areas such as industrial automation,
architecture, agriculture, and the construction or maintenance of tunnels and mines. We mostly
focus on the needs coming from architecture, engineering and construction (AEC) [4], such as
building renovation cultural heritage preservation and facility management. Such models are
usually, manually reconstructed and prove to be labor-intensive and tedious processes. As a
consequence, the need for such a software package.

1.3.1 Semantics and Semantic Mapping in 3D Point Clouds

A 3D point cloud is simply a collection of 3D coordinates, they posses no meaning, and no
interpretation. Using various visualization software, these point clouds can easily be interpreted
by a person in the sense that a person is able to determine if, for example, a silhouette belongs
to person, or if it is the silhouette of a tree. Furthermore, points may have a certain color
mapping, be it a color mapping representing surface temperature, or each point is mapped to
its visible light color, making things much easier for a human to interpret the point clouds, but
for a machine to automatically determine semantically what a collection of points represent is
no easy task. Recently, certain advancements have been made in this field helping us to cross
the border into semantics and semantic mapping and the first step is to extract shapes, even the
most basic ones, such as planes. Similar techniques are being used to extract more complicated
shapes, but this is not the matter of this research. Determining if a collection of points from a
3D point cloud form a plane is slightly more related to semantics. We propose to determine if
such a plane is actually a wall inside a room, the floor, or the ceiling. Furthermore, these planes
will contain missing information, such as gaps, and the aim is to accurately determine, from a
semantic point of view, if these gaps represent occlusions or if they represent actual openings in
the walls, thus determining if they are windows or doors.

All in all, this is what we mean by semantics in the case of 3D point clouds, attributing a
meaning to a set of points, an interpretation us humans are able to understand.

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
Transform



Chapter 2

State of the Art

As mentioned in the previous chapter, there is a large body of research done in this field, but it
mainly focuses on creating an aesthetically accurate model, rather than a geometrically accurate
one [4]. Papers that approach the issue from such a point of view are [6–8,12,14,16,20,21,24,25],
which in contrast to our goal, they only attempt to construct a model of the interior and exterior
of a building by conserving aesthetic details and not focusing on the geometrical truth and the
semantics of the 3D data.

2.1 Current Approaches

So far, we have mentioned two main approaches that will be used for this research. One involves
the plane extraction, and this relates to the work of Nüchter, and the other one involves the
removal of cluttering and foreground data, and this involves the work of Adan and Huber. We
will implement our own approach by merging these two together and further improving and
extending them, in addition, integrating the developed software with the 3DTK.

2.1.1 Plane Detection in Point Clouds

The basis of the plane detection algorithm is the patent published by Paul Hough in 1962 [17].
This is the main approach behind [9], with various changes and approaches to it. The Hough
Transform has had many uses for the case of 2D in extractions of various features, mainly lines
and circles, but Nüchter, and also Adan and Huber proposed to use it on 3D data.

Before getting into more details regarding different implementations of the 3D Hough Trans-
form, let us first present the general idea behind the method. Nüchter [9] defines the Hough
Transform as being a method for detecting parametrized objects, typically used for lines and
circles. Although the original application of the Hough Transform was on pixel images, this is
not a necessity. In the current scenario we are dealing with uncategorized 3D point cloud data as
input, and the output consists of parametrized planes. The common representation for a plane
is the signed distance ρ to the origin of the coordinate system, and the slopes mx and my in
direction of the x− and y−axis. All in all, we can parametrize a plane as z = mx ·x+my ·y+ρ.
In order to avoid problems caused by infinite slopes during the representation of vertical planes,
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6 CHAPTER 2. STATE OF THE ART

the Hesse Normal Form is used, a method that uses normal vectors. Consequently, the plane is
thereby given by a point p on the plane, and the normal vector n that is perpendicular to the
plane, and the distance ρ to the origin. Therefore, the parametrization of the plane becomes:

ρ = p · n = pxnx + pyny + pznz (2.1)

In order to find points in a point set, we must calculate the Hough Transform for each point.
Given such a point p in Cartesian coordinates, we must determine all the planes the point lies
on. Marking such points in the Hough Space will lead to a 3D sinusoid curve, as shown in Figure
2.1.

Figure 2.1: Transformation of three points from R3 into Hough Space (θ, ϕ, ρ).
The intersection of the curve (marked in black) depicts the plane spanned by the three points [9].

The intersections of two curves in Hough Space denote the set of all possible planes rotated
around the lines defined by two points. Consequently, the intersection of three curves in Hough
Space will correspond to the polar coordinates defining the plane spanned by the three points [9].

Now that we have discussed the general approach of the Hough Transform applied to 3D data,
let us continue with the various Hough methods used. Nüchter [9] describes various ways of
extracting planes via different Hough Transform methods such as:

a. Randomized Hough Transform - rht

b. Standardized Hough Transform - sht

c. Probabilistic Hough Transform - pht

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
Transform



2.1. CURRENT APPROACHES 7

d. Progressive Probabilistic Hough Transform - ppht

e. Adaptive Probabilistic Hough Transform - apht

f. Randomized Sample Consensus (RANSAC) - ran

All these methods are already implemented in the 3DTK [18] and are available via the -p flag on
the command line when using the planes executable. The possible choices are the ones marked
above in bold text.

Among all these methods, the Randomized Hough Transform is the one of most interest to
us as [9] concludes that it has “exceptional performance as far as runtime is concerned”. For
convenience, we present the algorithm for RHT:

Algorithm 1 Randomized Hough Transform (RHT) [9]

1: while still enough points in point set P do
2: randomly pick points p1,p2,p3 from the set of points P
3: if p1,p2,p3 fulfill the distance criterion then
4: calculate plane (θ, ϕ, ρ) spanned by p1,p2,p3

5: increment cell A(θ, ϕ, ρ) in the accumulator space
6: if the counter |A(θ, ϕ, ρ)| equals the threshold t then
7: (θ, ϕ, ρ) parametrize the detected plane
8: delete all points close to (θ, ϕ, ρ) from P
9: reset the accumulator

10: end if
11: else
12: continue
13: end if
14: end while

The basis of the Randomized Hough Transform algorithm is the article A new Curve Detection
Method: Randomized Hough Transform (RHT) [26] which was initially intended for the process-
ing of 2D data. Also worth mentioning is the paper Fast Plane Detection and Polygonalization
in noisy 3D Range Images [19] which helped in the efficient detection and polygonalization of
the planes, thus making it possible to efficiently construct the planes in OpenGL using polygons
and displaying them.

