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Abstract
One fundamental problem in autonomous mobile robotics is SLAM ( Simultaneously Localization
and Mapping): A robot has to localize itself in an unknown environment and at the same time
generate a map of the surrounding area. Loop closing, i.e., detecting whether the robot has
reached an area that it has visited before, is a substantial sub-problem of SLAM.

In this thesis, which is inspired by the work of Newman and Ho [23], visual features from
camera data are used to help closing the loop in an existing 6D-SLAM architecture [31]. For the
visual feature extraction two detection methods are combined, namely, salient region detection
and maximally stable extremal region detection. The detected regions are then encoded using
SIFT descriptors and stored in a database. The descriptors of di�erent images are matched in
order to detect a loop. To assess the approach, the feature detection and description will be
compared to other methods within the framework developed byMikolajczyk and Schmid [22].

Zusammenfassung
Ein fundamentales Problem in der autonomen mobilen Robotikist das gleichzeitige Lokalisieren
und Kartieren (engl.: SLAM; Simultaneously Localization and Mapping): Ein Roboter mu�
gleichzeitig in einer f•ur ihn unbekannten Umgebung seine Position bestimmen als auch eine
Karte dieser Umgebung erzeugen. Das Schleifenschlie�en ist ein Teilproblem vom SLAM. Hier-
bei soll der Roboter erkennen, ob er sich in einer Umgebung be�ndet, welche er zuvor bereits
besucht hat.

In dieser Arbeit, die durch einen Aufsatz von Newman und Ho [23] inspiriert wurde, werden
visuelle Merkmale aus Kameradaten extrahiert und dazu verwendet, das Schleifenschlie�en in
einer existierenden 6D-SLAM Architektur [31] zu unterst•u tzen. Bei der Extraktion visueller
Merkmale werden zwei Methoden kombiniert, die Erkennung von interessanten Regionen (engl.:
salient regions) und die Erkennung von maximal stabilen extremalen Regionen. Die erkannten
Regionen werden mit Hilfe von SIFT Deskriptoren in einer Datenbank gespeichert. Die Deskrip-
toren von verschieden Bildern werden verglichen, um eine Schleife zu detektieren. Um den
Ansatz zu beurteilen, werden sowohl die Merkmalserkennungals auch die Merkmalsbeschrei-
bung in einem Evaluationssystem, welches von Mikolajczyk und Schmid [22] entwickelt wurde,
getestet.
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Chapter 1

Introduction

Loop Closing is the problem in the process of simultaneous localization and mapping where a
robot comes to a place in the environment where it has been before. More precisely, there are
two di�erent problems in the task of loop closing: place recognition and knowledge integration.
In place recognition, a robot recognizes if it has visited anarea under inquiry before. Knowledge
integration is the task of incorporating the extra informat ion, that a robot gains from recognizing
a place, into the localization and mapping data structures. Figure 1.1 makes the division in two
problems clearer. On the left-hand side the path of a robot just before loop closing is shown.
The two pictures in the �gure are recognized as the same place. In the next step this extra
information is integrated in the knowledge base of the robot. That means that the robot position
and its corresponding uncertainty, which is illustrated with the gray ellipses, will be adjusted.
This adjustment is shown on the right-hand side of the �gure where the updated uncertainty of
the robot position is illustrated with blue ellipses. This v iew on loop closing is not completely
general, but it is a useful distinction criterion.

In this thesis only the problem of place recognition is addressed. The thesis is not concerned
with the problem of knowledge integration. To recognize a place, a robot has to rely on some
kind of sensor data. Visual information from camera data is examined here.

In the following section the thesis is put into relation to other present work. The scienti�c
contribution of this thesis is explained in detail in Section 1.2.

1.1 Related Work

There is a variety of approaches that tackle the SLAM problem; some methods work in 2D {
see [32] for an overview { while others do it in 3D [1,31]. The use of sensors is also di�erent, but
most approaches rely either on laser scanners or cameras. Inthis thesis, both kinds of sensors
are used to combine their respective strengths. Here laser data is used as described in [31] to
generate the maps of the environment. Visual features are extracted from the camera data and
processed to improve the loop detection.

In order to make loop detection robust, Newman and Ho [23] suggest an approach that
does not rely on the pose estimation of the robot to decide whether a loop closure is possible.
Data for pose estimation, for example based on odometry, is typically erroneous. Therefore
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(a) (b)

Figure 1.1: A robot trajectory before and after loop closing [23]. On theleft: A robot path just before
loop closing. The state vector of the robot positions is illustrated in red. The gray ellipses around these
positions indicate the uncertainty of the position. The two pictures show the same scene from di�erent
viewpoints. On the right: A close-up on the robot path after loop closing. The state vector is adjusted
and the uncertainty of the robot position is updated (blue ellipses).

loop closing is improved by not considering this kind of measurement. Searching over all poses
means more or less solving thekidnapped robot problem1, one of the three kinds of localization
distinguished by [26]2. Using only visual information as proposed by [23] shows di�culties, for
example in environments with recurring structures; therefore Newman and Ho [5] combined
visual and spatial information acquired from camera and laser data, respectively, to enhance
their developed procedure. This is an interesting approach, but beyond the scope of this work.
Here only visual data is considered for the loop detection task. Laser data is only used for the
purpose of map building.

Camera data for loop detection is used by extracting features from the captured images and
processing them. This is normally done in three steps: detecting the features, encoding them
using feature descriptors and �nally matching them against each other. Many region detectors
available [8, 15{17, 19, 21]. There are also quite a number offeature descriptors, which di�er in
their properties [3,4,10{13,28]. Important issues are invariance to scale, rotation, transformation
or changes in illumination. For an overview over both detectors and descriptors see [20]. In the
present thesis, salient regions are detected and encoded with SIFT descriptors as presented
by [14]. For comparison, other feature descriptors have been tested as well.

1A robot is moved to an unknown position in a known environment , where it has to localize itself
2Just for completeness the others are tracking and global localization. But it is the kidnapped robot problem

that is mostly related to this thesis.

Visual Features to Help Close the Loop in 6D-SLAM



1.2. OBJECTIVE AND STRUCTURE OF THE THESIS 3

1.2 Objective and Structure of the Thesis

The main aim of the thesis is to implement and evaluate the procedure suggested by [23] which
tries to solve loop closing by using information from cameradata, or more speci�c by using
visual features. The proposed feature detector is comparedwith other detectors within the
framework developed by [22]. Furthermore the procedure is integrated into the existing 6D-
SLAM architecture [31] on the Kurt3D robot platform to assis t the present algorithms regarding
loop closing. The intentions above are leading to three general parts in this thesis:

Developing the procedure for feature extraction and loop de tection. The procedure
is implemented as described in [23]. The authors suggest a feature detector with two criteria,
namely saliency and wide-baseline stability. The featuresare encoded using a SIFT descriptor
[14] and stored in a database. For the loop detection the features of a new image are processed
and compared with the features already stored in the database. If there is an overlap of features,
a loop hypothesis is generated. The methods used for the visual feature extraction, the feature
matching and the application of loop closing are described in Chapter 2.

Evaluation of the feature detection and description within a given framework [22].
The combined feature detection of salient regions [9] andmaximal stable extremal regions
(MSERs) [15] is compared with other detection methods. Especially the exclusive usage of
salient regions or MSERs is interesting. Other feature descriptors apart from SIFT are tested,
too. The data set that is used, the evaluation criteria and the evaluation results are presented
in Chapter 3.

Integrating the loop detecting procedure into the existing 6D-SLAM architecture.
The loop detecting procedure assists the robot, while it is exploring the environment (indoor
and outdoor). If a loop is detected, the robot tries to verify it based on independent sensor data,
e.g., 3D scans, or self-localization. The robot architecture and the testing results are explained
in Chapter 4.

