UNIVERSITAT OSNABRUCK

Institute for Computer Science
Knowledge-Based Systems

Bachelor's Thesis

Visual Features to Help Close the Loop in
6D-SLAM

Lars Kunze

October 2006

First supervisor: Prof. Dr. Joachim Hertzberg
Second supervisor: Prof. Dr. Martin Riedmiller






Abstract

One fundamental problem in autonomous mobile robatics is SAM ( Simultaneously Localization
and Mapping): A robot has to localize itself in an unknown environment and at the same time
generate a map of the surrounding area. Loop closing, i.e.,alecting whether the robot has
reached an area that it has visited before, is a substantial sb-problem of SLAM.

In this thesis, which is inspired by the work of Newman and Ho R3], visual features from
camera data are used to help closing the loop in an existing 63LAM architecture [31]. For the
visual feature extraction two detection methods are combired, namely, salient region detection
and maximally stable extremal region detection. The deteced regions are then encoded using
SIFT descriptors and stored in a database. The descriptors fodi erent images are matched in
order to detect a loop. To assess the approach, the feature textion and description will be
compared to other methods within the framework developed byMikolajczyk and Schmid [22].

Zusammenfassung

Ein fundamentales Problem in der autonomen mobilen Robotikist das gleichzeitige Lokalisieren
und Kartieren (engl.. SLAM; Simultaneously Localization and Mapping: Ein Roboter mu
gleichzeitig in einer fuar ihn unbekannten Umgebung seine Bsition bestimmen als auch eine
Karte dieser Umgebung erzeugen. Das Schleifenschlie entisin Teilproblem vom SLAM. Hier-
bei soll der Roboter erkennen, ob er sich in einer Umgebung hdet, welche er zuvor bereits
besucht hat.

In dieser Arbeit, die durch einen Aufsatz von Newman und Ho [3] inspiriert wurde, werden
visuelle Merkmale aus Kameradaten extrahiert und dazu verendet, das Schleifenschlie en in
einer existierenden 6D-SLAM Architektur [31] zu unterstatzen. Bei der Extraktion visueller
Merkmale werden zwei Methoden kombiniert, die Erkennung va interessanten Regionen (engl.:
salient regions) und die Erkennung von maximal stabilen extemalen Regionen. Die erkannten
Regionen werden mit Hilfe von SIFT Deskriptoren in einer Datenbank gespeichert. Die Deskrip-
toren von verschieden Bildern werden verglichen, um eine $&teife zu detektieren. Um den
Ansatz zu beurteilen, werden sowohl die Merkmalserkennungls auch die Merkmalsbeschrei-
bung in einem Evaluationssystem, welches von Mikolajczyk nd Schmid [22] entwickelt wurde,
getestet.
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Chapter 1

Introduction

Loop Closing is the problem in the process of simultaneous talization and mapping where a
robot comes to a place in the environment where it has been befe. More precisely, there are
two di erent problems in the task of loop closing: place recanition and knowledge integration.
In place recognition, a robot recognizes if it has visited ararea under inquiry before. Knowledge
integration is the task of incorporating the extra informat ion, that a robot gains from recognizing
a place, into the localization and mapping data structures. Figure 1.1 makes the division in two
problems clearer. On the left-hand side the path of a robot jst before loop closing is shown.
The two pictures in the gure are recognized as the same place In the next step this extra
information is integrated in the knowledge base of the robot That means that the robot position
and its corresponding uncertainty, which is illustrated with the gray ellipses, will be adjusted.
This adjustment is shown on the right-hand side of the gure where the updated uncertainty of
the robot position is illustrated with blue ellipses. This view on loop closing is not completely
general, but it is a useful distinction criterion.

In this thesis only the problem of place recognition is addresed. The thesis is not concerned
with the problem of knowledge integration. To recognize a pace, a robot has to rely on some
kind of sensor data. Visual information from camera data is @amined here.

In the following section the thesis is put into relation to other present work. The scienti c
contribution of this thesis is explained in detail in Section 1.2.

1.1 Related Work

There is a variety of approaches that tackle the SLAM problem some methods work in 2D {
see [32] for an overview { while others do it in 3D [1,31]. The ge of sensors is also di erent, but
most approaches rely either on laser scanners or cameras. this thesis, both kinds of sensors
are used to combine their respective strengths. Here laseratl is used as described in [31] to
generate the maps of the environment. Visual features are dpacted from the camera data and
processed to improve the loop detection.

In order to make loop detection robust, Newman and Ho [23] sugest an approach that
does not rely on the pose estimation of the robot to decide wheer a loop closure is possible.
Data for pose estimation, for example based on odometry, isypically erroneous. Therefore
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(a) (b)

Figure 1.1: A robot trajectory before and after loop closing [23]. On theleft: A robot path just before
loop closing. The state vector of the robot positions is illstrated in red. The gray ellipses around these
positions indicate the uncertainty of the position. The two pictures show the same scene from di erent
viewpoints. On the right: A close-up on the robot path after loop closing. The state vector is adjusted
and the uncertainty of the robot position is updated (blue ellipses).

loop closing is improved by not considering this kind of measrement. Searching over all poses
means more or less solving thé&idnapped robot problem, one of the three kinds of localization
distinguished by [26F. Using only visual information as proposed by [23] shows di culties, for
example in environments with recurring structures; therefore Newman and Ho [5] combined
visual and spatial information acquired from camera and lagr data, respectively, to enhance
their developed procedure. This is an interesting approachbut beyond the scope of this work.
Here only visual data is considered for the loop detection tak. Laser data is only used for the
purpose of map building.

Camera data for loop detection is used by extracting feature from the captured images and
processing them. This is normally done in three steps: deténg the features, encoding them
using feature descriptors and nally matching them against each other. Many region detectors
available [8,15{17,19,21]. There are also quite a number deature descriptors, which di er in
their properties [3,4,10{13,28]. Important issues are inariance to scale, rotation, transformation
or changes in illumination. For an overview over both detecbrs and descriptors see [20]. In the
present thesis, salient regions are detected and encoded tiSIFT descriptors as presented
by [14]. For comparison, other feature descriptors have beaetested as well.

1A robot is moved to an unknown position in a known environment , where it has to localize itself
2 Just for completeness the others aretracking and global localization. But it is the kidnapped robot problem
that is mostly related to this thesis.

Visual Features to Help Close the Loop in 6D-SLAM
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1.2 Objective and Structure of the Thesis

The main aim of the thesis is to implement and evaluate the pr@edure suggested by [23] which
tries to solve loop closing by using information from cameradata, or more speci ¢ by using
visual features. The proposed feature detector is compareavith other detectors within the
framework developed by [22]. Furthermore the procedure isntegrated into the existing 6D-
SLAM architecture [31] on the Kurt3D robot platform to assist the present algorithms regarding
loop closing. The intentions above are leading to three gemal parts in this thesis:

Developing the procedure for feature extraction and loop de tection.  The procedure
is implemented as described in [23]. The authors suggest adire detector with two criteria,
namely saliency and wide-baseline stability. The featuresare encoded using a SIFT descriptor
[14] and stored in a database. For the loop detection the featres of a new image are processed
and compared with the features already stored in the databas. If there is an overlap of features,
a loop hypothesis is generated. The methods used for the vialifeature extraction, the feature
matching and the application of loop closing are describedn Chapter 2.

Evaluation of the feature detection and description within a given framework [22].
The combined feature detection of salient regions [9] andmaximal stable extremal regions
(MSERSs) [15] is compared with other detection methods. Espeially the exclusive usage of
salient regions or MSERs is interesting. Other feature degiptors apart from SIFT are tested,
too. The data set that is used, the evaluation criteria and the evaluation results are presented
in Chapter 3.