Regarding the Standard Hough Transform, Nüchter [9] mentions that due to its high computa-
tion time, it is rather impractical, especially for real-time applications. Nevertheless, we present
Algorithm 2, to be used as a reference.

We will not present all the algorithms in detail (see [9] for all implementations); instead we will
compile all the distinctive characteristics of the Hough methods into Table 2.1.

Notice that in the steps mentioned to remove clutter and replace missing data we talk about
voxels and not about points from the point clouds. This is where [5] comes into play. The paper
first introduces the notion of building information model (BIM), and defines it as being the 3D
model of a building. As previously mentioned, typically BIM’s are made manually by people.

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
Transform



8 CHAPTER 2. STATE OF THE ART

Algorithm 2 Standard Hough Transform (SHT) [9]

1: for all points in pi in point set P do
2: for all cells (θ, ϕ, ρ) in accumulator A do
3: if point pi lies on the plane defined by (θ, ϕ, ρ) then
4: increment cell A(θ, ϕ, ρ)
5: end if
6: end for
7: end for
8: search for the most prominent cells in the accumulator that define the detected planes in P

SHT PHT PPHT APHT RHT

complete / deterministic + - - - -

stopping rule - - + + +

adaptive stopping rule - - + ++ -

delete detected planes from point set - - + - +

touch only one cell per iteration - - - - +

easy to implement + + + - +

Table 2.1: Distinctive characteristics of Hough Transform methods

We desire to automate this process and save precious man hours from being lost. Initially [5]
introduces the method on how to extract the planes, but as we have mentioned before the 3DTK

implementation will be used [9]. Nevertheless, this part may still prove to be important for
our cause as it explains how to discretize the space and make the algorithm more efficient, as
Occlusion Labeling, Opening Detection, and Occlusion Reconstruction, all operate on voxels.
Adan and Huber propose the following steps to discretize the scene and extract the planes [5]:

a. Voxelization
We discretize the input point cloud into a uniformly spaced 3D grid data structure (voxel
space). This tends to reduce data in dense areas, and keep data in sparse areas, this overall
having little effect on the outcome, except for improving runtime performance.

b. Patch Detection
Planar patches are extracted from the voxel space by implementing a region growing algorithm
to connect nearby points that present similar surface normals and that are well described by
a planar model.

c. Patch Classification
Modeled patches are classified according to the following labels: wall, ceiling, floor, or clutter
using a context-based algorithm that is modeled using a conditional random field (CRF).
This may prove to be useful, since the 3DTK implementation simply extracts the planes and
does not classify them. Also helps detecting clutter, aiding us in removing it later on.

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
Transform



2.1. CURRENT APPROACHES 9

d. Patch Intersection
The boundaries of the patches are cleaned up by intersecting the adjacent patches and the
patches labeled as cluttered are simply removed.

In the end, the steps above will yield a compact model of the walls, floor, and ceiling of a room,
and each patch is labeled accordingly.

2.1.2 Interior Reconstruction under Occlusion and Clutter

Previously, we have discussed various difficulties we may encounter in 3D laser scans. Our
research is mostly affected by cluttering and foreground data. Laser scanners do not have a
perfect 180◦ vertical field of view, therefore there will be missing information in the point cloud
above and below the scanner. Moreover, occlusions also make our task more difficult. Our aim
is to extract the right information despite these setbacks.

Papers [4,5] propose a way of reconstructing interiors from 3D point clouds and manage to find
a way to overcome obstacles such as the ones mentioned above by the use of supervised learning.
Adan and Huber propose the following steps [4, 5]:

a. Wall Detection
This has already been discussed in the previous section. We will use approaches mentioned
in [9] to detect the planes and use approaches mentioned in [5] to classify each plane and
decide whether it is a ceiling, floor or wall.

Figure 2.2: Scan of an empty office with planes detected using RHT [9]

b. Occlusion Labeling
In each step, each voxel in each surface is assigned one of three possible labels: occupied,
empty or occluded. The labeling takes place for each scanning position that has sight of the
surface at hand and then the information is merged together into a unified representation.
The labeling as empty or occupied is done by deciding whether a surface was detected at that

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
Transform
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location or not. At this point distinguishing between a voxel that is empty or occluded is
not quite possible. This problem is addressed by performing ray-tracing to explicitly decide
between occluded or empty.

Figure 2.3: Occlusion labeling [4]. (a) Reflectance image from one of five scans used to model the
wall. (b) Ray-tracing is used to label occlusion regions on the surface. (c) Labels from multiple laser
scans are integrated into a single representation. (d-e) A high resolution labeling (e) is inferred using a
region-growing algorithm based on seeds from the low resolution data (d).

c. Opening Detection
The difficulty in deciding whether a portion of the surface is empty is difficult since parts
of this opening may be labeled as occupied, e.g. a window mounted fan or the window
frame could be very thick. The algorithm proposed, which detects rectangular openings,
uses features derived from labels and depth edges in the data to learn a model of the size,
shape, and location of openings using a Support Vector Machine (SVM) classifier.

Figure 2.4: Opening detection [4]. (a) Reflectance image of a wall surface. (b) Corresponding depth
image. (c) Detected lines overlaid on edge image. (d) Openings detected by the SVM-based detector,
with each cluster of openings in a different color. (e) Prototype openings after clustering, superimposed
on IF . (f) Final labeling with openings masked out.

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
Transform



2.1. CURRENT APPROACHES 11

d. Occlusion Reconstruction
Once the openings are determined, int the end all we need to do is fill in the surface where
we have voxels labeled as occluded. The paper proposes to use the gap-filling algorithm
described by [23]. Their idea is to acquire a 2D projection of the 3D data while also storing
depth information. Then 2D image restoration algorithms are being used in order to fill in
the gaps and then the inverse is being applied, more clearly, the 2D projection is transformed
again into a 3D representation of the data. In more technical words, the paper proposes a
3D extension of the Markov Random Field inpainting algorithm which is described in [22].