Chapter 5 discusses the results, draws some conclusions andaddresses open issues.

Visual Features to Help Close the Loop in 6D-SLAM





Chapter 2

Loop Closing

Loop closing means to detect if a robot reaches a position in the environment where it was before.
In general, the choice of sensors to tackle this problem is not limited. Camera sensors have the
advantage that they are quite cheap, handy and widely-used.Therefore this implementation
focuses on visual information for the task of loop closing. Visual features are extracted from
images made by the robot while driving around. These features are stored in a database and
matched against features extracted from previously taken images.

2.1 System Overview

The principal design of the loop closing procedure is depicted in Fig. 2.1. Images are taken
from the robot in an incremental fashion. These images are applied to the saliency-MSER-
SIFT pipeline one at a time and one after another. The result of the pipeline, the extracted
features, are stored in a database. After the �rst image is processed, the resulting features of
each following image are matched against all features that are already stored in the database to
detect a loop. The matching of the features is equivalent to the measurement of the distance
between vectors in a high dimensional vector space. A loop closing hypothesis is generated
if similar features are found in two images, that means that their distance is below a certain
threshold. In other words, it is likely that the images were taken at the same or neighboring
location.

There are three steps needed in the visual feature extraction pipeline to generate the feature
representation that is stored in a database and used for the matching process: the saliency
detection, the MSER detection and the SIFT description. Two criteria are used to detect
the features in the image, namely saliency and wide-baseline stability (MSER detection). The
detection of the features is ful�lled by steps one and two. Each detection process generates a
list of feature regions. The overlapping feature regions are considered for further processing.
An example of the feature regions detected by its corresponding method as well as the resulting
overlapping regions is shown in Figure 2.2. The sample images in the �gures of this chapter are
all taken from a data set that is publicly available on the website http://www.robots.ox.ac.
uk/ � vgg/research/affine/ .

These regions are encoded in the third step with the SIFT description algorithm. The repre-

5



6 CHAPTER 2. LOOP CLOSING

Figure 2.1: The principal design of the loop closing procedure. Images are applied to the saliency-
MSER-SIFT pipeline. Salient and wide-baseline stable features are detected and encoded using the SIFT
algorithm. The resulting feature descriptors are stored inthe database and matched against previously
generated descriptors.

sentation of visual features with SIFT descriptors is chosen because they are highly distinctive
and at the same time very e�cient for comparisons.

The algorithms of the visual feature extraction pipeline, i.e., the feature detection and de-
scription, are presented in Section 2.2. Furthermore the matching process is explained in more
detail in Section 2.3 and �nally the application of loop closing is described in Section 2.4.

2.2 Visual Feature Extraction

Here the task of visual feature extraction is to represent animage by a set of features. This
problem consists of two sub-problems: feature detection and feature description. Feature detec-
tion �nds regions in an image that meet some criteria. Feature description encodes these regions
to have a representation that is used for further processing, e.g., feature matching.

As mentioned above, in this implementation three general steps are needed to generate
the representation of features for an image. These steps, the saliency detection (2.2.1), the
MSER detection (2.2.2) and the SIFT description (2.2.3), are described in the following. It is
noteworthy that this implementation combines two di�erent feature detection methods to make
the approach more robust.

2.2.1 Salient Region Detection

Saliency is the �rst criterion for feature detection. It can be best understood as characteristic
for 'interesting' regions. Presumably those regions are relatively sparse in an image. That makes
this metric useful for loop detection, because features aremore or less unique in an image and,

Visual Features to Help Close the Loop in 6D-SLAM



2.2. VISUAL FEATURE EXTRACTION 7

Figure 2.2: The original scene and the results for the saliency, the MSERand the combined saliency-
MSER feature detection for the same image. The image shows a structured gra�ti scene from the data
set that is shown in Figure 3.1. The detected visual featuresare highlighted: Salient regions in the top
right image and MSERs in the bottom left image. These regionsare found by their corresponding feature
detectors. The overlapping regions from these both images are shown on the bottom right image. Regions
are considered overlapping if the number of the intersecting pixels is at least 10% of the number of uni�ed
pixels. The ellipses in the right images are calculated fromthe convex hulls of the MSER regions.

accordingly, for a location.

The scale-saliency algorithm developed by Kadir and Brady [9] was used by Newman and Ho
for loop closing [23]. It detects image regions having a local complexity or, in other words, are
distinct from their neighborhood. This complexity or disti nctiveness is measured as the entropy
HD for a certain region D . A region is a scaled circular window around a center pixel~x. The
window size or scales is bound to a range between a minimum and a maximum scale value.
Pixels and their values within the region are denoted withdi . The probability density function
for region D is PD (s; ~x), it returns the probability for a certain value of di in its corresponding
region. The following equation is used to calculate the distinctiveness for each image pixel and
for di�erent scales:

Visual Features to Help Close the Loop in 6D-SLAM



8 CHAPTER 2. LOOP CLOSING

HD (s; ~x) = �
Z

i 2 D
PD (s; ~x)log2PD (s; ~x)di : (2.1)

In order to select only these scales that contribute most to the result, the entropy measure
is weighted. The weight puts more emphasis on scales where the entropy signi�cantly changes
in respect to their next neighbor scales. The rate of change of the probability density function
PD (s; ~x), multiplied with the scale s, meets the needs as weighting factor:

WD (s; ~x) = s
Z

i 2 D

�
�
�
�

@
@s

PD (s; ~x)
�
�
�
� di : (2.2)

Thus, the overall metric for salient regionsYD (S; ~x) is the described entropyHD multiplied
with the weighting factor WD (s; ~x):

YD (S; ~x) = HD (S; ~x) � W D (S; ~x): (2.3)

Here is an informal description of the scale-saliency algorithm:
First, regions of interest (ROIs) for all scales are pre-calculated. The algorithm works over

di�erent scales, therefore for each scale a set of pixels is calculated that is used as a template of
the neighborhood of an arbitrary pixel.

Second, the principal part of the scale-saliency algorithmis performed: What follows is done
for each pixel in the image. For each scale the local descriptor values are sampled with the help
of the pre-calculated ROIs, the probability density functi on is estimated using histograms and
the entropy HD and weightsWD are calculated. Then the weights are smoothed and the entropy
peaks are determined. For each peak the salient metricYD (S; ~x) is calculated and stored in a
list of salient pixels.

Finally the salient pixels are clustered and only the centroids of the clusters remain in the
list. Figure 2.3 shows the regions that are labeled salient by scale-saliency algorithm.

Here is the scale-saliency algorithm in pseudo-code [7]:

Algorithm 1 Scale-saliency algorithm

1: for all pixel locations, (x,y), in the image I do
2: for all scales, s, between Smin and Smaxdo
3: IS = Sample local descriptor values at I(x,y) in a window of size s
4: P(d,s) = Estimate the local PDF from IS f e.g. using histogramsg
5: HD(s) = Calculate the entropy of P(d,s)
6: WD(s) = Calculate inter-scale saliency between P(d,s) and P(d,s-1)
7: end for
8: Run smoothing �lter over WD(s) f e.g. 3-tap averageg
9: for all scales for which the entropy attains a peak, SPdo

10: YD(SP,x,y) = HD(SP) x WD(SP)
11: end for
12: end for

Visual Features to Help Close the Loop in 6D-SLAM



2.2. VISUAL FEATURE EXTRACTION 9

Figure 2.3: Salient regions in various scenes. The images are from the data set that is illustrated in
Figure 3.1. The highlighted regions are detected by the scale-saliency algorithm that is described in
Section 2.2.1.