Integrating the loop detecting procedure into the existing 6D-SLAM architecture.

The loop detecting procedure assists the robot, while it is gploring the environment (indoor
and outdoor). If a loop is detected, the robot tries to verify it based on independent sensor data,
e.g., 3D scans, or self-localization. The robot architectee and the testing results are explained
in Chapter 4.

Chapter 5 discusses the results, draws some conclusions aaddresses open issues.

Visual Features to Help Close the Loop in 6D-SLAM






Chapter 2

Loop Closing

Loop closing means to detect if a robot reaches a position intte environment where it was before.
In general, the choice of sensors to tackle this problem is ndimited. Camera sensors have the
advantage that they are quite cheap, handy and widely-used. Therefore this implementation
focuses on visual information for the task of loop closing. Yéual features are extracted from
images made by the robot while driving around. These featurs are stored in a database and
matched against features extracted from previously takeniinages.

2.1 System Overview

The principal design of the loop closing procedure is depigd in Fig. 2.1. Images are taken
from the robot in an incremental fashion. These images are guied to the saliency-MSER-
SIFT pipeline one at a time and one after another. The result d the pipeline, the extracted
features, are stored in a database. After the rst image is pocessed, the resulting features of
each following image are matched against all features thatr@ already stored in the database to
detect a loop. The matching of the features is equivalent to he measurement of the distance
between vectors in a high dimensional vector space. A loop ating hypothesis is generated
if similar features are found in two images, that means that heir distance is below a certain
threshold. In other words, it is likely that the images were taken at the same or neighboring
location.

There are three steps needed in the visual feature extractio pipeline to generate the feature
representation that is stored in a database and used for the mtching process: the saliency
detection, the MSER detection and the SIFT description. Two criteria are used to detect
the features in the image, namely saliency and wide-baselinstability (MSER detection). The
detection of the features is ful lled by steps one and two. Ea&h detection process generates a
list of feature regions. The overlapping feature regions a considered for further processing.
An example of the feature regions detected by its corresporidg method as well as the resulting
overlapping regions is shown in Figure 2.2. The sample imagen the gures of this chapter are
all taken from a data set that is publicly available on the website http://www.robots.ox.ac.
uk/ vgg/research/affine/

These regions are encoded in the third step with the SIFT desgption algorithm. The repre-
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Figure 2.1: The principal design of the loop closing procedure. Imagesra applied to the saliency-
MSER-SIFT pipeline. Salient and wide-baseline stable feaires are detected and encoded using the SIFT
algorithm. The resulting feature descriptors are stored inthe database and matched against previously
generated descriptors.

sentation of visual features with SIFT descriptors is chosa because they are highly distinctive
and at the same time very e cient for comparisons.

The algorithms of the visual feature extraction pipeline, i.e., the feature detection and de-
scription, are presented in Section 2.2. Furthermore the meching process is explained in more
detail in Section 2.3 and nally the application of loop closing is described in Section 2.4.

2.2 Visual Feature Extraction

Here the task of visual feature extraction is to represent animage by a set of features. This
problem consists of two sub-problems: feature detection amhfeature description. Feature detec-
tion nds regions in an image that meet some criteria. Feature description encodes these regions
to have a representation that is used for further processinge.g., feature matching.

As mentioned above, in this implementation three general stps are needed to generate
the representation of features for an image. These steps, thsaliency detection (2.2.1), the
MSER detection (2.2.2) and the SIFT description (2.2.3), are described in the following. It is
noteworthy that this implementation combines two di erent feature detection methods to make
the approach more robust.

2.2.1 Salient Region Detection

Saliency is the rst criterion for feature detection. It can be best understood as characteristic
for 'interesting’ regions. Presumably those regions are fatively sparse in an image. That makes
this metric useful for loop detection, because features arenore or less unique in an image and,

Visual Features to Help Close the Loop in 6D-SLAM
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Figure 2.2: The original scene and the results for the saliency, the MSERand the combined saliency-
MSER feature detection for the same image. The image shows dractured gra ti scene from the data
set that is shown in Figure 3.1. The detected visual featuresare highlighted: Salient regions in the top
right image and MSERs in the bottom left image. These regionsare found by their corresponding feature
detectors. The overlapping regions from these both imagesra shown on the bottom right image. Regions
are considered overlapping if the number of the intersectig pixels is at least 10% of the number of uni ed
pixels. The ellipses in the right images are calculated fromthe convex hulls of the MSER regions.

accordingly, for a location.

The scale-saliency algorithm developed by Kadir and Brady 9] was used by Newman and Ho
for loop closing [23]. It detects image regions having a lo¢acomplexity or, in other words, are
distinct from their neighborhood. This complexity or disti nctiveness is measured as the entropy
Hp for a certain region D. A region is a scaled circular window around a center pixekc. The
window size or scales is bound to a range between a minimum and a maximum scale value
Pixels and their values within the region are denoted withd;. The probability density function
for region D is Pp (s; %), it returns the probability for a certain value of d; in its corresponding
region. The following equation is used to calculate the didghctiveness for each image pixel and
for di erent scales:

Visual Features to Help Close the Loop in 6D-SLAM
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z
Hp(s;%) = Ppb (s; %)l0g,Pp (s; %)di: (2.1)
i2D
In order to select only these scales that contribute most to he result, the entropy measure
is weighted. The weight puts more emphasis on scales where dghentropy signi cantly changes
in respect to their next neighbor scales. The rate of changefahe probability density function
Pp (s; %), multiplied with the scale s, meets the needs as weighting factor:

@
Wp(s;%) = s —Pp(s;%) di: (2.2)
i2p @
Thus, the overall metric for salient regions Yp (S; %) is the described entropyHp multiplied
with the weighting factor Wp (s;%):

Yp(S;%) = Hp(S;%) W p(S;%): (2.3)

Here is an informal description of the scale-saliency algahm:

First, regions of interest (ROIs) for all scales are pre-catulated. The algorithm works over
di erent scales, therefore for each scale a set of pixels isatculated that is used as a template of
the neighborhood of an arbitrary pixel.

Second, the principal part of the scale-saliency algorithnis performed: What follows is done
for each pixel in the image. For each scale the local descript values are sampled with the help
of the pre-calculated ROIs, the probability density function is estimated using histograms and
the entropy Hp and weightsWp are calculated. Then the weights are smoothed and the entrop
peaks are determined. For each peak the salient metritYp (S; %) is calculated and stored in a
list of salient pixels.

Finally the salient pixels are clustered and only the centrads of the clusters remain in the
list. Figure 2.3 shows the regions that are labeled salient y scale-saliency algorithm.

Here is the scale-saliency algorithm in pseudo-code [7]:

Algorithm 1 Scale-saliency algorithm
1. for all pixel locations, (x,y), in the image | do

2:  for all scales, s, between Smin and Smadto

3 IS = Sample local descriptor values at I(x,y) in a window of size s
4: P(d,s) = Estimate the local PDF from IS fe.g. using histogramg
5: HD(s) = Calculate the entropy of P(d,s)

6: WD(s) = Calculate inter-scale saliency between P(d,s) and Kd,s-1)
7. end for

8: Run smoothing lIter over WD(s) fe.g. 3-tap averagg

9: for all scales for which the entropy attains a peak, SRlo

10: YD(SP,x,y) = HD(SP) x WD(SP)

11:  end for

12: end for

Visual Features to Help Close the Loop in 6D-SLAM



2.2. VISUAL FEATURE EXTRACTION 9

Figure 2.3: Salient regions in various scenes. The images are from the @aset that is illustrated in
Figure 3.1. The highlighted regions are detected by the scatsaliency algorithm that is described in
Section 2.2.1.