Figure 2.5: Occlusion reconstruction [4]. Two examples showing the surface before (a, c) and after (b,
d) reconstruction.

As mentioned numerous times throughout this paper, there is a large body of papers tackling
similar issues, but from an aesthetic point of view. For example take papers [6–8] which focus
on the exterior of buildings, and [12] which focuses on interior reconstruction, but does not take
into consideration openings.

(a) Exterior (b) Interior

Figure 2.6: Interior and exterior aesthetic models [6–8,12].

On the topic of aesthetic reconstruction of building exteriors are also [14] and [16].

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
Transform



12 CHAPTER 2. STATE OF THE ART

Figure 2.7: Photograph of two buildings from the University of Freiburg (left), building model (right)
[16]

An interesting approach to exterior reconstruction is [20]. It seems that the goal is to semanti-
cally extract the features of the building, but the source consists of 2D images and not 3D point
clouds. Nevertheless, the approach is capable of detecting windows.

Figure 2.8: Extracting significant lines from an image [20]

Among the approaches on exterior reconstruction, the one most related to our research is [21].
This in one of the papers that tries to semantically detect features of a building facade.

Figure 2.9: Point cloud of a facade and reconstruction result [21]

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
Transform



Chapter 3

The Software Environment

As mentioned in the previous chapters, the software environment of choice is 3DTK - The 3D
Toolkit, developed by Prof. Dr. Andreas Nüchter from Jacobs University Bremen and Prof. Dr.
Kai Lingemann from The University of Osnabrück.

3.1 The 3D Toolkit

The toolkit provides algorithms and methods to process 3D point clouds. It includes automatic
high-accurate registration (6D SLAM), and other tools like a fast 3D viewer, plane extraction
etc. Full details on how to acquire the software can be found at [18]. Moreover, the 3DTK is
capable of handling various file formats.

3.1.1 Scan Registration

The process by which scans are merged into one coordinate system is called registration and
this is what the slam6d component does. There are two types of algorithms that slam6d can
use [18]:

a. ICP Matching: Also known as sequential matching, this type of matching goes over the
scans sequentially. It takes two scans at a time.

b. Global Matching: This type of matching can process multiple of scans at one time and the
sequence of the scans does not matter. When Global matching is used, a second parameter
must be specified.

By default, the slam6d component uses the sequential matching.

An example of the command for the slam6d component using some specification parameters
will be:

slam6d −s 1 −e 60 dat

So the slam6d component takes the scans as inputs and generates *.frames files as output.

13



14 CHAPTER 3. THE SOFTWARE ENVIRONMENT

3.1.2 Component Visualization

In order to view registered point clouds, or even simple scans and extracted planes the 3DTK

contains a viewer component called show.

An example of the command for the show component using some specification parameters will
be:

show −s 1 −e 76 −m 3000 dat

In order to easily visualize the data, the show component presents a user friendly graphical user
interface:

Figure 3.1: 3DTK show GUI

The GUI offers controls to alter appearance and navigation. For each, there is an appropriate
window containing various options the user can set. For further details please consult the full
description on how to use the software [18].

3.1.3 Plane Detection

The most important component of the 3DTK for our proposed research is the plane extraction
component. In order to extract planes, this component is first called on the data set. This, in
turn, will create a planes folder, containing information regarding each detected plane in *.3d

files and a planes.list file, containing the list of the detected planes. Then the point cloud
can be displayed concurrently with the detected planes using the show component.

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
Transform
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(a) Including points (b) Only planes

Figure 3.2: Plane extraction, first view

(a) Including points (b) Only planes

Figure 3.3: Plane extraction, second view

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
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3.2 Other Software

The following is a list of software programs used during the course of this guided research:

a. Kubuntu 12.04 LTS
the Operating System of choice

b. 3DTK

the 3D data manipulation environment

c. C++
the programming language of choice

d. CGAL C++ library
used to compute the concave hull

e. OpenCV C++ library
machine learning and image processing algorithms provided

f. Eigen C++ library
linear algebra

g. Eclipse CDT
the IDE of choice

h. Kile
integrated LATEXeditor

i. LATEX
the document preparation system

j. Dia
diagram creator

k. GanttProject
GANTT chart creator

l. Subversion
version control software

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
Transform



Chapter 4

Methodology

4.1 Preliminary Assumptions

First and foremost, a set of assumptions must be clearly defined before any implementation.
This set of assumptions only aids in simplifying the task and ensuring good, accurate results. In
other words, the aim of these assumptions is to avoid any ambiguous architectural components
frequently found in modern buildings, which present odd shapes and tend to use some materials,
like glass, in excess. Furthermore, we ensure that the environment is properly set up, in order
for components to work properly.
Among such assumptions we enumerate:

• all surfaces, such as walls, floors and ceilings are flat and have regular shapes, to ensure
that the plane detection algorithm [9] accurately detects these surfaces which are crucial
for the remaining steps of our approach; in addition, we also assume that all walls are
vertical, floor and ceiling are horizontal, and only a single room is contained in a scan

• all openings are rectangular, and may present irregularities such as window mounted ob-
jects which will appear as occupied space in our labeling; furthermore, if the opening is
not rectangular, but displays features close to a rectangular window, it will be detected
by the Support Vector Machine [3], but it will be represented as a rectangular opening

• the amount of occlusion in the point cloud is within acceptable margins, meaning that it
allows the wall detection algorithm to detect all the walls; if a wall is completely occluded
it is impossible to detect

• for performance reasons, it is recommended that a point cloud reduction is applied be-
forehand especially if running on a slower machine with low memory; moreover, if such a
reduction is performed, it must be ensured that the points are randomly selected from the
occupied voxels, such that the points in a horizontal slice are not perfectly aligned; the
reason for this is that the plane detection algorithm will detect a lot of false planes, as it
will find many coplanar points stacked closely together and detect them as a plane

• in order to further improve the overall runtime, we make use of some configuration values,
such as the minimum and maximum allowed size of an opening, or minimum Empty area

17
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for a candidate to count as an opening; these values are only prior estimates of the scene
to be processed, and help us avoid redundant computation; further details will be given in
the following sections

4.2 The Point Cloud Processing Pipeline

The main focus of this research is to harness the potential of the 3D Hough Transform and
utilize it in order to achieve a geometrically accurate model of an interior. Before we can run
the plane detection algorithm, the 3D data needs to be pre-processed.