2.2.2 Maximal Stable Extremal Region (MSER) Detection

The second criterion for the feature detection is wide-baseline stability. The bene�ts of these
features are that they are robust against monotonic changesof image intensities as well as con-
tinuous transformations of image coordinates. The last property is useful for loop detection
because the robot will barely reach precisely the same pose like before. For instance, the view-
point of the robot changes. Figure 2.4 shows a series of images taken from di�erent viewpoints.
The regions that are highlighted are detected by the methodsthat are described next. It is
interesting to note that most regions of the scene are detected in all images.

The detection algorithm that was developed by Matas et al. [15] �ts the needs of wide-
baseline stability mentioned above. Before it is explainedin more detail, some de�nitions that
are used by algorithm are given:

Image I is a mapping I : D � Z2 ! S . Extremal regions are well de�ned on images if:

1. S is totally ordered, i.e. re
exive, antisymmetric and trans itive binary relation �

Visual Features to Help Close the Loop in 6D-SLAM



10 CHAPTER 2. LOOP CLOSING

Figure 2.4: A series of images taken from di�erent viewpoints. The images are from the data set that
is illustrated in Figure 3.1. The detected maximally stable extremal regions are represented as ellipses
and highlighted in each image. This series shows that many MSERs that represent one location in the
scene are detected in all images although the viewpoint is changing.

exists. In this paper only S = f 0; 1; : : : ; 255g is considered, but extremal regions can
be de�ned on e.g. real-valued images (S = R).

2. An adjacency (neighborhood) relation A � D � D is de�ned. In this paper 4-
neighborhoods are used, i.e.p; q 2 D are adjacent (pAq) i�

P d
i =1 jpi � qi j � 11.

Region Q is contiguous subset ofD, i.e. for eachp; q 2 Q there is a sequencep; a1; a2; : : : ; an ; q
and pAa1; ai Aa i +1 ; anAq.

(Outer) Region Boundary @Q = f q 2 D n Q : 9p 2 Q : qApg, i.e. the boundary @Q of Q is
the set of pixels being adjacent to at least one pixel ofQ but not belonging to Q.

Extremal Region Q � D is a region such that for all p 2 Q ; q 2 @Q : I (p) > I (q) (maximum
intensity region) or I (p) < I (q) (minimum intensity region).

1d denotes the number of dimensions. SinceD is a subset ofZ2 , the dimension for d is 2.

Visual Features to Help Close the Loop in 6D-SLAM



2.2. VISUAL FEATURE EXTRACTION 11

Figure 2.5: MSERs in various scenes. The images are from the data set thatis illustrated in Figure 3.1.
In contrast to the salient regions, which are shown in Figure2.3, the shape of a MSER is arbitrary.

Maximally Stable Extremal Region (MSER). Let Q1; : : : ; Qi � 1; Qi ; : : : be a sequence of
nested extremal regions, i.e. Qi � Q i +1 . Extremal region Qi � is maximally stable i�
q(i ) = jQ i +� n Qi � � j=jQ i j has a local minimum at i � (j � j denotes cardinality). � 2 S is
a parameter of the method.

It is crucial that the pixel values are ordered. In this implementation only gray-scale images
with values from the set [0; : : : ; 255] are considered. The neighborhood relation of the image
pixels is depicted in Fig. 2.6. The extremal regions are of anarbitrary shape and have properties
that are stable against changes in the image. They are eitherminimum or maximum intensity
regions. The algorithm that is described here detects the minimum intensity regions. To �nd the
other ones, the input image only needs to be inverted. The maximally stable extremal regions
are a subset of the extremal regions. They have the followingproperties:

� Invariant to monotonic changes of image intensities.

� The neighborhood of the regions are preserved under transformation.

Visual Features to Help Close the Loop in 6D-SLAM



12 CHAPTER 2. LOOP CLOSING

Figure 2.6: Neighborhood relation of image pixels [6]. The �gure shows the neighborhood relation that

is described in Table??. By
P d

i =1 jpi � qi j � 1 the neighboring pixels are speci�ed. This excludes the
diagonal neighbors from the neighborhood.

� The regions are stable, because they stay unchanged over an interval of thresholds.

� Both very small and very large regions are detected.

First all pixels of the gray-scale image are sorted inO(n) into bins with regard to their
intensities using thebinsort algorithm [29] in order to �nd all pixels that belong to one in tensity.
For each intensity from 0 to 255 a list of connected pixels (orextremal regions) below the current
intensity is maintained. To visualize the process imagine abinary image where all pixels below
the current intensity are black and those above are white. At �rst, the image is white. As the
intensity increases, tiny black spots grow to large regions, and �nally the complete image is black.
With the union-�nd algorithm [29] the extremal regions are e�ciently determined and stored in
a data structure with their corresponding intensity levels and sizes. If two regions merge, the
smaller is subsumed by the larger one. In a last step those intensities of the regions are chosen
from the data structure where the rate of change of the regions size have a local minimum. The
regions with these selected intensities form the maximallystable extremal regions.

2.2.3 SIFT Description

After the features or feature points are detected using bothmethods above, they are encoded with
SIFT descriptors as developed by Lowe [14]. In order to create descriptors that are invariant to
the image rotation the descriptors are calculated relativeto the orientation of the feature points.

To determine the orientation of the feature points some pre-computation has to be done:
For all pixels of the image the orientations and magnitudes of the pixels are determined. This is
done with the following equations, wherem(x; y) is the magnitude and � (x; y) is the orientation

Visual Features to Help Close the Loop in 6D-SLAM
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of image pixel with the coordinates x and y. Here L(x; y) is simply the the pixel value of the
gray-scale image2:

m(x; y) =
p

(L (x + 1 ; y) � L (x � 1; y))2 + ( L(x; y + 1) � L (x; y � 1))2: (2.4)

� (x; y) = tan � 1((L (x; y + 1) � L (x; y � 1))=(L (x + 1 ; y) � L (x � 1; y))) : (2.5)

After the pre-computation the orientations are assigned tokeypoints that are generated from
the feature points in the following way: An orientation hist ogram is built that covers 360 degrees
around the feature point. For this, 36 bins are used. The orientations � of the pixels in the
region of the feature point that contribute to the histogram are weighted by their magnitude m
and a circular Gaussian window with � 1.5. The highest peak of the histogram is the signi�cant
direction of the feature point. Additionally, other direct ions that lie within 80% of the peak
are considered as in
uential. That means, one or more keypoints with di�erent orientations
are generated for each and every detected feature point. To gain a better approximation of the
orientation of the keypoints the three values next to each peak are used to interpolate the value.

Then the descriptors are calculated from the generated keypoints which exhibit a location
and an orientation. How this is done is exemplarily shown in Fig. 2.7. On the right side
of Fig. 2.7 a descriptor with a 2 � 2 array is illustrated with an 8 bin orientation histogram
in each of its �elds. In this implementation a 4 � 4 array is used instead. This leads to a
128 dimensional vector as descriptor (4� 4 � 8 = 128). The descriptor is determined by the
Gaussian weighted gradients of the image pixels around the keypoint, which are shown on the
left hand side in Fig. 2.7. The Gaussian function3 assures that the gradients of pixels that lie
next to the keypoint have more in
uence on the outcome than pixels that are more distant
from the center. These weighted gradients contribute to thearray of orientation histograms
relative to their position. To deal with boundary e�ects bet ween two orientation histograms
another weighting factor is used for interpolation for eachdimension. This factor is 1� d, with
d the distance of the current orientation value to the central histogram bin value. Finally the
descriptor vector is normalized, all values greater than 0.2 are thresholded4, and the vector
normalized again. These three steps are made in order to makethe descriptor more robust to
changes in illumination. While the normalizing is concerned with linear illumination changes,
the thresholding deals with non-linear changes, because itstresses more the orientations than
the magnitudes of the gradient histograms.