2.2.2 Maximal Stable Extremal Region (MSER) Detection

The second criterion for the feature detection is wide-badie stability. The bene ts of these
features are that they are robust against monotonic changesf image intensities as well as con-
tinuous transformations of image coordinates. The last prperty is useful for loop detection
because the robot will barely reach precisely the same posiké before. For instance, the view-
point of the robot changes. Figure 2.4 shows a series of imagi¢aken from di erent viewpoints.
The regions that are highlighted are detected by the methodsthat are described next. It is
interesting to note that most regions of the scene are deteed in all images.

The detection algorithm that was developed by Matas et al. [B] ts the needs of wide-
baseline stability mentioned above. Before it is explainedn more detail, some de nitions that
are used by algorithm are given:

Image | is a mappingl : D Z2!S . Extremal regions are well de ned on images if:

1. S is totally ordered, i.e. re exive, antisymmetric and transitive binary relation

Visual Features to Help Close the Loop in 6D-SLAM
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Figure 2.4: A series of images taken from di erent viewpoints. The image are from the data set that
is illustrated in Figure 3.1. The detected maximally stable extremal regions are represented as ellipses
and highlighted in each image. This series shows that many MBRs that represent one location in the
scene are detected in all images although the viewpoint is @nging.

exists. In this paper only S = f0;1;:::; 255 is considered, but extremal regions can
be de ned on e.g. real-valued images$ = R).

2. An adjacency (neighborhood) relaton A D D is defed. In this paper 4-
neighborhoods are used, i.ep;q2 D are adjacent (pAqQ) i id=1 B g 1.

and pAaj; ajAai+1 ; anAg.

(Outer) Region Boundary @ =1fg2DnQ :9p2Q : gApg, i.e. the boundary @ of Q is
the set of pixels being adjacent to at least one pixel ofY but not belonging to Q.

Extremal Region Q D is aregion such that forallp2 Q;q2 @ :1(p) >1 (q) (maximum
intensity region) or 1 (p) <! (@) (minimum intensity region).

1d denotes the number of dimensions. SinceD is a subset of Z2, the dimension for d is 2.

Visual Features to Help Close the Loop in 6D-SLAM
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Figure 2.5: MSERs in various scenes. The images are from the data set thas illustrated in Figure 3.1.
In contrast to the salient regions, which are shown in Figure2.3, the shape of a MSER is arbitrary.

Maximally Stable Extremal Region (MSER). Let Qq;:::;Qi 1;Qi;::: be a sequence of
nested extremal regions, i.e. Q; Q j+1. Extremal region Q; is maximally stable i
g(i) = jQi+ nQ; j5Q;j has a local minimum ati (j j denotes cardinality). 2 S is

a parameter of the method.

It is crucial that the pixel values are ordered. In this implementation only gray-scale images
with values from the set [G;:::;255] are considered. The neighborhood relation of the image
pixels is depicted in Fig. 2.6. The extremal regions are of amrbitrary shape and have properties
that are stable against changes in the image. They are eitheminimum or maximum intensity
regions. The algorithm that is described here detects the miimum intensity regions. To nd the
other ones, the input image only needs to be inverted. The maixally stable extremal regions
are a subset of the extremal regions. They have the followingroperties:

Invariant to monotonic changes of image intensities.

The neighborhood of the regions are preserved under transfmation.

Visual Features to Help Close the Loop in 6D-SLAM
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Center Pixel
4 neighboring pixels

4 diagonal neighboring pixels

Figure 2.6: Neighborhood reijlation of image pixels [6]. The gure shows e neighborhood relation that

is described in Table??. By id:l i Gj 1 the neighboring pixels are specied. This excludes the
diagonal neighbors from the neighborhood.

The regions are stable, because they stay unchanged over antérval of thresholds.

Both very small and very large regions are detected.

First all pixels of the gray-scale image are sorted inO(n) into bins with regard to their
intensities using thebinsort algorithm [29] in order to nd all pixels that belong to one in tensity.
For each intensity from 0 to 255 a list of connected pixels (orextremal regions) below the current
intensity is maintained. To visualize the process imagine &inary image where all pixels below
the current intensity are black and those above are white. At rst, the image is white. As the
intensity increases, tiny black spots grow to large regionsand nally the complete image is black.
With the union- nd algorithm [29] the extremal regions are e ciently determined and stored in
a data structure with their corresponding intensity levels and sizes. If two regions merge, the
smaller is subsumed by the larger one. In a last step those iensities of the regions are chosen
from the data structure where the rate of change of the region size have a local minimum. The
regions with these selected intensities form the maximallystable extremal regions.

2.2.3 SIFT Description

After the features or feature points are detected using botrmethods above, they are encoded with
SIFT descriptors as developed by Lowe [14]. In order to cre& descriptors that are invariant to
the image rotation the descriptors are calculated relativeto the orientation of the feature points.
To determine the orientation of the feature points some preeomputation has to be done:
For all pixels of the image the orientations and magnitudes éthe pixels are determined. This is
done with the following equations, wherem(x;y) is the magnitude and (x;y) is the orientation

Visual Features to Help Close the Loop in 6D-SLAM



2.3. VISUAL FEATURE MATCHING 13

of image pixel with the coordinatesx and y. Here L(x;y) is simply the the pixel value of the
gray-scale imagé:

mcy) = L+ ly) L Ty)Z+(Liay+D Ly D)E  (24)
(xy) = tan Y((L(xy+1) Ly 1)=L(x+1;y) L(x Ly)): (2.5)

After the pre-computation the orientations are assigned tokeypoints that are generated from
the feature points in the following way: An orientation hist ogram is built that covers 360 degrees
around the feature point. For this, 36 bins are used. The oriatations of the pixels in the
region of the feature point that contribute to the histogram are weighted by their magnitude m
and a circular Gaussian window with  1.5. The highest peak of the histogram is the signi cant
direction of the feature point. Additionally, other direct ions that lie within 80% of the peak
are considered as in uential. That means, one or more keypaits with di erent orientations
are generated for each and every detected feature point. Toajn a better approximation of the
orientation of the keypoints the three values next to each pek are used to interpolate the value.

Then the descriptors are calculated from the generated keypints which exhibit a location
and an orientation. How this is done is exemplarily shown in kg. 2.7. On the right side
of Fig. 2.7 a descriptor with a 2 2 array is illustrated with an 8 bin orientation histogram
in each of its elds. In this implementation a 4 4 array is used instead. This leads to a
128 dimensional vector as descriptor (4 4 8 = 128). The descriptor is determined by the
Gaussian weighted gradients of the image pixels around thedypoint, which are shown on the
left hand side in Fig. 2.7. The Gaussian functiorf assures that the gradients of pixels that lie
next to the keypoint have more in uence on the outcome than pixels that are more distant
from the center. These weighted gradients contribute to thearray of orientation histograms
relative to their position. To deal with boundary e ects bet ween two orientation histograms
another weighting factor is used for interpolation for eachdimension. This factor is 1 d, with
d the distance of the current orientation value to the central histogram bin value. Finally the
descriptor vector is normalized, all values greater than @ are thresholded, and the vector
normalized again. These three steps are made in order to makihe descriptor more robust to
changes in illumination. While the normalizing is concernel with linear illumination changes,
the thresholding deals with non-linear changes, because #tresses more the orientations than
the magnitudes of the gradient histograms.