Firs and foremost, 3D point clouds require a lot of memory, a lot more than a typical personal
computer has, thus scan reduction needs to be applied. In addition to decreasing memory re-
quirements for storing such a point cloud, we also gain performance, at the cost of accuracy. For
our purposes, lower resolution point clouds are acceptable, since the plane detection algorithm is
more than capable of accurately detecting planes in such a reduced point cloud. Very important
here is the fact that when reducing the point cloud using the tools provided in 3DTK (scan red),
points are randomly selected from the bounding boxes described by the octree, as opposed
to the standard method of simply selecting the center of the bounding box. This ensures that
the plane detection algorithm does not get any false positive results. What typically happens
when the point cloud is reduced by selecting the center of the bounding box, is that the points
are so well aligned that the algorithm will take random horizontal slices from the point cloud,
and consider them as planes, since all the points in a horizontal slice are coplanar and tightly
packed together.

In the majority of cases, we are dealing with multiple scans, therefore scan registration is re-
quired. For our research, multiple scans are preferable, since having more scans implies having
less occlusions. Registration is done using the slam6d tool provided in 3DTK.

Finally, we can proceed to building the interior’s model from detected planes. A simplified
graphical representation of the entire pipeline is presented in the following figure:

Figure 4.1: A general overview of the pipeline

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
Transform



4.3. THE INTERIOR RECONSTRUCTION PIPELINE 19

4.3 The Interior Reconstruction Pipeline

Before elaborating on the approach behind each component of the interior reconstruction pipeline,
we present a general overview of the method used. At this stage we assume that we have a reg-
istered, reduced point cloud stored separately from the original scan. The program is capable
of reading multiple registered scans. This is encouraged because multiple scans imply a smaller
number of occlusions. The reason for this is the fact that the scans complement each other,
meaning that if scan1 is taken from another pose, call it pose1, where pose1 6= pose0 belonging
to scan0, scan1 will have line of sight to areas where scan0 did not, and vice-versa, therefore
overall reducing the area of occlusion. Furthermore, we have the option of choosing which Hough
Transform algorithm to use. The Randomized Hough Transform is recommended since it out-
performs the others [9].

Figure 4.3 depicts the major components of the Interior Reconstruction Pipeline [4]. We will
now take each individual component of the Interior Reconstruction Pipeline, which has been
integrated with 3DTK under the name model, and elaborate.

4.3.1 Scene Initialization

Before proceeding to the first step of our approach, we must have a base from where to start.
3DTK, the software environment we are using, has components for reading in various point cloud
formats, and in case such a component does not exist, one can be written fairly easily. With the
aid of such a component we read in the point cloud, presumably registered and reduced. While
reading in the point cloud data, we also store the points in an efficient octree data structure [10]
which is provided in 3DTK.

An octree is a tree data structure that is used for indexing 3-dimensional data. It is a gen-
eralization of binary trees and quadtrees, which store one- and two-dimensional data. Each
node in an octree represents the volume formed by a rectangular axis aligned cube. This is
analogous to representing a line segment or rectangle for binary trees and quadtrees respec-
tively. Consequently, an octree node has up to eight children, each corresponding to one octant
of the overlying cube/node. A node having no children usually implies that the corresponding
volume can be uniformly represented, and no further subdivision is necessary. When storing a
point cloud, we must define a stopping rule for occupied volumes, since points are practically
dimensionless, no volume is associated with them. For further details please consult [10].

Figure 4.2: Sample octree

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
Transform



20 CHAPTER 4. METHODOLOGY

The octree will prove to be useful while performing raytracing, since we need to check if a certain
point in space is occupied. This query has logarithmic complexity due to the tree data structure.

Figure 4.3: Overview of the Interior Reconstruction Pipeline

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
Transform
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4.3.2 Wall Detection

Wall Detection is the first step in our interior reconstruction pipeline. This step is very important
since all other steps tightly depend on the walls detected. If a plane does not fit the wall correctly,
the algorithm might interpret large areas as occluded. It is also crucial that all the walls are
properly detected, if not, the algorithm cannot continue, as one of our main assumptions is that
a room has at least four walls. Therefore, there needs to be enough information in the scan such
that all six or more surfaces (four walls, ceiling, floor) can be properly detected.

Figure 4.4: The detailed Wall Detection Pipeline

The starting point of this component is the Hough Transform [9], which has been discussed
previously (2.1.1). The result is a collection of planes which are separated into vertical and

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
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horizontal surfaces using a predefined epsilon value as part of the initial configuration. All
planes that do not fit into this category are simply discarded. The Hough Transform algorithm
can be tweaked by setting various values in a configuration file. In case one of the walls is
not detected we can tell the algorithm to be more lenient when classifying a plane, therefore
detecting a larger number of planes, making it more likely that the missing plane is detected,
or on the contrary, reduce the number of detected planes in the event that too many have been
detected.

(a) (b)

(c) (d)

Figure 4.5: Plane detection in a heavily fragmented room.

Figure 4.5 is a perfect example of a heavily fragmented room. It represents a scan taken in the
basement of the Research I building at Jacobs University Bremen. The room has many pipes
running from one end to the other and therefore we have many detected planes. Many of the
planes represent the same surface, but due to the fact that the surface is not continuous and is
interrupted by another object, it has to be separated into multiple planes. As you can notice
from the figure, the Hough Transform algorithm not only returns the plane in Hesse Normal
Form, but its hull as well, therefore we can see the exact edges of the detected planes.

On the other hand, we have scans such as the one depicted in Figure 4.6. We can see that
the only planes detected are exactly the six surfaces of the room. This result was achieved
using the exact same configuration values as in Figure 4.5, therefore no special values were
necessary. This is largely due to the fact that the walls do not present any irregularities. The

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
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only impediment encountered in this scan was the presence of a mirror, which added fake points,
but this is a well known issue that is attributed to laser scanners. Nevertheless, such issues can be
easily circumvented by eliminating the erroneous points or by simply covering reflecting surfaces
during the scan. The scan represents the seminar room from the Research I building at Jacobs
University Bremen.