2.3 Visual Feature Matching

After detecting and encoding the visual features of a recently taken image by the robot the
feature descriptors and the capture time of the image are stored in the database. To detect a
loop the descriptors of a query imageI q are compared or matched with the feature descriptors
of all candidate imagesI c's that are already in the database. A successful matching ofa gra�ti
scene is illustrated in Figure 2.8.

2Note, this is di�erent from the procedure presented by Lowe [ 14] where L (x; y ) has another meaning.
3The � of the function corresponds to one half of the descriptor win dow.
4The value 0.2 was determined experimentally by Lowe [14].
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Figure 2.7: A keypoint descriptor. It is calculated from weighted gradients in a certain area around
the keypoint [14]. On the left side, the gradients of each pixel and the Gaussian weighting function are
illustrated. The right side of the �gure shows a 2� 2 array of orientation histograms. The histograms are
built from the weighted gradients of the left hand side. In this implementation a 4 � 4 descriptor array
is used.

Figure 2.8: Examples for a successfully matched gra�ti scene. The images are from the data set that
is illustrated in Figure 3.1.
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The similarity measure in the matching process for two feature descriptors is the Euclidean
norm of the distance between a descriptorVq of the query image and a descriptorVc of a
candidate image. In this implementation the descriptors are 128 dimensional vectors:

k Vq � Vc k : (2.6)

For two images each query descriptor is matched with each candidate descriptor. The resulting
norms are stored in anq � nc matrix m where nq is the number of descriptors generated for
the query image andnc is the number of descriptors for one candidate image. for allcandidate
images such am matrix is created. Finally the matrices are thresholded andonly norms below
a certain threshold are considered for further processing.These norms correspond to similar
descriptors. For each image pair (I q,I c), nqc norms are the result of the feature matching process.
How these matched features are used for loop closing is explained in the next section.

2.4 Application of Loop Closing

Loop closing uses visual features as follows to detect a loopin the path of the robot. For a query
image I q:

1. Generatenq features descriptorsVq from the image I q.

2. Store feature descriptors and capture time of the image inthe database.

3. For each candidate imageI c in the database:

(a) Retrieve all nc candidate feature descriptorsVc from the database.
(b) Build a nq � nc matrix M q;c where the (i; j )th entry M q;c(i; j ) is the Euclidean norm

k Vq(i ) � Vc(j ) k.
(c) Threshold the distances result innqc matched descriptors.

4. After all candidate images are processed the candidate images with the largest number of
nqc matched descriptors are selected, if the number is higher than a certain threshold.

5. The capture times of the selected images are compared witha separate journal of temporal
and spatial information in order to determine the location where the candidate image was
made. Finally, a loop hypothesis for the assumed location isgenerated.

This algorithm detects a loop if some descriptors of two images are similar. Similar means
that the norm of two descriptors is below a certain threshold. For each image pair the similar
descriptors are counted. If two images have, for example, three or more of these similar descrip-
tors, it is possible that they were taken in the same location, and a loop hypothesis is generated.
The number of needed similar descriptors in order to detect aloop was determined while testing.

It is interesting to note that no spatial information of the r obot pose is used during that
process. At �rst it sounds strange not to use this freely available information, but on the other
hand this has the advantage that the loop detection is not misguided by erroneous geometrical
data. If loop detection depends on the estimated robot pose,the robot potentially misses
situations where it has been before only because the pose estimation was incorrect. To overcome
this problem, here the application of loop closing is independent from the estimated robot pose.
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Chapter 3

Evaluation of the Visual Feature
Extraction

The presented algorithms for feature detection in Sections2.2.1 and 2.2.2 and the description
in Section 2.2.3 are compared with other methods within the framework developed by Miko-
lajczyk and Schmid [22]. The used test data is described in Section 3.1. How the detection
and description is evaluated is explained in Section 3.2. These results are presented in detail in
Section 3.3.

3.1 Data Set

To produce comparable results, the described detectors anddescriptors are tested not only in
the same framework but also on the same data set. The data set that is used here is publicly
available on the websitehttp://www.robots.ox.ac.uk/ � vgg/research/affine/ . This test
set of images contains small subsets where di�erent image transformations were applied. The
subsets can be grouped in �ve categories: image blur, viewpoint change, zoom and rotation,
light change, and JPEG compression. In addition to these transformations the type of the scene
is another in
uential factor for feature detection. Theref ore, for some of the transformation
categories, two image sets exist with di�erent scene types,namely, structured versus textured
scenes. In total, there are eight image sets of six images each. Examples of the di�erent test
sets can be seen in Fig. 3.1. How the data is acquired is explained in more detail on the website
mentioned above and in [22].

When evaluating the detection methods on the test data, the question arises, how to know
whether the matched features are really describing the samelocation in two images or not. The
answer is that some ground truth information is needed that describes how the two images are
related. This information is given by a homography and comestogether with the test data.
These homographies are calculated as follows: In a �rst manual step, image correspondences
are set by hand. Then the two images are aligned using this information. In the second and
�nal step, the homography of the two images is re�ned using an out-of-box algorithm that
brings automatically detected features together. The combination of the two steps makes this
calculated homography very accurate.

17
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.1: Examples of the evaluation data set. The data set is publiclyavailable on the website
http://www.robots.ox.ac.uk/ � vgg/research/affine/ . It can be distinguished in �ve categories: (a)
and (b) zoom and rotation, (c) and (d) viewpoint change, (e) and (f) blur, (g) JPEG compression, and
(h) light change.
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3.2 Evaluation Criteria

There are two steps in the visual feature extraction process(see Section 2.2) that can be distin-
guished: First, the combined feature detection of the salient and wide-baseline stable regions.
And second, the feature encoding using SIFT descriptors. Both of these steps are evaluated
separately. What criteria are used to evaluate each of thesesteps is described in the respective
subsections.

3.2.1 Detector Evaluation

The detector evaluation is of special interest, the proposed combination of the saliency and
the wide-baseline stability criteria for feature detection by Newman and Ho [23] is compared
to other available region detectors. Especially the comparison between the combined saliency-
MSER detector and the exclusive saliency or MSER detector isone of the main objectives of
this thesis.

In order to use the evaluation framework the detected regions have to be represented as
ellipses [22]. A region is described by the parametersu; v; a; b; cthat ful�ll the following equation,
where the upper left corner of the image is represented with (0; 0):

a(x � u)2 + 2b(x � u)(y � v) + c(y � v)2 = 1 : (3.1)

The evaluation framework provides the tester with two measures that can be used for ana-
lyzing the feature detectors. These measures are the repeatability and the matching score. Both
measures are calculated for a given image pair.

The repeatability score is the number of corresponding regions with respect to the smaller
number of detected regions in an image:

repeatability score =
# corresponding regions

# detected regions
: (3.2)

The number of region-to-region correspondences is calculated using the ground truth infor-
mation. The regions from one image are projected to the other. Two regions correspond if the
overlap of the regions is su�ciently large. To determine the overlap of two regions an overlap
error is computed. The overlap error is calculated using theratio between the intersection and
the union of the regions (1� intersection=union ). The error of two regions A and B can be
computed as follows whereH is the homography between the two images:

� O = 1 �
A \ H T BH
A [ H T BH

: (3.3)

If the overlap error � O is smaller than a threshold, A and B are counted as corresponding
regions. Figure 3.2 shows some examples of overlapping regions together with their overlap error
in percent. The overlap error is in
uenced by the size, the orientation and the position of the
regions. For the evaluation di�erent thresholds for the overlap error are used.