2.3 Visual Feature Matching

After detecting and encoding the visual features of a receny taken image by the robot the
feature descriptors and the capture time of the image are sted in the database. To detect a
loop the descriptors of a query imagel 4 are compared or matched with the feature descriptors
of all candidate imagesl .'s that are already in the database. A successful matching o# gra ti
scene is illustrated in Figure 2.8.

2Note, this is di erent from the procedure presented by Lowe [ 14] where L(x;y) has another meaning.
3The of the function corresponds to one half of the descriptor win dow.
4The value 0.2 was determined experimentally by Lowe [14].

Visual Features to Help Close the Loop in 6D-SLAM
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Figure 2.7: A keypoint descriptor. It is calculated from weighted gradients in a certain area around
the keypoint [14]. On the left side, the gradients of each piel and the Gaussian weighting function are
illustrated. The right side of the gure shows a 2 2 array of orientation histograms. The histograms are
built from the weighted gradients of the left hand side. In this implementation a 4 4 descriptor array
is used.

Figure 2.8: Examples for a successfully matched grati scene. The image are from the data set that
is illustrated in Figure 3.1.
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The similarity measure in the matching process for two featue descriptors is the Euclidean
norm of the distance between a descriptorVy of the query image and a descriptorV; of a
candidate image. In this implementation the descriptors ae 128 dimensional vectors:

kVy Vek: (2.6)

For two images each query descriptor is matched with each catidate descriptor. The resulting

norms are stored in ang n¢ matrix m where nq is the number of descriptors generated for
the query image andn¢ is the number of descriptors for one candidate image. for altandidate

images such am matrix is created. Finally the matrices are thresholded andonly norms below

a certain threshold are considered for further processing.These norms correspond to similar
descriptors. For each image pair (4,1 ¢), ngc Norms are the result of the feature matching process.
How these matched features are used for loop closing is exjit@d in the next section.

2.4 Application of Loop Closing

Loop closing uses visual features as follows to detect a lodp the path of the robot. For a query
image | 4:

1. Generateng features descriptorsVy from the image | .
2. Store feature descriptors and capture time of the image irthe database.
3. For each candidate imagd ¢ in the database:

(a) Retrieve all n; candidate feature descriptorsV, from the database.

(b) Build a ng nc matrix Mg.c where the (; ] Yt entry Mg:c(i;] ) is the Euclidean norm
KVg(i)  Ve(j) k.

(c) Threshold the distances result inngc matched descriptors.

4. After all candidate images are processed the candidate iages with the largest number of
Ngc Matched descriptors are selected, if the number is higher thn a certain threshold.

5. The capture times of the selected images are compared with separate journal of temporal
and spatial information in order to determine the location where the candidate image was
made. Finally, a loop hypothesis for the assumed location igenerated.

This algorithm detects a loop if some descriptors of two imags are similar. Similar means
that the norm of two descriptors is below a certain threshold For each image pair the similar
descriptors are counted. If two images have, for example, ttee or more of these similar descrip-
tors, it is possible that they were taken in the same location and a loop hypothesis is generated.
The number of needed similar descriptors in order to detect doop was determined while testing.

It is interesting to note that no spatial information of the r obot pose is used during that
process. At rst it sounds strange not to use this freely avalable information, but on the other
hand this has the advantage that the loop detection is not miguided by erroneous geometrical
data. If loop detection depends on the estimated robot posethe robot potentially misses
situations where it has been before only because the pose #sttion was incorrect. To overcome
this problem, here the application of loop closing is indepedent from the estimated robot pose.
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Chapter 3

Evaluation of the Visual Feature
Extraction

The presented algorithms for feature detection in Section2.2.1 and 2.2.2 and the description
in Section 2.2.3 are compared with other methods within the famework developed by Miko-

lajczyk and Schmid [22]. The used test data is described in $8on 3.1. How the detection

and description is evaluated is explained in Section 3.2. Thse results are presented in detail in
Section 3.3.

3.1 Data Set

To produce comparable results, the described detectors andescriptors are tested not only in
the same framework but also on the same data set. The data sehat is used here is publicly
available on the website http://www.robots.ox.ac.uk/ vgg/research/affine/ . This test
set of images contains small subsets where di erent image ansformations were applied. The
subsets can be grouped in ve categories: image blur, viewpiat change, zoom and rotation,
light change, and JPEG compression. In addition to these transformations the type of the scene
is another in uential factor for feature detection. Therefore, for some of the transformation
categories, two image sets exist with di erent scene typesnamely, structured versus textured
scenes. In total, there are eight image sets of six images dacExamples of the di erent test
sets can be seen in Fig. 3.1. How the data is acquired is expfad in more detail on the website
mentioned above and in [22].

When evaluating the detection methods on the test data, the guestion arises, how to know
whether the matched features are really describing the samkmcation in two images or not. The
answer is that some ground truth information is needed that describes how the two images are
related. This information is given by a homography and comestogether with the test data.
These homographies are calculated as follows: In a rst manal step, image correspondences
are set by hand. Then the two images are aligned using this imrmation. In the second and
nal step, the homography of the two images is re ned using an out-of-box algorithm that
brings automatically detected features together. The comimation of the two steps makes this
calculated homography very accurate.

17



18 CHAPTER 3. EVALUATION OF THE VISUAL FEATURE EXTRACTION

@) (b) (© (d)

(e) ® (9) (h)

Figure 3.1: Examples of the evaluation data set. The data set is publiclyavailable on the website
http://www.robots.ox.ac.uk/ vgg/research/affine/ . It can be distinguished in ve categories: (a)
and (b) zoom and rotation, (c) and (d) viewpoint change, (e) and (f) blur, (g) JPEG compression, and

(h) light change.
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3.2. EVALUATION CRITERIA 19

3.2 Evaluation Criteria

There are two steps in the visual feature extraction procesgsee Section 2.2) that can be distin-
guished: First, the combined feature detection of the saliat and wide-baseline stable regions.
And second, the feature encoding using SIFT descriptors. B of these steps are evaluated
separately. What criteria are used to evaluate each of thessteps is described in the respective
subsections.

3.2.1 Detector Evaluation

The detector evaluation is of special interest, the proposé combination of the saliency and
the wide-baseline stability criteria for feature detection by Newman and Ho [23] is compared
to other available region detectors. Especially the compason between the combined saliency-
MSER detector and the exclusive saliency or MSER detector isone of the main objectives of
this thesis.

In order to use the evaluation framework the detected regios have to be represented as
ellipses [22]. Aregion is described by the parametens, v; a; b; cthat ful Il the following equation,
where the upper left corner of the image is represented with(@ 0):

a(x u)+2b(x u)y v)+cly v)?=1: (3.1)

The evaluation framework provides the tester with two measues that can be used for ana-
lyzing the feature detectors. These measures are the repediility and the matching score. Both
measures are calculated for a given image pair.

The repeatability score is the number of corresponding regins with respect to the smaller
number of detected regions in an image:

# corresponding regions.

repeatability score = -
P y # detected regions

(3.2)

The number of region-to-region correspondences is calcukd using the ground truth infor-
mation. The regions from one image are projected to the other Two regions correspond if the
overlap of the regions is su ciently large. To determine the overlap of two regions an overlap
error is computed. The overlap error is calculated using theratio between the intersection and
the union of the regions (1 intersection=union ). The error of two regions A and B can be
computed as follows whereH is the homography between the two images:

A\ HTBH

ALHTBH (3:3)

o - 1
If the overlap error o is smaller than a threshold, A and B are counted as corresponding
regions. Figure 3.2 shows some examples of overlapping regs together with their overlap error
in percent. The overlap error is in uenced by the size, the orentation and the position of the
regions. For the evaluation di erent thresholds for the overlap error are used.
The second measure, the matching score, is the relative nundp of correctly matched regions
compared with the smaller number of detected regions in onemage:
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Figure 3.2: Examples of overlapping regions and their respective ovealp error in percent.