(a) (b)

(c) (d)

Figure 4.6: Plane detection in a regular room

Now that we have the detected planes separated into vertical and horizontal, we can continue
with deciding which planes represent the walls, the ceiling and the floor. The ceiling and the
floor can easily be extracted from the given information, as we only need to look for the lowest
and highest horizontal planes. On the other hand, deciding which vertical planes are walls,
requires additional computation. The application point of the normal from the Hesse Normal
Form represents the center of gravity of the points contained in the hull of the plane. We project
the points onto a horizontal plane and extract the concave hull. This is a vague notion, since
there are many interpretations for such a shape, as opposed to the convex hull, which is clearly
defined. In order to extract the concave hull of our projected vertical walls, we used the 2D
Alpha Shapes algorithm from the Computational Geometry Algorithms Library (CGAL [2]).
The reason why we chose to use the concave hull over the convex hull is fairly simple. The
concave hull will be able to detect the walls of a concave room. Figure 4.7 clearly depicts such
a situation.

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
Transform
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(a) Concave hull (b) Convex hull

Figure 4.7: The concave hull approach clearly detects all given walls, whereas the convex hull is not
selecting the walls marked by a thicker line.

After determining the concave hull of the projection, the planes that are part of the hull shall be
selected as wall candidates. These planes are the actual planes that make up the walls, but as
we have seen in Figure 4.5, more planes can represent the same surface. In order to circumvent
this issue we simply average all planes that represent the same wall. In order to decide if two
planes represent the same wall, we compute the distance from the normal application point of
one of the planes to the other plane and if it is smaller than a predefined value and if their
normals correspond, up to a certain degree, then they represent the same plane. By averaging
the planes, we mean that their normals and centers of gravity are averaged. We now use the
resulted wall candidates and the highest and lowest horizontal plane to compute the corners of
the room by computing the intersection of each wall candidate with the ceiling and the floor.
As a result, we now have a set of points representing the corners of the room. Again, we use
these points to compute new planes, including their hulls, which are now the final walls, ceiling
and floor of the room.

(a) Detected planes (b) Detected planes and point cloud

Figure 4.8: Detected surfaces in the basement scan.

One can see that the recomputed planes nicely fit the points. Another approach to determining
which planes to keep, instead of averaging, is to see which of the planes has the minimum RMS
distance to all the points belonging to that surface.

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
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4.3.3 Occlusion Labeling

This component of the pipeline is based on approaches borrowed from computer graphics: oc-
trees, Bresenham’s line algorithm and raytracing.

Figure 4.9: The detailed Occlusion Labeling Pipeline

To begin with, we have implemented Bresenham’s line algorithm in 3D to aid us with determining
the discrete path of a ray during raytracing. In order to determine the starting and ending point
of a ray, we first divide the plane into a grid, and project these discrete points in 3D. These
points represent the ending point of the rays. Of course, the raytracing is performed individually
for each surface of the interior, therefore we will generate multiple label and depth maps. After

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
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computing all the discrete points on all the surfaces, we cast rays starting from the origin of
the scan towards all the discrete surface points. This is where we use the advantage of having
implemented an octree and the 3D Bresenham line algorithm. By generating all the intermediate
points between the origin of the scan and a targeted discrete surface point we can proceed with
making a simple query to the octree (logarithmic time) if any of these particular points, starting
from the origin, are occupied. If any point in space along the way is occupied, then the ray is
interrupted and the destination point cannot be reached by this particular ray.

Before we move further, a clear definition of the labels must be presented. There are three types
of labels attributed to each discrete point on each surface: Occupied, Occluded and Empty.

Figure 4.10: Top-down view of a room with 3 openings. Labels attributed to various regions are shown
in different colors.

The Occupied label designates a particular point on the wall as occupied space, thus there is
clear information available on this point. In our pipeline, we determine this before performing
raytracing. For each discrete point on a surface we check if perpendicularly to the plane, within
a distance d, on both sides of the surface, there is any occupied space in the point cloud. If so,
the particular discrete point is labeled as occupied and the distance at which the nearest point
in the point cloud was found is stored in a depth map to be used later on for opening detection.
The d variable can be adjusted depending on the scene. Figure 4.11 clearly displays the effect
of varying d. Notice as we increase d, the Occupied region increases, and eventually the only
opening in the image is labeled as occluded. For later experiments d = 10cm has been used.

Occluded labels are applied as a result of raytracing. In order to determine if a region is
occluded or not, multiple rays are cast from the origin and checked if they reach the discrete
point on the surface. Figure 4.10 depicts the top-down view of a simple room with three openings.

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
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What we see is just a horizontal 2D slice of the room, but the concept explained here in 2D
is easily extended to 3D. The blue lines represent segments of the wall that are occluded from
the laser scanner. Notice that for these areas, the rays do not reach the walls because they
are blocked by various objects in the room. As mentioned above, rays are discretized using the
3D Bresenham line algorithm. Each point is then checked, from origin to destination, if it is
occupied by the use of our octree. It is very important that raytracing is not performed for the
discrete points on the surface that already have been labeled as occupied.

Empty labels are determined also by performing raytracing, but this label is attributed to a
point on the surface only if the ray has not encountered any obstacles along the way, even in
the vicinity of the surface. Therefore, the Empty label is applied if the ray does not encounter
absolutely anything until its destination.

(a) 5 cm (b) 10 cm

(c) 20 cm (d) 35 cm

(e) 5 cm (f) 10 cm

(g) 20 cm (h) 35 cm

Figure 4.11: Occlusion labeling for various wall distances (Research I basement data).
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All in all, the result of this component of the pipeline is two images for each surface: a labels
image and a depth image. The labels image will later help us in determining 3 of the 14 features
for the Support Vector Machine used to classify openings. The depth image will be used to
detect lines and construct opening candidates for the SVM. Many features for this component
of the pipeline implement ideas from [4]. The results for our data set are depicted in Figure
4.12. The surfaces with openings are of most interest.