The second measure, the matching score, is the relative number of correctly matched regions
compared with the smaller number of detected regions in one image:
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Figure 3.2: Examples of overlapping regions and their respective overlap error in percent.

matching score =
# correct matches
# detected regions

: (3.4)

The matching is done on the basis of descriptors, therefore the regions have to be encoded
for the calculation. In this evaluation SIFT descriptors are used. The descriptors are compared
using the Euclidean distance. A match is the nearest neighbor in the SIFT feature space. The
correctness of the matching is determined by the ground truth homographies (see Section 3.1)
and the overlap error � O that is explained above.

The results of the presented Salient-MSER detector are compared with six other detectors:
the Salient region detector, the MSER detector, the Harris-A�ne detector, the Hessian-A�ne
detector, the Intensity extrema based detector (IBR), and the Edge based detector (EBR).

3.2.2 Descriptor Evaluation

In the descriptor evaluation, the SIFT descriptor that was proposed by Newman and Ho [23] is
compared with other descriptors. All descriptors are calculated from the feature regions that are
detected by the combined Salient-MSER detector in order to see if the proposed SIFT descriptor
is the best choice for the detection method under inquiry.

The matching score is one performance �gure for this evaluation, it was already discussed in
Section 3.2.1.

Another �gure, which indicates distinctiveness of the descriptors, is the detection rate with
respect to the false positive rate. The detection rate is theratio between the number of correct
matches and the total number of corresponding regions. The false positive rate is the ratio of the
false matches and all possible false matches. This �gure is very useful for a practical application,
because it measures the quality of the feature matching.

Besides the SIFT descriptor the other methods that are used are: GLOH, Shape Context,
PCA, Moments, Cross correlation and Steerable �lters.
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3.3 Evaluation Results

The evaluation results are presented in this section. As mentioned above, the region detection
and the region description are evaluated separately. Therefore the structure of this section has
two parts: The results of the detector evaluation are presented in Section 3.3.1, the results of
the descriptor evaluation are presented in Section 3.3.2.

3.3.1 Detector Evaluation

The following feature detectors are tested within the framework: the Salient-MSER detector,
the MSER detector, the Salient region detector, the Harris-A�ne detector, the Hessian-A�ne
detector, the Intensity extrema based detector (IBR), and the Edge based detector (EBR). While
the �rst three detectors are implemented for this thesis, the binaries of the other detectors are
taken from the website mentioned above. The images from the test data set are applied to
the detectors. The detector output, the detected regions, is used as input for the evaluation
framework. Before the results for each category of the various image transformations (i.e.,
scale change, viewpoint change, blur, JPEG compression andlight change) are presented, some
general remarks are stated.

General Remarks

Di�erent Results. The �rst thing to note is that the results for the salient regi on detector
and the MSER detector are di�erent from those that are obtained in [18]. For the other tested
detectors the results are comparable.

In the case of the salient region detector this is not surprising because the detected regions
in [18] are described as ellipses while in this implementation circles are used.

In the case of the MSER detector the di�erence is presumably due to the fact that other
parameters are used in this and the original implementationby Matas et al. [15]. The parameters
are not clearly laid out in the original paper, so the parameters in this implementation were
de�ned during testing. Although the results are di�erent an d the performance measured here
is not as good as in [18], a comparison between the Salient-MSER, the MSER, and the Salient
region detector perfectly makes sense since the regions aredetected by this implementation.
This di�erence is depicted for the structured gra�ti scene f rom Figure 3.1(c) in Figure 3.3. It is
noteworthy that the shapes of both curves are similar, only the run of the curves is shifted. The
performance for other scenes is comparable. While studyingthe evaluation results one should
bear in mind that the original MSER implementation [15] is reported to perform roundabout 15{
30% better than this implementation. So the performance of this implementation can possibly
be improved in future work. The evaluation results should beviewed in consideration of this
prior knowledge.

Computation Time. The issue of complexity and computation time of the detectors is shortly
discussed in [18]. In the setting of the evaluation, the computation times are not that important,
but they are crucial when it comes to an on-line application such as loop closing. Similar
computation times that are listed in [18] are obtained from the experiments: Most detectors
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Figure 3.3: Di�erences between this and the original MSER implementation on a structured gra�ti
scene. (a) Repeatability score. (b) Number of corresponding regions.

process an image of size 800� 640 in a reasonable time, less or equal than 10 seconds. The
exception is the salient region detector which processes the image in more than 30 minutes. It is
clear that a method with such a computation time is not applicable for an on-line application.
Therefore the parameters of the salient region detection need to be adjusted in order to integrate
the loop closing procedure in the 6D-SLAM robot platform, which is presented in Section 4.

Region Density and Region Size. Both the region density and the region size has an e�ect
on the performance measure of the detector.

The number of detected regions depends on the detector but also on the scene type. In
Table 3.1 the numbers of detected regions for a structured scene are illustrated for each tested
detector. For comparison, the table shows the numbers for a textured scene.

It is noteworthy that all detectors, except the Hessian-A�n e detector, detect less regions in
the structured scene than in the textured scene. The di�erence for the Salient-MSER detector
is particularly noticeable. The di�erences in region numbers are plausible because the detectors
are receptive to di�erent image structures, what makes themcomplementary. Since the num-
ber of detected regions varies among the di�erent detectors, the performance measures for the
evaluation results, presented in the next section, are reported in absolute and relative terms in
order to give the reader a better understanding.

The size of the detected region depends also on the detector.While some detectors detect
mostly small regions, others detect larger ones. But the region size has an in
uence on the
matching process. Larger regions are more likely to be matched. In order to achieve a better
comparison between the detectors the regions are normalized.
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Table 3.1: Number of detected regions for various detectors. The numbers are reported for two di�erent
scene types, namely a structured and a textured scene.

Detector Structured scene Textured scene

Salient-MSER 368 2289

MSER 528 2871

Salient 1025 2033

Harris-A�ne 1758 2267

Hessian-A�ne 2454 1375

IBR 679 783

EBR 1265 3748

Results for Various Image Transformations

The results are grouped in �ve categories: scale change, viewpoint change, blur, JPEG com-
pression and light change. In each of these categories one ortwo scene types are tested. For
each scene a set of six images is applied to the detectors. Oneimage is the reference image.
The others show the same scene under increasing image transformations. For the evaluation,
the reference image is pairwise processed with each of the other images. The repeatability score,
the absolute number of corresponding regions, the matchingscore and the number of correct
matches are reported for these transformations in �gures: 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10 and
3.11. The overlap error threshold� O is �xed to 40% for these tests.

An optimal curve for the repeatability score is a horizontal line at 100%. A horizontal line
indicates the stability of the detector under increasing image transformations. A repeatability
score at 100% means that for all detected regions in one imagea corresponding region is found
in other image. None of the tested detectors perform that optimally. In the most cases a curve
starts at its own maximum value and then decreases as the image transformation increases. For
some cases the curves are nearly horizontal. The maximum value of 95% for the repeatability
score is measured for the JPEG compression category.

The �gures that display the matching score and the number of correct matches are in general
more interesting for a practical analysis. The matching score is an indication on how distinctive
the detected regions are. At �rst glance the �gures look similar to those of the repeatability
score, but at some �gures the ranking of the detectors changes. This means that the regions of
some detectors are more distinctive than others.

Scale Change. Figure 3.4 shows the results for the structured boat scene from Figure 3.1(a).
In Figure 3.5 the results for the textured bark scene from Figure 3.1(b) are presented.

For the repeatability score the Hessian-A�ne detector yiel ds the best results for both scene
types. In the textured scene the curve runs nearly horizontal. The MSER detector performs
slightly better than the Salient-MSER for both scenes. It is noteworthy that for the textured
scene there is a huge gab between the number of correspondences between for these two detectors.
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Figure 3.4: Scale change transformations for the structured boat scenefrom Figure 3.1(a). (a) Re-
peatability score. (b) Number of corresponding regions. (c) Matching score. (d) Number of correct
matches.