# correct matches

matching score = —:
g # detected regions

(3.4)

The matching is done on the basis of descriptors, thereforehie regions have to be encoded
for the calculation. In this evaluation SIFT descriptors are used. The descriptors are compared
using the Euclidean distance. A match is the nearest neighbwoin the SIFT feature space. The
correctness of the matching is determined by the ground truh homographies (see Section 3.1)
and the overlap error ¢ that is explained above.

The results of the presented Salient-MSER detector are comgred with six other detectors:
the Salient region detector, the MSER detector, the HarrisA ne detector, the Hessian-A ne
detector, the Intensity extrema based detector (IBR), and the Edge based detector (EBR).

3.2.2 Descriptor Evaluation

In the descriptor evaluation, the SIFT descriptor that was proposed by Newman and Ho [23] is
compared with other descriptors. All descriptors are calclated from the feature regions that are

detected by the combined Salient-MSER detector in order to ge if the proposed SIFT descriptor
is the best choice for the detection method under inquiry.

The matching score is one performance gure for this evaluabn, it was already discussed in
Section 3.2.1.

Another gure, which indicates distinctiveness of the desciptors, is the detection rate with
respect to the false positive rate. The detection rate is theratio between the number of correct
matches and the total number of corresponding regions. Thedise positive rate is the ratio of the
false matches and all possible false matches. This gure isery useful for a practical application,
because it measures the quality of the feature matching.

Besides the SIFT descriptor the other methods that are used @&: GLOH, Shape Context,
PCA, Moments, Cross correlation and Steerable lters.
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3.3 Evaluation Results

The evaluation results are presented in this section. As metioned above, the region detection
and the region description are evaluated separately. Therfere the structure of this section has
two parts: The results of the detector evaluation are preseted in Section 3.3.1, the results of
the descriptor evaluation are presented in Section 3.3.2.

3.3.1 Detector Evaluation

The following feature detectors are tested within the framevork: the Salient-MSER detector,
the MSER detector, the Salient region detector, the HarrisA ne detector, the Hessian-A ne
detector, the Intensity extrema based detector (IBR), and the Edge based detector (EBR). While
the rst three detectors are implemented for this thesis, the binaries of the other detectors are
taken from the website mentioned above. The images from thedst data set are applied to
the detectors. The detector output, the detected regions, $ used as input for the evaluation
framework. Before the results for each category of the varios image transformations (i.e.,
scale change, viewpoint change, blur, JPEG compression anight change) are presented, some
general remarks are stated.

General Remarks

Di erent Results. The rst thing to note is that the results for the salient regi on detector
and the MSER detector are di erent from those that are obtained in [18]. For the other tested
detectors the results are comparable.

In the case of the salient region detector this is not surprigng because the detected regions
in [18] are described as ellipses while in this implementabin circles are used.

In the case of the MSER detector the di erence is presumably de to the fact that other
parameters are used in this and the original implementationby Matas et al. [15]. The parameters
are not clearly laid out in the original paper, so the paramegrs in this implementation were
de ned during testing. Although the results are dierent an d the performance measured here
is not as good as in [18], a comparison between the Salient-NER, the MSER, and the Salient
region detector perfectly makes sense since the regions adetected by this implementation.
This di erence is depicted for the structured grati scene f rom Figure 3.1(c) in Figure 3.3. Itis
noteworthy that the shapes of both curves are similar, only tie run of the curves is shifted. The
performance for other scenes is comparable. While studyinthe evaluation results one should
bear in mind that the original MSER implementation [15] is reported to perform roundabout 15{
30% better than this implementation. So the performance of his implementation can possibly
be improved in future work. The evaluation results should beviewed in consideration of this
prior knowledge.

Computation Time. The issue of complexity and computation time of the detectos is shortly
discussed in [18]. In the setting of the evaluation, the comptation times are not that important,

but they are crucial when it comes to an on-line application sich as loop closing. Similar
computation times that are listed in [18] are obtained from the experiments: Most detectors
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Figure 3.3: Dierences between this and the original MSER implementation on a structured gra ti
scene. (a) Repeatability score. (b) Number of correspondig regions.

process an image of size 800 640 in a reasonable time, less or equal than 10 seconds. The
exception is the salient region detector which processes &image in more than 30 minutes. It is
clear that a method with such a computation time is not applicable for an on-line application.
Therefore the parameters of the salient region detection ned to be adjusted in order to integrate
the loop closing procedure in the 6D-SLAM robot platform, which is presented in Section 4.

Region Density and Region Size. Both the region density and the region size has an e ect
on the performance measure of the detector.

The number of detected regions depends on the detector but ab on the scene type. In
Table 3.1 the numbers of detected regions for a structured sme are illustrated for each tested
detector. For comparison, the table shows the numbers for adxtured scene.

It is noteworthy that all detectors, except the Hessian-A n e detector, detect less regions in
the structured scene than in the textured scene. The di ererce for the Salient-MSER detector
is particularly noticeable. The di erences in region numbers are plausible because the detectors
are receptive to di erent image structures, what makes themcomplementary. Since the num-
ber of detected regions varies among the di erent detectorsthe performance measures for the
evaluation results, presented in the next section, are repided in absolute and relative terms in
order to give the reader a better understanding.

The size of the detected region depends also on the detectolVhile some detectors detect
mostly small regions, others detect larger ones. But the reign size has an in uence on the
matching process. Larger regions are more likely to be mat@d. In order to achieve a better
comparison between the detectors the regions are normalide
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Table 3.1: Number of detected regions for various detectors. The numhms are reported for two di erent
scene types, namely a structured and a textured scene.

Detector Structured scene Textured scene
Salient-MSER 368 2289
MSER 528 2871
Salient 1025 2033
Harris-A ne 1758 2267
Hessian-A ne 2454 1375
IBR 679 783
EBR 1265 3748

Results for Various Image Transformations

The results are grouped in ve categories: scale change, woint change, blur, JPEG com-
pression and light change. In each of these categories one two scene types are tested. For
each scene a set of six images is applied to the detectors. Oimmage is the reference image.
The others show the same scene under increasing image trapsfations. For the evaluation,
the reference image is pairwise processed with each of theh&r images. The repeatability score,
the absolute nhumber of corresponding regions, the matchingcore and the number of correct
matches are reported for these transformations in gures: 34, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10 and
3.11. The overlap error threshold ¢ is xed to 40% for these tests.

An optimal curve for the repeatability score is a horizontal line at 100%. A horizontal line
indicates the stability of the detector under increasing image transformations. A repeatability
score at 100% means that for all detected regions in one image corresponding region is found
in other image. None of the tested detectors perform that opimally. In the most cases a curve
starts at its own maximum value and then decreases as the imagtransformation increases. For
some cases the curves are nearly horizontal. The maximum vaé of 95% for the repeatability
score is measured for the JPEG compression category.

The gures that display the matching score and the number of @rrect matches are in general
more interesting for a practical analysis. The matching scee is an indication on how distinctive
the detected regions are. At rst glance the gures look similar to those of the repeatability
score, but at some gures the ranking of the detectors change This means that the regions of
some detectors are more distinctive than others.