(a) Basement labeling

(b) Basement depth image

(c) Seminar room labeling

(d) Seminar room depth image

Figure 4.12: Labels and depth images.
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4.3.4 Opening Detection

For this component of the pipeline we continue to base our approach on ideas from [4]. We
need to differentiate between actual openings on the surfaces and occluded regions which are
basically missing information which needs to be filled in. In this section we make use of the
labels and depth images computed in the previous section. A Support Vector Machine is used
to classify opening candidates and K-Means clustering is used to determine which candidates
belong together. The result of this component is a complete 3D model of the interior and a 2D
mask which is used to reconstruct the point cloud later on.

Figure 4.13: The detailed Opening Detection Pipeline

In this component we make extensive use of various image processing and machine learning
techniques. Numerous implementations already exist; we have chosen to use OpenCV [3]. We
initially start from the depth image I that has been computed in the second component of our
pipeline. We apply the Canny edge detection algorithm and Sobel Operator on the horizontal
and vertical direction. The result is three different images I1, I2 and I3 respectively. These three
images are added together and a threshold is applied for every pixel that is not 0. This yields a
binary image I4 with enhanced edges. We then proceed with applying the Hough line detection
algorithm on I4 which gives us all the lines in the image. We keep only vertical and horizontal
lines and construct all the possible rectangles using these lines. The rectangles represent opening

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
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candidates. Of course, many can already be discarded if we take into consideration various
predefined values such as the minimum and maximum area of an opening.

The reason why the Sobel Operator was used in addition to the Canny edge detector, is that
it makes our opening detection algorithm more robust, ensuring that it does not miss any
important candidates. Hough line detection on Canny edge alone was not enough to detect the
proper lines for our data. Figures 4.14 and 4.15 display the results for our two data sets.

Figure 4.14: Line detection for the basement data.

Figure 4.15: Line detection for the seminar room data.
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In the figures above, vertical lines are drawn in red and horizontal lines are drawn in blue. We
take combinations of 2 vertical and 2 horizontal lines to determine an opening candidate. There
will be many redundant candidates as it can be seen in Figure 4.15, where large clusters of
horizontal lines have been detected.

Once we have determined all the opening candidates, we compute a vector of 14 features for
each candidate as described in [4]:

1. candidate absolute area
2. candidate width / height ratio
3. candidate width / surface width ratio
4. candidate height / surface height ratio
5. distance from upper side of candidate to upper side of surface
6. distance from lower side of candidate to lower side of surface
7. distance from left side of candidate to left side of surface
8. distance from right side of candidate to right side of surface
9. root mean squared error to the best plane fitted to the rectangle surface

10. percentage of Occupied area
11. percentage of Occluded area
12. percentage of Empty area
13. number of interior rectangles
14. number of inverted U-shaped rectangles (specific to doors)

In order to determine features 10, 11 and 12 we make use of the labels image. These feature
vectors are used to classify the candidates. In order to train the Support Vector Machine, a small
database has been put together with features of actual openings from various buildings across
our campus. It is well known that a Support Vector Machine (SVM) is a learning system that
performs classification tasks by constructing hyper planes in a multidimensional space. We have
used a Radial Basis Function (RBF) as a kernel in a binary SVM model. After the SVM has
been trained, we give each candidate as input. The SVM will tell us if the candidate represents
an opening or not. In the end, we are left only with candidates that are close representatives of
the ground truth we used to train the SVM with.

Now that we have kept the most relevant opening candidates, many of these actually represent
the same opening. We proceed by clustering the candidates by using K-Means clustering. This
is a method of cluster analysis that aims to cluster n observations, our opening candidates, into
k clusters in which each observation belongs to the cluster with the nearest mean. The features
we use to differentiate between the candidates are the candidate’s center and its absolute area,
because we might have large candidates from one cluster centered at the same position with
smaller candidates. After deciding which cluster the candidates belong to, we need to determine
the shape of the final opening. It is important to know that the number of detected clusters
is the same with the number of openings on the real surface. We proceed by choosing for each
cluster the best candidate which has the largest Empty area, and the smallest Occupied and
Occluded areas. This candidate is the cluster representative and is kept as the final opening
that represents that particular cluster.

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
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Figure 4.16: Opening detection for the basement data.

(a) Opening candidates (b) Clusters

(c) Cluster representatives (d) Final openings

Figure 4.17: From opening candidates to the final opening (basement data).

As we have specified before, the basement data is very good for testing our pipeline, since for
plane detection, it was very fragmented, yet the pipeline was able to accurately determine the
six surfaces of the interior; for the surface labeling, it was ideal, since it contained large areas
of all three labels, mainly Occluded areas, due to numerous pipes running from one side of
the room to the other; for the current component, opening detection, the only opening on the
surface presented in Figure 4.16 is occluded by a vertical pipe, which challenges the SVM in
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properly choosing candidates. Therefore, as it can be seen in both Figures 4.16 and 4.17, the
opening candidates marked in red, are separated into three clusters. The center of each cluster
has been marked with the same color as the candidates belonging to that cluster. Therefore,
we are left with three possible openings, the two smaller windows that do not overlap with each
other, and the larger window that overlaps with both smaller candidates. We check all the po-
tential openings that overlap with others and always keep the one that has the largest Empty
area and the smallest Occupied and Occluded area, therefore, in our example we are left with
the larger candidate as final opening which corresponds to the ground truth. In the case of
windows with thick frames or window mounted fans, the algorithm is able to avoid detecting
multiple smaller windows, because it checks for overlapping candidates, in the end keeping the
best candidate with the largest Empty area, which is always the whole window.

For the seminar room data, Figures 4.18 and 4.19, the SVM’s task is simplified since the open-
ings on the surface do not present any obstructions. Almost all the opening candidates marked
in red seem to overlap exactly with the real opening. Clustering is again trivial, as there are
clearly two easily distinguishable clusters among the opening candidates. As before, the best
candidate from each cluster is chosen as a final opening.

Figure 4.18: Opening detection for the seminar room data.