The performance of the Salient region detector is noticeable; larger amounts of zoom and rotation
transformations yield a performance near 0%.

For the structured scene the Hessian-A�ne and the EBR detector have the highest match-
ing score. Interestingly the Salient-MSER detector performs better than the MSER detector,
which is in opposite to the results of the repeatability test. The performance of all detectors is
signi�cantly worse in textured scene.

Viewpoint Change. The in
uence of a changing viewpoint for a structured gra�ti scene
from Figure 3.1(c) is shown in Figure 3.6. The results for a textured scene of a brick wall from
Figure 3.1(d) are illustrated in Figure 3.7.

In the structured scene the performance for the repeatability score of the detectors looks
similar. Only the Salient region detector shows a di�erent shape of the curve. The Salient-
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Figure 3.5: Scale change transformations for the textured bark scene from Figure 3.1(b). (a) Repeata-
bility score. (b) Number of corresponding regions. (c) Matching score. (d) Number of correct matches.

MSER and the MSER detector are nearly identical. In the textured scene the Salient region
detector performs best in terms of repeatability score, except for the last transformation. Again
the performance of the Salient-MSER and the MSER detector are comparable.

The EBR detector performs substantially better in the matching test than in the repeatability
test. This is true for the structured and the textured scene. The ranking of the other detectors
does not change signi�cantly. The Salient-MSER detector obtains better scoring as the MSER
detector for the structured scene. This is the same result asin the scale change setting.

Blur. Figure 3.8 displays the results for the structured bike scene from Figure 3.1(e), while
Figure 3.9 displays the results for the textured tree scene from Figure 3.1(f).

For the repeatability score nearly all curves run horizontal for both scene types. The Hessian-
A�ne detector performs best in both tests. The Salient region detector is slightly better for the
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Figure 3.6: Viewpoint change transformations for the structured gra�t i scene from Figure 3.1(c).
(a) Repeatability score. (b) Number of corresponding regions. (c) Matching score. (d) Number of correct
matches.

textured than for the structured scene. The Salient-MSER and the MSER detector are almost
identical for the textured scene. For the structured scene the Salient-MSER is around 5% better
than the MSER detector.

In general the matching score is higher in the structured than in the textured scene for all
detectors. In the EBR detector obtains the highest scores for the structured scene. Again the
Salient-MSER outperforms the MSER detector in the structured scene, while the score is nearly
identical for the textured scene. The Salient region detector yields higher scores than both
detectors based on MSERs.

JPEG Compression. Figure 3.10 shows the e�ects for di�erent levels of JPEG compression
for the image set from Figure 3.1(g).

The repeatability score of 95% that is reached for the JPEG compression category is the
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Figure 3.7: Viewpoint change transformations for the textured wall scene from Figure 3.1(d). (a) Re-
peatability score. (b) Number of corresponding regions. (c) Matching score. (d) Number of correct
matches.

maximum value that is obtained for all tests. Again, it is the Hessian-A�ne region detector
that outperforms the others. The Harris-A�ne detector come s second. The worst performance
is measured for the Salient-MSER and MSER detectors. The Salient region detector is approx-
imately in the middle of the best and the worst detector.

The curves for the matching score are similar to those of the repeatability score, except for
the Salient region detector, which performance for the matching test is not as good as for the
repeatability test.

Light Change. E�ects of illumination changes in the images from Figure 3.1(h) are presented
in Figure 3.11.

All detectors show a stable repeatability score. The Hessian-A�ne performs best. The MSER
detector comes second and shows an around 10% better performance than the Salient-MSER
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Figure 3.8: Blur transformations for the structured bike scene from Figure 3.1(e). (a) Repeatability
score. (b) Number of corresponding regions. (c) Matching score. (d) Number of correct matches.

detector. The Salient region detector show a slightly worseperformance for larger amounts of
decreasing light than the other detectors.

The best matching score is obtained by the EBR detector. Whatis interesting here is that
the order between the Salient-MSER and the MSER changes. While the MSER detector has
higher scores for the repeatability test, it is the Salient-MSER detector which performs slightly
better.

Conclusions

The results show the di�erences between the tested detectors in respect to the various image
transformations as well as to the two scene types.

In general the change of the viewpoint seems to be the most di�cult setting for all detectors,
followed by the change of the scale. For increasing blur and decreasing light changes nearly all
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Figure 3.9: Blur transformations for the textured tree scene from Figure 3.1(f). (a) Repeatability score.
(b) Number of corresponding regions. (c) Matching score. (d) Number of correct matches.

detectors are relatively robust and show almost horizontalcurves. Another point to mention is
that the matching of feature region is better on structured than on textured scenes.

The Hessian-A�ne detector shows mostly the best performance for both repeatability and
matching score, it also has almost the highest number of correspondences. The Harris-A�ne
detector shows also good results. It is often ranked on the second or third place. While the
performance of the IBR detector is on average, the performance of the EBR detector changes
from best to worst depending on the image transformation andscene type.

The main focus of this evaluation is on the Salient-MSER detector and how it performs
di�erent from the MSER and the Salient region detector. The Salient region detector performs
better on textured scenes than on structured scenes. For theMSER detector the opposite is
true, its performance is better on structured scenes. Thesetwo results sound promising for the
combined Salient-MSER detector. The Salient-MSER detector obtains slightly higher scores
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Figure 3.10: JPEG compression transformations on images from Figure 3.1(g). (a) Repeatability score.
(b) Number of corresponding regions. (c) Matching score. (d) Number of correct matches.

than MSER detector for structured scenes. But for the textured the performance is similar.
In total the performance of the Salient-MSER detector is not signi�cantly di�erent from the
MSER detector. This conclusion is somewhat humbling since the purpose of the combination
of the two di�erent criteria, namely saliency and wide-baseline stability, is to create a more
robust detection method. So the results obtained from the evaluation do not show a substantial
advantage of the combination of the two detectors. But for the task of loop closing a combination
is nevertheless reasonable. In their work [23] Newman and Hosuggest a combination of these
detectors to increase the robustness for the task of loop closing. The purpose of the Salient
region detector is to select interesting regions in one image while the task of the MSER detector
is to �nd regions that are robust to viewpoint changes. For an application of loop closing it
makes sense to combine these both detectors for mainly two reasons: First, using only salient
regions leads to many regions not be matched from di�erent viewpoints. Second, using only
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Figure 3.11: Light change transformations on images from Figure 3.1(h). (a) Repeatability score.
(b) Number of corresponding regions. (c) Matching score. (d) Number of correct matches.

MSER regions leads to less distinctive regions. Hence a combination leads to more distinctive
regions that are detectable from di�erent viewpoints.

3.3.2 Descriptor Evaluation

For the following tests all regions are detected by the Salient-MSER detector. At �rst glance this
sounds odd, since other detectors outperform this detector. But as discussed in Section 3.3.1 the
results for MSER and therefore also for Salient-MSER detector are potentially better. Another
reason for the selection of the Salient-MSER detector is that the choice of Newman and Ho [23]
for the SIFT description method should be veri�ed.

The regions are described using the following methods: GLOH, SIFT, Shape Context, PCA,
Moments, Cross correlation and Steerable �lters. These described regions are the input for the
evaluation framework. As for the detector evaluation in Section 3.3.1 the results are presented
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for various image transformations, i.e., scale change, viewpoint change, blur, JPEG compression
and light change.

Results for Various Image Transformations

For the descriptor evaluation the matching score and the number of correct matches are re-
ported for the various image transformations and the di�erent scene types. Like in the detector
evaluation, the overlap error threshold is �xed to 40%. Regarding the computation times there
are only minor di�erences between the descriptors.