Scale Change. Figure 3.4 shows the results for the structured boat scene &m Figure 3.1(a).
In Figure 3.5 the results for the textured bark scene from Figire 3.1(b) are presented.

For the repeatability score the Hessian-A ne detector yields the best results for both scene
types. In the textured scene the curve runs nearly horizonth The MSER detector performs
slightly better than the Salient-MSER for both scenes. It is noteworthy that for the textured
scene there is a huge gab between the number of correspondeadetween for these two detectors.
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Figure 3.4: Scale change transformations for the structured boat scen&om Figure 3.1(a). (a) Re-
peatability score. (b) Number of corresponding regions. (¢ Matching score. (d) Number of correct
matches.

The performance of the Salient region detector is noticeald; larger amounts of zoom and rotation
transformations yield a performance near 0%.

For the structured scene the Hessian-A ne and the EBR detector have the highest match-
ing score. Interestingly the Salient-MSER detector perfoms better than the MSER detector,
which is in opposite to the results of the repeatability test. The performance of all detectors is
signi cantly worse in textured scene.

Viewpoint Change. The inuence of a changing viewpoint for a structured grati scene
from Figure 3.1(c) is shown in Figure 3.6. The results for a tetured scene of a brick wall from
Figure 3.1(d) are illustrated in Figure 3.7.

In the structured scene the performance for the repeatabity score of the detectors looks
similar. Only the Salient region detector shows a di erent shape of the curve. The Salient-
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Figure 3.5: Scale change transformations for the textured bark scene ém Figure 3.1(b). (a) Repeata-
bility score. (b) Number of corresponding regions. (c) Matdiing score. (d) Number of correct matches.

MSER and the MSER detector are nearly identical. In the textured scene the Salient region
detector performs best in terms of repeatability score, exept for the last transformation. Again
the performance of the Salient-MSER and the MSER detector ae comparable.

The EBR detector performs substantially better in the matching test than in the repeatability
test. This is true for the structured and the textured scene. The ranking of the other detectors
does not change signi cantly. The Salient-MSER detector oltains better scoring as the MSER
detector for the structured scene. This is the same result ag the scale change setting.

Blur.  Figure 3.8 displays the results for the structured bike scea from Figure 3.1(e), while
Figure 3.9 displays the results for the textured tree scenerbm Figure 3.1(f).

For the repeatability score nearly all curves run horizontd for both scene types. The Hessian-
A ne detector performs best in both tests. The Salient region detector is slightly better for the
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Viewpoint change transformations for the structured grat i scene from Figure 3.1(c).

(a) Repeatability score. (b) Number of corresponding regims. (c) Matching score. (d) Number of correct
matches.

textured than for the structured scene. The Salient-MSER ard the MSER detector are almost
identical for the textured scene. For the structured scene he Salient-MSER is around 5% better
than the MSER detector.

In general the matching score is higher in the structured than in the textured scene for all
detectors. In the EBR detector obtains the highest scores fothe structured scene. Again the
Salient-MSER outperforms the MSER detector in the structured scene, while the score is nearly
identical for the textured scene. The Salient region deteabr yields higher scores than both
detectors based on MSERs.

JPEG Compression. Figure 3.10 shows the e ects for di erent levels of JPEG compession
for the image set from Figure 3.1(Q).
The repeatability score of 95% that is reached for the JPEG cmpression category is the
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Figure 3.7: Viewpoint change transformations for the textured wall scene from Figure 3.1(d). (a) Re-
peatability score. (b) Number of corresponding regions. (¥ Matching score. (d) Number of correct
matches.

maximum value that is obtained for all tests. Again, it is the Hessian-A ne region detector
that outperforms the others. The Harris-A ne detector come s second. The worst performance
is measured for the Salient-MSER and MSER detectors. The Sant region detector is approx-
imately in the middle of the best and the worst detector.

The curves for the matching score are similar to those of the epeatability score, except for
the Salient region detector, which performance for the matbing test is not as good as for the
repeatability test.

Light Change.

in Figure 3.11.
All detectors show a stable repeatability score. The HessiaA ne performs best. The MSER

detector comes second and shows an around 10% better perfoamce than the Salient-MSER

E ects of illumination changes in the images from Figure 3.1h) are presented
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Figure 3.8: Blur transformations for the structured bike scene from Figure 3.1(e). (a) Repeatability
score. (b) Number of corresponding regions. (c) Matching sare. (d) Number of correct matches.

detector. The Salient region detector show a slightly worsgperformance for larger amounts of
decreasing light than the other detectors.

The best matching score is obtained by the EBR detector. Whatis interesting here is that
the order between the Salient-MSER and the MSER changes. Wié the MSER detector has
higher scores for the repeatability test, it is the SalientMSER detector which performs slightly
better.

Conclusions

The results show the di erences between the tested detectar in respect to the various image
transformations as well as to the two scene types.

In general the change of the viewpoint seems to be the most dicult setting for all detectors,
followed by the change of the scale. For increasing blur and ecreasing light changes nearly all
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Figure 3.9: Blur transformations for the textured tree scene from Figure 3.1(f). (a) Repeatability score.
(b) Number of corresponding regions. (c) Matching score. ()l Number of correct matches.

detectors are relatively robust and show almost horizontalcurves. Another point to mention is
that the matching of feature region is better on structured than on textured scenes.

The Hessian-A ne detector shows mostly the best performane for both repeatability and
matching score, it also has almost the highest number of coaspondences. The Harris-A ne
detector shows also good results. It is often ranked on the send or third place. While the
performance of the IBR detector is on average, the performatce of the EBR detector changes
from best to worst depending on the image transformation andscene type.

The main focus of this evaluation is on the Salient-MSER detetor and how it performs
di erent from the MSER and the Salient region detector. The Salient region detector performs
better on textured scenes than on structured scenes. For theMSER detector the opposite is
true, its performance is better on structured scenes. Theséno results sound promising for the
combined Salient-MSER detector. The Salient-MSER detecto obtains slightly higher scores
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Figure 3.10: JPEG compression transformations on images from Figure 3(f). (a) Repeatability score.
(b) Number of corresponding regions. (c) Matching score. ()i Number of correct matches.

than MSER detector for structured scenes. But for the textured the performance is similar.
In total the performance of the Salient-MSER detector is not signi cantly di erent from the
MSER detector. This conclusion is somewhat humbling sincete purpose of the combination
of the two dierent criteria, namely saliency and wide-basdine stability, is to create a more
robust detection method. So the results obtained from the ealuation do not show a substantial
advantage of the combination of the two detectors. But for the task of loop closing a combination
is nevertheless reasonable. In their work [23] Newman and Hsuggest a combination of these
detectors to increase the robustness for the task of loop cking. The purpose of the Salient
region detector is to select interesting regions in one imagwhile the task of the MSER detector
is to nd regions that are robust to viewpoint changes. For an application of loop closing it
makes sense to combine these both detectors for mainly two asons: First, using only salient
regions leads to many regions not be matched from di erent vewpoints. Second, using only
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Figure 3.11: Light change transformations on images from Figure 3.1(h). (a) Repeatability score.

(b) Number of corresponding regions. (c) Matching score. ()l Number of correct matches.

MSER regions leads to less distinctive regions. Hence a conmation leads to more distinctive
regions that are detectable from di erent viewpoints.

3.3.2 Descriptor Evaluation

For the following tests all regions are detected by the Saliet-MSER detector. At rst glance this
sounds odd, since other detectors outperform this detectorBut as discussed in Section 3.3.1 the
results for MSER and therefore also for Salient-MSER deteatr are potentially better. Another
reason for the selection of the Salient-MSER detector is thathe choice of Newman and Ho [23]
for the SIFT description method should be veri ed.