Notice that for the seminar room there were no overlapping clusters, therefore the final openings
coincide with the computed clusters. Also, the seminar room was chosen as a second data set
due to the fact that it has multiple windows on the same wall. This is just to prove that the
system is able to handle multiple openings. The basement scan is important because it contains
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an occluded opening, and still, the algorithm is able to properly detect the window despite that.
In the beginning we mentioned that one of the possible impediments for opening detection would
be various obstructions such as occlusions, thick window frames or window mounted fans.

(a) Opening candidates (b) Clusters

(c) Cluster representatives (d) Final openings

Figure 4.19: From opening candidates to the final opening (seminar room data).

In the end, the purpose of this component is to accurately determine which regions on the surface
are actual openings and which regions are actually missing information due to occlusions. After
computing the final 2D openings on the depth image, we proceed to relabel all remaining Empty
labels to Occluded. This yields the inpaint mask, Im, that is used for the inpainting (gap filling)
algorithm [4,23]. Basically, the inpaint mask, Im, tells us what patches of the surface are actual
missing information which needs to be filled in. Figures 4.16 and 4.18 show the inpaint masks for
both our data sets. Notice that the amount of reconstruction required for the basement surface
is significantly higher compared to the seminar room surface. The seminar room surface presents
very few occlusions, whereas the basement room surface is approximately 50% occluded. In the
next component we present a simple way of reconstructing the actual 3D data from the 2D
depth map and the inpaint mask.

Besides the inpaint mask required for the point cloud reconstruction, we also generate a simple
3D model of the interior using the detected surfaces and final 2D openings. We have also chosen
the images in Figure 4.20 to show another possible opening detection for the basement data.
This is one of the earlier models for the basement room, one in which the larger window would be
discarded by the SVM, instead only choosing the two smaller candidates. By further increasing
the SVM training database we are able to achieve the results from Figures 4.16 and 4.17.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.20: Basement room model.

It is very important to mention that the scans depicted so far consist only of one scan. We
present later on the results for multiple scans. Having multiple scans registered would only
make the task easier, since there would be less missing information due to occlusions.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.21: Seminar room model.
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4.3.5 Occlusion Reconstruction

We are down to the last component of the pipeline. The purpose of the whole pipeline is to
generate a reconstructed version of the initial point cloud, filling in the missing information
induced by occlusions. This component is fairly simple, and requires the use of a gap filling
algorithm [4].

Figure 4.22: The detailed Occlusion Reconstruction Pipeline.

We begin by taking the original depth image, I, for every surface and apply a gap filling algorithm
on it. We have used the inpainting algorithm already provided in OpenCV [3]. We use the inpaint
mask computed in the previous component, Im. The result of this process is a reconstructed 2D
depth image, Ir, having all the missing information filled in. We then proceed to computing the
mean and standard deviation of the original depth image, in the depth axis, and add Gaussian
noise with the same mean and standard deviation to the newly reconstructed image, thus yielding
the final reconstructed depth image of the surface, If . The reason we add Gaussian noise to
the reconstructed depth image is that the reconstructed regions have a very unnatural look and
feeling.

After computing the reconstructed depth image and adding noise, we then proceed by projecting
If back into 3D. This simply yields the reconstructed surface point cloud. Figures 4.24 and 4.25
depict the results on our two data sets. Light red represents the reconstructed information.
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(a) Basement depth image (b) Basement inpaint mask

(c) Basement reconstructed depth image

(d) Seminar room depth image (e) Seminar room inpaint mask

(f) Seminar room reconstructed depth image

Figure 4.23: Depth image, inpaint mask and reconstructed depth images.
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Figure 4.24: Sample reconstructed basement point cloud.

Figure 4.25: Sample reconstructed seminar room point cloud.
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Chapter 5

Experiments and Results

5.1 Environment

All computations have been performed on an Intel Core2 Duo P8600 at 2.4GHz, 4GB of RAM,
running Kubuntu 12.04 LTS 64-bit.

5.2 General Results

The purpose of the pipeline we presented in Figure 4.1 was to be able to run the 3DTK component
on almost any computer. We reduced the point cloud to 1 point every centimeter, giving us
approximately 5 million points for both our scans. The program ran smoothly without exceeding
the above mentioned amount of memory.

As mentioned before, we have two data sets: a scan of a basement room and a scan of the
seminar room, both from the Research I building at Jacobs University Bremen.

(a) Basement (b) Seminar room

Figure 5.1: The two rooms used in our tests.

Most of our results have already been presented in the previous sections. In this section we
present the results for the other surfaces, since they have been previously omitted. Also, we
present the results for not one, but four registered scans simply as a proof of concept.
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(a) Depth map (b) Labels (c) Enhanced edges

(d) Detected lines (e) Depth mask (f) Reconstructed depth image

Figure 5.2: Basement room ceiling.

(a) Depth map (b) Labels (c) Enhanced edges

(d) Detected lines (e) Depth mask (f) Reconstructed depth image

Figure 5.3: Basement room floor.
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(a) Depth map (b) Labels (c) Enhanced edges

(d) Detected lines (e) Depth mask (f) Reconstructed depth im-
age

Figure 5.4: Basement room wall 1.

(a) Depth map (b) Labels (c) Enhanced edges

(d) Detected lines (e) Depth mask (f) Reconstructed depth im-
age

Figure 5.5: Basement room wall 2.

(a) Depth map (b) Labels (c) Enhanced edges

(d) Detected lines (e) Depth mask (f) Reconstructed depth im-
age

Figure 5.6: Basement room wall 3.

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
Transform
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Notice that the walls do not necessarily present any interesting features. They mostly consist
of Occupied and Occluded labels since they have no openings. The anomalies are the ceiling
and the roof which present a circular pattern of Empty labels. There is no opening detected
here simply because if we take a look at the possible candidates, there are no rectangles that
could be formed and have a high Empty area. The reason why these circular areas appear
is that the scanner does not have a perfect 180◦ view, therefore when it spins, it leaves such
patterns right above and below. Of course, the size of these circular patterns depend on the
scanner. One way of circumventing this is by detecting such circular patterns above and below
the origin of the scan and flooding the Empty labels with Occluded ones, since that area is
missing information. From a raytracing point of view, we simply consider that the scanner is
able to see in all directions, that is why these areas are attributed the wrong label. A better
way of removing such anomalies is by acquiring multiple scans and registering them using the
slam6d component of 3DTK. We now present the labeling results (Figure 5.7) for 4 registered
scans taken in the basement room.