Whereas the results for the detector evaluation show great di�erences between the several
detectors, the results for the tested descriptors do not. Ingeneral all curves run more or less
in parallel. It is noticeable that for small amounts of image transformations, i.e., on the left
side of the �gures, there is a greater di�erence between the descriptors than for larger amounts.
This is nearly true for all transformations, except light change. In the light change scene all
descriptors perform relatively stably, i.e., the curves are almost horizontal. So the di�erences
between the detectors remain also stable. Also interestingin the case of the light change scene
is that although the number of correct matches decreases forlarger amounts of decreasing light,
the matching score does not. This means that the number of detected regions decreases in the
same way as the correct matches.

The best performance is achieved by SIFT descriptors, followed by the GLOH and the Shape
context description method. In the middle are Cross correlation and PCA, where Cross correla-
tion is slightly better than PCA. Moments and Steerable �lte rs show the worst performance. In
the performance evaluation of local descriptors by Mikolajczyk and Schmid [22] similar results
were obtained, although the results were more discriminative among the descriptors. SIFT and
GLOH descriptors performed best, but the ordering was reversed. Shape context descriptors
showed also a good performance. The descriptors were testedon Harris points, Harris-Laplace
regions, Hessian-Laplace regions, Harris-A�ne regions and Hessian-A�ne regions.

Conclusions

The results of the descriptor evaluation show that no description method is outstanding. This
means that the choice of the descriptor is not as in
uential as the choice of the detector where
there are greater di�erences between the several methods. The performance of all descriptors
are relatively similar but nevertheless imply a ranking of the description methods. The explicit
ordering of the descriptors, where the best results are obtained by the SIFT description method,
support the choice for SIFT descriptors by Newman and Ho [23].
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Figure 3.12: Scale change transformations for the structured boat scenefrom Figure 3.1(a). (a) Match-
ing score. (b) Number of correct matches.
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Figure 3.13: Scale change transformations for the textured bark scene from Figure 3.1(b). (a) Matching
score. (b) Number of correct matches.
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Figure 3.14: Viewpoint change transformations for the structured gra�t i scene from Figure 3.1(c).
(a) Matching score. (b) Number of correct matches.
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Figure 3.15: Viewpoint change transformations for the textured wall scene from Figure 3.1(d).
(a) Matching score. (b) Number of correct matches.
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Figure 3.16: Blur transformations for the structured bike scene from Figure 3.1(e). (a) Matching score.
(b) Number of correct matches.
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Figure 3.17: Blur transformations for the textured tree scene from Figure 3.1(f). (a) Matching score.
(b) Number of correct matches.
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Figure 3.18: JPEG compression transformations on images from Figure 3.1(g). (a) Matching score.
(b) Number of correct matches.
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Figure 3.19: Light change transformations on images from Figure 3.1(h).(a) Matching score. (b) Num-
ber of correct matches.
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Chapter 4

Experiments on a 6D-SLAM Robot
Platform

Applying the loop closing procedure on a robot platform is another objective of this thesis. As
an experiment, the loop closing application that is shortly described in Section 2.4 is integrated
and tested on the existing 6D-SLAM robot platform Kurt3D. Th e robot platform is described in
Section 4.1. The experimental setup and the results are presented in Section 4.2 and Section 4.3,
respectively.

4.1 6D-SLAM Robot Platform Kurt3D

Figure 4.1 shows two images of the robot platform Kurt3D. The6 wheels are powered by a 90W
motor. The maximal possible speed is 1.2. The platform has a length of 45 cm, a width of 33
cm, a height of 26 cm and a weight of 15.6 kg. The main sensor of the robot is a 3D laser scanner
which increases the height of the robot to 47 cm and the weightto 22.6 kg. The scanner is built
on the basis of a 2D Sick laser scanner that is rotatable. Di�erent resolutions are adjustable for
the scanning area of 180� (h) � 120� (v). A horizontal scan of 181 data points is acquired in 13
ms. For example, a scan with 181� 256 data points takes 3.4 seconds. As additional sensors
the robot is equipped with 2 cameras. While the data of laser scanner is mainly used for the
generation of a 3D map, the camera data is used to help close the loop. The robot is controlled
by software that runs on a Linux-based laptop.

4.2 Experimental Setup

Basically the Kurt3D robot drives around and takes pictures of the environment with its camera.
These images are processed with the feature detection and description algorithms explained in
Section 2.2. The resulting feature descriptors are stored in a database and matched against
descriptors from previously taken images. If the matching of several feature descriptors of two
images is successful, a loop hypothesis is generated. In thefollowing, some aspects of the
description above are explained in more detail.
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Figure 4.1: The robot platform Kurt3D.

Cameras. As described in Section 4.1 the Kurt3D robot is equipped withtwo cameras. Ob-
viously the presented loop closing application from Section 2.4 is adaptable so that two or more
cameras are used simultaneously. More cameras are clearly an advantage because the �eld of
vision is augmented. On the other hand, the feature matchingpossibly needs to be adjusted,
since all cameras contribute their described features to the same database. Of course, it is de-
sired that the described features of all cameras are compared among each other, but if there
is an overlap in the visual �eld of at least two cameras, it is not desired that features of these
cameras that are acquired at the same time are matched. Sincethe usage of multiple cameras
is not of main interest in this thesis, for reasons of simplicity only one camera is used in the
experiments. The image size is set to 320� 240.

Capture Times. A crucial factor for the success of the application of loop closing is the time
interval between the capture of two images. If the robot onlytakes a picture every half an hour,
it is clearly insu�cient for the task of loop detection, beca use it barely takes two pictures of
the same location. On the other hand, a robot that takes thirty pictures a second does not
succeed either. In the last case the application detect one loop after another since the scene
is not changing signi�cantly. Hence a successful application uses a well-balanced interval time
between the capture of two images. For an on-line application on an autonomous mobile robot
the minimal time interval is bounded by the processing time of one image. In the experiments
di�erent time intervals are tested in order to determine an e�cient one. All experiments are done
o�ine, in order to test di�erent time intervals and di�erent matching thresholds, as discussed
in the next paragraph, on the same input data.
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Matching Thresholds. There are two in
uential thresholds in the process of feature match-
ing. The �rst one is the threshold for the Euclidean distance measure. That means, for which
distance are two matched feature descriptors considered assimilar. The second is the minimum
number of similar features descriptors that are needed to generate a loop hypothesis. In their
work [23] Newman and Ho say nothing about the �rst threshold, the second one was �xed to
three in order to deal with false positives. In these experiments, di�erent values are tested for
both thresholds.

Computation Time. As mentioned in Section 3.3.1 the computation time of the salient region
detector is more than 30 minutes for an image of size 800� 640. This means, that the detector
is clearly not applicable on-line on an autonomous mobile robot. Therefore the parameters of
the scale-saliency algorithm are adjusted. The minimum scale is set to 5 and the maximum
scale is set to 10. The con�guration for the evaluation was 3 for the minimum and 30 for the
maximum scale. Due to this adjustment and due to the fact that smaller images are processed
in the experiments the computation time is reduced to 10-15 seconds per image.

4.3 Experimental Results

In this section the experimental results are reported. In the experiments the robot was driven
twice round a loop in an o�ce environment. The principal goal of this scenario was to test the
application of loop closing in general.

The robot took pictures as fast as possible, i.e., round about 10 pictures per second. Most
pictures were acquired while driving. From these tons of data every 30th picture was processed
for the task of loop detection. Since the robot did not drive in a stop-sense-go sequence, but
rather in a sense-while-driving sequence, such a high processing rate makes sense, although it is
not applicable on-line.