The regions are described using the following methods: GLOHSIFT, Shape Context, PCA,
Moments, Cross correlation and Steerable lters. These degibed regions are the input for the
evaluation framework. As for the detector evaluation in Setion 3.3.1 the results are presented
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for various image transformations, i.e., scale change, wepoint change, blur, JPEG compression
and light change.

Results for Various Image Transformations

For the descriptor evaluation the matching score and the nunber of correct matches are re-
ported for the various image transformations and the di erent scene types. Like in the detector
evaluation, the overlap error threshold is xed to 40%. Regading the computation times there
are only minor di erences between the descriptors.

Whereas the results for the detector evaluation show great derences between the several
detectors, the results for the tested descriptors do not. Ingeneral all curves run more or less
in parallel. It is noticeable that for small amounts of image transformations, i.e., on the left
side of the gures, there is a greater di erence between the dscriptors than for larger amounts.
This is nearly true for all transformations, except light change. In the light change scene all
descriptors perform relatively stably, i.e., the curves ae almost horizontal. So the di erences
between the detectors remain also stable. Also interestingn the case of the light change scene
is that although the number of correct matches decreases fdarger amounts of decreasing light,
the matching score does not. This means that the number of defcted regions decreases in the
same way as the correct matches.

The best performance is achieved by SIFT descriptors, folled by the GLOH and the Shape
context description method. In the middle are Cross correléion and PCA, where Cross correla-
tion is slightly better than PCA. Moments and Steerable Ite rs show the worst performance. In
the performance evaluation of local descriptors by Mikolagzyk and Schmid [22] similar results
were obtained, although the results were more discriminatie among the descriptors. SIFT and
GLOH descriptors performed best, but the ordering was revesed. Shape context descriptors
showed also a good performance. The descriptors were tested Harris points, Harris-Laplace
regions, Hessian-Laplace regions, Harris-A ne regions ad Hessian-A ne regions.

Conclusions

The results of the descriptor evaluation show that no descption method is outstanding. This

means that the choice of the descriptor is not as in uential a the choice of the detector where
there are greater di erences between the several methods. e performance of all descriptors
are relatively similar but nevertheless imply a ranking of the description methods. The explicit
ordering of the descriptors, where the best results are obiaed by the SIFT description method,

support the choice for SIFT descriptors by Newman and Ho [23]
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Chapter 4

Experiments on a 6D-SLAM Robot
Platform

Applying the loop closing procedure on a robot platform is arother objective of this thesis. As

an experiment, the loop closing application that is shortly described in Section 2.4 is integrated
and tested on the existing 6D-SLAM robot platform Kurt3D. Th e robot platform is described in

Section 4.1. The experimental setup and the results are presited in Section 4.2 and Section 4.3,
respectively.

4.1 6D-SLAM Robot Platform Kurt3D

Figure 4.1 shows two images of the robot platform Kurt3D. The6 wheels are powered by a 90W
motor. The maximal possible speed is 1.2. The platform has aehgth of 45 cm, a width of 33
cm, a height of 26 cm and a weight of 15.6 kg. The main sensor ohé robot is a 3D laser scanner
which increases the height of the robot to 47 cm and the weighto 22.6 kg. The scanner is built
on the basis of a 2D Sick laser scanner that is rotatable. Di eent resolutions are adjustable for
the scanning area of 180(h) 120 (v). A horizontal scan of 181 data points is acquired in 13
ms. For example, a scan with 181 256 data points takes 3.4 seconds. As additional sensors
the robot is equipped with 2 cameras. While the data of laser sanner is mainly used for the
generation of a 3D map, the camera data is used to help close ¢hloop. The robot is controlled
by software that runs on a Linux-based laptop.

4.2 Experimental Setup

Basically the Kurt3D robot drives around and takes pictures of the environment with its camera.
These images are processed with the feature detection and skeription algorithms explained in
Section 2.2. The resulting feature descriptors are storedni a database and matched against
descriptors from previously taken images. If the matching 6 several feature descriptors of two
images is successful, a loop hypothesis is generated. In tHellowing, some aspects of the
description above are explained in more detail.
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Figure 4.1: The robot platform Kurt3D.

Cameras. As described in Section 4.1 the Kurt3D robot is equipped withtwo cameras. Ob-

viously the presented loop closing application from Sectio 2.4 is adaptable so that two or more

cameras are used simultaneously. More cameras are clearly advantage because the eld of

vision is augmented. On the other hand, the feature matchingpossibly needs to be adjusted,
since all cameras contribute their described features to th same database. Of course, it is de-
sired that the described features of all cameras are compagleamong each other, but if there

is an overlap in the visual eld of at least two cameras, it is not desired that features of these

cameras that are acquired at the same time are matched. Sincthe usage of multiple cameras
is not of main interest in this thesis, for reasons of simpliity only one camera is used in the

experiments. The image size is set to 320 240.

Capture Times. A crucial factor for the success of the application of loop absing is the time
interval between the capture of two images. If the robot onlytakes a picture every half an hour,
it is clearly insu cient for the task of loop detection, beca use it barely takes two pictures of
the same location. On the other hand, a robot that takes thirty pictures a second does not
succeed either. In the last case the application detect oneobp after another since the scene
is not changing signi cantly. Hence a successful applicabn uses a well-balanced interval time
between the capture of two images. For an on-line applicatin on an autonomous mobile robot
the minimal time interval is bounded by the processing time d one image. In the experiments
di erent time intervals are tested in order to determine an e cient one. All experiments are done
oine, in order to test di erent time intervals and dierent  matching thresholds, as discussed
in the next paragraph, on the same input data.
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Matching Thresholds. There are two in uential thresholds in the process of feature match-
ing. The rst one is the threshold for the Euclidean distance measure. That means, for which
distance are two matched feature descriptors considered asmilar. The second is the minimum
number of similar features descriptors that are needed to geerate a loop hypothesis. In their
work [23] Newman and Ho say nothing about the rst threshold, the second one was xed to
three in order to deal with false positives. In these experirents, di erent values are tested for
both thresholds.

Computation Time. As mentioned in Section 3.3.1 the computation time of the sdkent region
detector is more than 30 minutes for an image of size 800 640. This means, that the detector
is clearly not applicable on-line on an autonomous mobile rbot. Therefore the parameters of
the scale-saliency algorithm are adjusted. The minimum scie is set to 5 and the maximum
scale is set to 10. The con guration for the evaluation was 3 ér the minimum and 30 for the
maximum scale. Due to this adjustment and due to the fact that smaller images are processed
in the experiments the computation time is reduced to 10-15 econds per image.

4.3 Experimental Results

In this section the experimental results are reported. In the experiments the robot was driven
twice round a loop in an o ce environment. The principal goal of this scenario was to test the
application of loop closing in general.

The robot took pictures as fast as possible, i.e., round abaulO pictures per second. Most
pictures were acquired while driving. From these tons of da& every 30th picture was processed
for the task of loop detection. Since the robot did not drive in a stop-sense-go sequence, but
rather in a sense-while-driving sequence, such a high progging rate makes sense, although it is
not applicable on-line.