Acquiring multiple scans does not only allow us to eliminate anomalies, it also enables us to
significantly reduce the Occluded area. All 4 registered scans and room model are presented
in Figure 5.8.

As mentioned before, the size of the database used to train the Support Vector Machine greatly
influences the outcome of the opening detection component. Figures 5.9 and 5.10 depict multiple
results for opening detection. Notice that in the basement data there are some differences from
one result to the other. When clustering, multiple clusters are detected in some of the results,
nevertheless the opening is correctly detected in the end. Looking at the final openings, we
notice that not always the larger window gets chosen as final. This is a matter of perspective,
if we consider the pipe blocking the view to the opening as part of the wall, then yes, the two
smaller windows detected would be appropriate, otherwise, the larger window should be chosen.
This can easily be controlled by adjusting various parameters, such as the allowed Occupied
and Occluded areas of the openings, or by simply carefully choosing the training data for the
SVM. For the seminar room data, Figure 5.10, there is not much variance. Final openings always
get chosen correctly, and the clusters never show much variance. There is always one cluster per
opening, since there is not much ambiguity in the scene at hand.

The purpose of window detection is merely to decide upon what Empty labels truly represent
empty space. This is required to generate the inpaint mask required for the 3D reconstruction.
The results for the 3D reconstruction for our data sets have already been presented in Figures
4.24 and 4.25.

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
Transform
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(a) Window wall (1 scan) (b) Window wall (4 scans)

(c) Ceiling (1 scan) (d) Ceiling (4 scans)

(e) Floor (1 scan) (f) Floor (4 scans)

(g) Wall (1 scan) (h) Wall (4 scans)

(i) Wall (1 scan) (j) Wall (4 scans)

(k) Wall (1 scan) (l) Wall (4 scans)

Figure 5.7: Basement room labeling comparison between 1 scan and 4 registered scans.

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
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Figure 5.8: Basement room - all 4 registered scans and model (multiple views).

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
Transform



5.2. GENERAL RESULTS 47

Figure 5.9: Various results for opening detection (detected clusters and final openings).
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Figure 5.10: Various results for opening detection (detected clusters and final openings).

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
Transform



Chapter 6

Future Work

6.1 Interchangeable components

So far we have presented a pipeline based on 4 major components. This modularity offers many
advantages as each component can simply be replaced by any other approach. For example [4]
uses a completely different approach for the first component, wall detection. In the future, many
other components will be added and we will allow for any combination of these components to be
used. Another approach may be suitable for a particular scene, therefore one might wish to use
a different inpainting algorithm for the last component, for example. One very good improve-
ment for the opening detection component would be the use of reflectance images. This would
greatly increase the robustness of this component. We would be able to generate fewer, more
appropriate opening candidates, instead of generating all the possible ones from the extracted
lines. This can be achieved by exploiting the color information contained in the reflectance image.

6.2 Extending the pipeline

As mentioned in our motivation, the purpose of this software is to simplify and automate the
generation of building models. Our next step will be to extend the pipeline with an additional
component that will put together multiple scans of interiors and generate the model and re-
constructed point cloud of an entire floor or building. The show component of 3DTK can easily
handle a point cloud and model of that magnitude.

Another way of extending the pipeline is to add a component that would combine geometrical
analysis of point clouds and semantic rules to detect 3D building objects. An approach would
be to apply a classification of related knowledge as definition, and to use partial knowledge and
ambiguous knowledge to facilitate the understanding and the design of a building [13].
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6.3 Additional tests

The results we have presented in this research are computed only on two data sets. Further tests
will be ran on scans of interiors containing more than two windows, opened doors, windows with
various obstructions on them, interiors with more than four walls and interiors with concave
walls. In addition, for the wall detection component, the RMS error of the fitted plane will
be computed on various runs. Also, for the reconstructed surfaces, a comparison between the
ground truth and the reconstructed surfaces can be provided by computing the RMS error
between corresponding points.

Interior Reconstruction under Occlusion and Clutter, based on the 3D Hough
Transform



Chapter 7

Conclusion

Identifying and restoring hidden areas behind furniture and cluttered objects is challenging. In
this research we have proven that this task can be easily divided into four components, each
one relying on the outcome of the previous component. As the wall detection and labeling
components are fairly reliable, we cannot state the same for the opening detection and the
reconstruction. One reason is that the opening detection vastly depends on the data used to
train the Support Vector Machine. This is one of the drawbacks when using supervised learning
methods. Moreover, we only considered windows to be of rectangular shape. Although, this
is a safe assumption, attempting to detect windows of various shapes would severely increase
the difficulty of the task. For the reconstruction component, despite the fact that we are being
provided a reliable inpaint mask from the previous component, it is difficult to assume what
is actually in the occluded areas. 2D inpainting is one approach in approximating what the
surface would look like, but as we have seen in the basement scan, Figure 4.23, right above
the window there is simply not enough information to accurately reconstruct the wall surface
correctly. Please note that the basement scan is a highly occluded scan, and for typical scans
such as the seminar room, the inpaint algorithm performs nicely.

As we have previously stated, a solution to reducing occlusion is to take multiple scans. Figure
5.7 clearly demonstrates this. Occluded areas and anomalies are severely reduced, as seen on the
label images on the right side. Despite having the advantage of greatly reducing the occluded
areas, we cannot eliminate them completely. Therefore comes the need to focus more on ways
of reconstructing the missing information, rather than attempting to observe it.

The software has been implemented in C++, which offers us a great advantage regarding per-
formance allowing us to manipulate larger data sets and decrease runtime. The parts that take
up most of the runtime are the raytracing and the feature computation for all the opening can-
didates. We attempted in reducing the runtime of the feature computations by eliminating very
bad candidates such as very small or very large openings or opening candidates that do not
feature a large enough empty area.

All in all, the software is performing as expected, and proves that point cloud interior recon-
struction can be achieved within a certain degree of accuracy.
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