In the matching process, the minimum number of similar feature descriptors were varied
between 2 and 3. For each number, di�erent thresholds for theEuclidean distance measure were
tested. The number of generated loop hypotheses are reported for di�erent thresholds in terms
of true and false positives in Tables 4.1 and 4.2. A successful loop detection counts as true
positive, whereas a wrong hypothesis count as false positive. The ground truth information was
provided manually, that means, that an operator decided whether two images showed the same
scene. Since the robot was driven twice round the loop, therewere many potential scenes for a
true positive. Figure 4.2 shows two examples of successful loop detections. In some cases a true
positive was counted, but not all features were matched correctly. An example for the last case
is shown on the right side of Figure 4.3. On the left side of thesame �gure a false positive is
depicted. While in most cases a false positive can relatively easy be identi�ed by an operator,
it is really hard to tell here.

Table 4.1 shows the results for at least 3 similar matched feature descriptors. The minimal
distance between the feature descriptors were varied between 250, 220 and 200. The number of
processed images was 53. The ratio between true and false positives changes signi�cantly for the
tested thresholds. While there are more false positives than true positives for a distance of 250,
for 220 and 200 the opposite is true. Here, the smallest threshold leads to the best performance
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Figure 4.2: Examples for two true positive loop hypotheses.

Table 4.1: Results with at least 3 matched feature descriptors. The threshold for the distance is denoted
with d.

d = 250 d = 220 d = 200

# Images True Pos. False Pos. True Pos. False Pos. True Pos. False Pos.

53 41 67 27 21 18 5

Table 4.2: Results with at least 2 matched feature descriptors. The threshold for the distance is denoted
with d.

d = 200 d = 170 d = 150

# Images True Pos. False Pos. True Pos. False Pos. True Pos. False Pos.

53 30 30 17 3 8 1
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Figure 4.3: The left picture shows an example for a false positive. Although the scenes looks similar,
the images show two di�erent locations. On the right picture a true positive is shown, but one feature
descriptor was matched incorrectly.

of the loop closing application.
The results for at least 2 matched feature descriptors are reported in Table 4.2. Since the

number of required matched features is reduced, the thresholds for the distance are reduced
also in order to avoid false positives. In general the characteristic of the numbers for the tested
distances are similar. As the ratios between the true positives and false positives suggest the
best performance is achieved for the two smallest distances. In comparison to the test run that
required 3 matched features there are less features that were matched incorrectly.
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Chapter 5

Discussion and Open Issues

In this chapter, the evaluation results of Chapter 3 and the experimental results of the previous
Chapter 4 are discussed and conclusions are drawn. The tasksof feature detection and feature
description are considered in Section 5.1 and Section 5.2, respectively. The application of loop
closing is analyzed in Section 5.3. Aspects that are noteworthy for future work are presented in
Section 5.4.

5.1 Feature Detection

In [23] Newman and Ho suggest two criteria for the feature detection, namely saliency and wide-
baseline stability. In this thesis the Salient-MSER detector ful�lls the above criteria. It is tested
in the evaluation framework developed by Mikolajczyk and Schmid [22].

The results of the evaluation show that the performance of the Salient-MSER detector is
in general not di�erent from the performance of the MSER detector. The reason is that the
combined detection method uses only a subset of MSERs. The subset consists of the regions
that are salient and wide-baseline stable. So MSERs that arenot salient are not considered for
further processing. As the results show, the additional criteria of saliency neither improve nor
worsen the performance of the MSER detector signi�cantly. For the matching test, the results
for Salient-MSER detector are only slightly better than for the MSER detector.

This leads to the question whether the performance of a detector can simply be improved
by building the intersection between its detected regions and the regions detected by another
feature detector. Since most feature detectors are complementary, a concurrent operation clearly
make sense. The question is how the various qualities of eachfeature detector can be deployed
in order to build a robust method. Instead of taking the inter section of the detected regions of
two or more feature detectors, optimizing each detector's method and unifying the results is an
alternative approach. In this way the strengths of each detector are preserved. For example,
a detector that has a good performance for increasing blur onstructured scenes like the EBR
detector can be combined with the Salient region detector that shows good results for increasing
blur on textured scenes.

How to determine and enhance the performance of a combined feature detection method is an
interesting question, but beyond the scope of this thesis. Here it is shown that the combination
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of the two criteria, saliency and wide-baseline stability,does not lead to a signi�cant performance
improvement.

5.2 Feature Description

SIFT descriptors are used in [23] to encode the detected feature regions and store them in a
database. Despite the SIFT description method other approaches are tested on the regions
detected by the Salient-MSER detector in the publicly available evaluation framework [22].

The descriptor evaluation shows a similar performance for all tested descriptors. Nonetheless
a ranking between the description methods is observable. The SIFT description method performs
best on nearly all tested scenes. A similar result was obtained in the performance evaluation
on various descriptors by Mikolajczyk and Schmid [22]. So using SIFT descriptors is a sensible
choice for the feature description.

In addition to the good performance, SIFT descriptors have the desired properties that they
are encoded in a compact way and that they are highly distinctive. These aspects make them
very attractive and popular in recent work [30].

5.3 Loop Closing

The loop closing is implemented as it is described in Section2.4. In general the performance
of the application in the experiments was good. In the following some general considerations
about the application of loop closing are stated.

Loop closing that only relies on temporal information as it is proposed by Newman and
Ho [23] is di�erent from other methods that use information about the robot position to �gure
out when closing a loop is a possibility. At �rst glance, it seems attractive to use information
about the position of the robot because it is often availablefor no extra cost, since it is used for
robot localization, it does not have to be acquired in an expensive manner. Obviously this is not
true for approaches that use, for example, a hand-held videocamera like it is used in [2,24,25,27],
but that is not the point here. The point is rather that method s that use the estimated robot
position have to deal with errors made at earlier stages in the process of map building. These
errors do not have to be large. Many small errors can sum up to one gross error. If a robot does
not take the possibility of loop closing into account because of its wrongly estimated position,
it is likely that it maps a previously visited area incorrect ly, because no loop is detected. So,
the idea of the exclusive usage of temporal information tries to overcome the potential problem
of a self-made error by a wrong position estimation.

The problem in the example above is that there is a potential loop but it is not detected.
The other problematic scenario is that the robot is at a position in the environment where it
has not been before, but nevertheless the robot generates a loop hypothesis. One reason for
this is recurring structures in the environment. For example, in an o�ce environment doors
in a hallway often look the same. Taking a detected loop for granted possibly results in an
incorrect map. To deal with this kind of problem, a veri�cati on of the loop hypothesis with
additional information is an alternative. Geometrical inf ormation from a laser range scanner is
used additionally to support a generated loop hypothesis in[5].
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To recapitulate, there are two problematical cases in the application of loop closing: a loop
is detected where there is no loop and no loop is detected although the robot is at a position
where is has been before (false positives and false negatives). In their work [23] Newman and
Ho tackle the problem of the the second case. Ignoring the information about the robot position
reduces the chance of making a wrong decision based on erroneous map data. The other case
is no less important. As the results of the experiments from the previous chapter suggest, the
number of false positives is reducible by adjusting the thresholds for the matching process.

5.4 Open Issues

There are several issues that can be addressed in future workon loop closing. First, the threshold
setting in the experiments was done by hand. This is an awkward task, a solution to this problem
are thresholds that can be learned automatically from processed data. Second, the search over
the feature descriptors is linear. E�cient algorithms and d ata structures can be used to decrease
the complexity. Third, the computation time of the scale-saliency algorithm can be reduced by
analyzing the in
uence of the scale on the task of loop closing. Finally, the implementation of
loop closing proposed here is based on single visual features only. It is possible to incorporate
other methods such as object recognition to achieve a more robust performance.
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