In the matching process, the minimum number of similar featue descriptors were varied
between 2 and 3. For each number, di erent thresholds for theEuclidean distance measure were
tested. The number of generated loop hypotheses are repodefor di erent thresholds in terms
of true and false positives in Tables 4.1 and 4.2. A succesdflbop detection counts as true
positive, whereas a wrong hypothesis count as false posittv The ground truth information was
provided manually, that means, that an operator decided whéher two images showed the same
scene. Since the robot was driven twice round the loop, therevere many potential scenes for a
true positive. Figure 4.2 shows two examples of successfuiddp detections. In some cases a true
positive was counted, but not all features were matched corctly. An example for the last case
is shown on the right side of Figure 4.3. On the left side of thesame gure a false positive is
depicted. While in most cases a false positive can relativgleasy be identi ed by an operator,
it is really hard to tell here.

Table 4.1 shows the results for at least 3 similar matched feare descriptors. The minimal
distance between the feature descriptors were varied betvem 250, 220 and 200. The number of
processed images was 53. The ratio between true and false jito®s changes signi cantly for the
tested thresholds. While there are more false positives thatrue positives for a distance of 250,
for 220 and 200 the opposite is true. Here, the smallest thrémld leads to the best performance
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Figure 4.2: Examples for two true positive loop hypotheses.

Table 4.1: Results with at least 3 matched feature descriptors. The theshold for the distance is denoted
with d.

d =250 d =220 d =200
# Images | True Pos. | False Pos.| True Pos. | False Pos.| True Pos. | False Pos.
53 41 67 27 21 18 5

Table 4.2: Results with at least 2 matched feature descriptors. The theshold for the distance is denoted
with d.

d =200 d=170 d =150
# Images | True Pos. | False Pos.| True Pos. | False Pos.| True Pos. | False Pos.
53 30 30 17 3 8 1
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Figure 4.3: The left picture shows an example for a false positive. Althaigh the scenes looks similar,
the images show two di erent locations. On the right picture a true positive is shown, but one feature
descriptor was matched incorrectly.

of the loop closing application.

The results for at least 2 matched feature descriptors are ngorted in Table 4.2. Since the
number of required matched features is reduced, the threshHds for the distance are reduced
also in order to avoid false positives. In general the charderistic of the numbers for the tested
distances are similar. As the ratios between the true positres and false positives suggest the
best performance is achieved for the two smallest distancedn comparison to the test run that
required 3 matched features there are less features that wermatched incorrectly.
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Chapter 5

Discussion and Open Issues

In this chapter, the evaluation results of Chapter 3 and the perimental results of the previous
Chapter 4 are discussed and conclusions are drawn. The taskd feature detection and feature
description are considered in Section 5.1 and Section 5.2espectively. The application of loop
closing is analyzed in Section 5.3. Aspects that are notewthy for future work are presented in
Section 5.4.

5.1 Feature Detection

In [23] Newman and Ho suggest two criteria for the feature dedction, namely saliency and wide-
baseline stability. In this thesis the Salient-MSER detector ful lls the above criteria. It is tested
in the evaluation framework developed by Mikolajczyk and Sbomid [22].

The results of the evaluation show that the performance of tre Salient-MSER detector is
in general not di erent from the performance of the MSER detector. The reason is that the
combined detection method uses only a subset of MSERs. The bget consists of the regions
that are salient and wide-baseline stable. So MSERSs that ar@ot salient are not considered for
further processing. As the results show, the additional crieria of saliency neither improve nor
worsen the performance of the MSER detector signi cantly. For the matching test, the results
for Salient-MSER detector are only slightly better than for the MSER detector.

This leads to the question whether the performance of a detdor can simply be improved
by building the intersection between its detected regions ad the regions detected by another
feature detector. Since most feature detectors are compleamtary, a concurrent operation clearly
make sense. The question is how the various qualities of eadbature detector can be deployed
in order to build a robust method. Instead of taking the inter section of the detected regions of
two or more feature detectors, optimizing each detector's nethod and unifying the results is an
alternative approach. In this way the strengths of each detetor are preserved. For example,
a detector that has a good performance for increasing blur orstructured scenes like the EBR
detector can be combined with the Salient region detector ttat shows good results for increasing
blur on textured scenes.

How to determine and enhance the performance of a combinedd&ure detection method is an
interesting question, but beyond the scope of this thesis. dre it is shown that the combination
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of the two criteria, saliency and wide-baseline stability,does not lead to a signi cant performance
improvement.

5.2 Feature Description

SIFT descriptors are used in [23] to encode the detected feate regions and store them in a
database. Despite the SIFT description method other approahes are tested on the regions
detected by the Salient-MSER detector in the publicly available evaluation framework [22].

The descriptor evaluation shows a similar performance for kitested descriptors. Nonetheless
a ranking between the description methods is observable. TdSIFT description method performs
best on nearly all tested scenes. A similar result was obtaied in the performance evaluation
on various descriptors by Mikolajczyk and Schmid [22]. So usg SIFT descriptors is a sensible
choice for the feature description.

In addition to the good performance, SIFT descriptors have he desired properties that they
are encoded in a compact way and that they are highly distincive. These aspects make them
very attractive and popular in recent work [30].

5.3 Loop Closing

The loop closing is implemented as it is described in Sectior2.4. In general the performance
of the application in the experiments was good. In the followng some general considerations
about the application of loop closing are stated.

Loop closing that only relies on temporal information as it is proposed by Newman and
Ho [23] is di erent from other methods that use information about the robot position to gure
out when closing a loop is a possibility. At rst glance, it seems attractive to use information
about the position of the robot because it is often availablefor no extra cost, since it is used for
robot localization, it does not have to be acquired in an expasive manner. Obviously this is not
true for approaches that use, for example, a hand-held videoamera like it is used in [2,24,25,27],
but that is not the point here. The point is rather that method s that use the estimated robot
position have to deal with errors made at earlier stages in tle process of map building. These
errors do not have to be large. Many small errors can sum up torme gross error. If a robot does
not take the possibility of loop closing into account becaus of its wrongly estimated position,
it is likely that it maps a previously visited area incorrectly, because no loop is detected. So,
the idea of the exclusive usage of temporal information tris to overcome the potential problem
of a self-made error by a wrong position estimation.

The problem in the example above is that there is a potential bop but it is not detected.
The other problematic scenario is that the robot is at a positon in the environment where it
has not been before, but nevertheless the robot generates adp hypothesis. One reason for
this is recurring structures in the environment. For example, in an o ce environment doors
in a hallway often look the same. Taking a detected loop for ganted possibly results in an
incorrect map. To deal with this kind of problem, a veri cati on of the loop hypothesis with
additional information is an alternative. Geometrical inf ormation from a laser range scanner is
used additionally to support a generated loop hypothesis in5].

Visual Features to Help Close the Loop in 6D-SLAM
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To recapitulate, there are two problematical cases in the aplication of loop closing: a loop
is detected where there is no loop and no loop is detected altugh the robot is at a position
where is has been before (false positives and false negatye In their work [23] Newman and
Ho tackle the problem of the the second case. Ignoring the imrmation about the robot position
reduces the chance of making a wrong decision based on erraus map data. The other case
is no less important. As the results of the experiments from he previous chapter suggest, the
number of false positives is reducible by adjusting the thrsholds for the matching process.

5.4 Open Issues

There are several issues that can be addressed in future wodh loop closing. First, the threshold
setting in the experiments was done by hand. This is an awkwat task, a solution to this problem
are thresholds that can be learned automatically from procesed data. Second, the search over
the feature descriptors is linear. E cient algorithms and d ata structures can be used to decrease
the complexity. Third, the computation time of the scale-saliency algorithm can be reduced by
analyzing the in uence of the scale on the task of loop closig. Finally, the implementation of
loop closing proposed here is based on single visual featgrenly. It is possible to incorporate
other methods such as object recognition to achieve a more bust performance.
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