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Zusammenfassung
Es besteht ein großer Bedarf an der Erforschung des Mondes und anderer Planeten, auf denen

Roboter mit widrigen Bedingungen konfrontiert sind, z.B. mit unwegsamem und unebenem
Gelände, was eine große Belastung für das Fortbewegungssystem darstellt. Ein kugelförmiger
TLDR-Roboter, der eine VPIP zur Steuerung verwendet, ist ideal geeignet, um diese rauen
Bedingungen zu überstehen. In dieser Arbeit werden mehrere Steuerungen und Regelungen
für die VPIP untersucht, um eine gleichmäßige lineare Bewegung zu erzeugen. Dazu werden
eine Steuerung, mehrere PID-Regler und ein LQR implementiert. Alle diese Strategien werden
simuliert. Die Steuerung zur Charakterisierung des Systems, die Regler zur Charakterisierung
ihrer Reaktion auf eine Änderung der gewünschten Rotationsgeschwindigkeit des Roboters und
ihrer Fähigkeit, diese auf verschiedenen Werten konstant zu halten. Erfolgreiche Tests mit einem
PI-Regler validieren diesen Regelansatz und die Verwendung einer VPIP zur Steuerung eines
TLDR-Roboters.



Abstract
There is a large need to explore and study the moon and other planets, where robots face

adversary conditions, a.o. rough and uneven terrain, which puts a large strain on the locomotion
system. A spherical TLDR robot using a VPIP for control is ideally suited to weather these
harsh conditions. This thesis examines multiple control strategies for the VPIP to create uniform
linear motion. This is done by implementing an open-loop control strategy, as well as multiple
PID controllers and a LQR. All of these are simulated. The open-loop controller to characterize
the system, the closed-loop controllers to characterize their response to a change in the desired
rotational speed of the robot and their ability to hold it at various constant values. Successful
tests using a PI controller validate this control approach and using a VPIP to control a TLDR
robot.
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Chapter 1

Introduction

Lunar lava caves, also called tubes, are structures found underneath the lunar surface. They
typically have skylights, an opening to the surface, which grants access to the underground tube
system. In comparison to the lunar surface relatively little is known about these underground
tubes, which makes them a great place to further study lunar geology[7]. Similar lava tubes are
also found on earth, where they form by fluid basalt flows, the same is believed to happen on the
moon. The lunar lava tubes in the Marius Hills region share very similar geomorphic aspects to
the ones on earth, excluding size, which is explained by the smaller lunar gravity[8]. This makes
them a great place to start studying these structures and comparing them to earth. Besides
the potential scientific benefit of studying these structures, they can also be used to create an
advanced underground lunar base. Though further research of the tubes is necessary to use them
for a permanent lunar outpost[3]. In 2019 the European Space Agency (ESA) became aware
of this potential for exploration of lunar caves. Therefore they put out a Call for Ideas as part
of there Open Space Innovation Platform (OSIP) program [6] to detect, map and explore lunar
caves [7]. One of the ideas, that were further studied, as part of the SysNova initiative [5], was
the Descent And Exploration in Deep Autonomy of Lava Underground Structures (DAEDALUS)
project [4, 10]. The DAEDALUS project put forward a mission concept to examine the entrance
and initial parts of an underground lunar lava tube. The mission uses a spherical robot with
various sensors, such as cameras and Light Detection and Ranging (LiDAR) scanners. A crane
lowers the robot down, through a skylight into the cave system. The spherical shape of the
robot is ideal for the decent, during which it can freely spin. In doing so, the robot is able
to scan its surroundings with its LiDAR scanners, to create a 3D map of the entrance. Once
on the ground of the entrance the robot is untethered and able move around in the cave. The
spherical shape is also ideal for this task, as it protects the sensors within a shell, and can easily
traverse the rough and uneven terrain of lunar caves. For locomotion within the cave the robot
uses a pendulum. By shifting the mass of the pendulum forward, the center of gravity shifts
forward and therefore the sphere begins to roll forward. Using the same logic the sphere can
move in all directions, including side to side. Even though this pendulum driven locomotion
approach works well on relatively easy terrain, there are many obstacles, that can’t be traversed.
Especially those with a certain height, for which to pass the robot has to lift itself up. Based
on the DAEDALUS mission concept a Telescopic Linear Driven Rotation (TLDR) robot was
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2 Chapter 1. Introduction

developed. This robot uses a novel locomotion approach, but keeps the spherical shape [12].
Instead of a pendulum the TLDR robot uses telescoping rods, to push itself forward and away
from obstacles. In doing so it is better suited for the uneven terrain, as it is able cross more
obstacles, by e.g. pushing itself upwards. This is described in detail in Chapter 2.1. Due to the
new idea of multiple rods pushing the robot, it is not obvious how far to extend the individual
rods. There are different strategies on how solve this problem. One possibility to solve it, is the
Virtual Pose Instruction Plane (VPIP), which calculates the desired length of each rod based on
a geometric representation. This is further discussed in Chapter 2.2. This thesis will design and
examine multiple control strategies for the VPIP to create a linear forward motion of a spherical
TLDR robot.

Different Virtual Pose Instruction Plane control strategies for uniform
linear motion on Telescopic Linear Driven Rotation Robots



Chapter 2

Background

In this chapter we take a closer look at the TLDR robot, how to get it moving, get it balanced,
and how to combine these using the VPIP.

2.1 Telescopic Linear Driven Rotation Robot
The TLDR robot consists of a inner part including all relevant systems, including the rods, and
an outer spherical shell, that is attached to the inner part and has holes at the relevant spots to
let the rods extend to the outside of the robot shell. Figure 2.1 shows a rendering of a TLDR
robot, that is used in the DAEDALUS mission. Besides the shell being the support point for the
robot on the ground and protecting the inside from damage, it has no practical function. On
either side of the center there are discs, offset to the sides, on which the rods are mounted. In
the center, between the two discs, there should be a mechanical connection, otherwise the outer
shell would have to hold the discs in place. The exact type and form of the center connection is
irrelevant and can be designed to fit the needs of any payload.

2.1.1 Movement

We will first only look at a simple movement, where the rotation of the robot is enough to move
it forward. Special cases, like those, where the entire robot has to push itself upwards, to pass
an obstacle, will first be ignored. We can also treat the rods on opposite sides exactly the same,
as we are currently only interested in forward / backward motion and not in curves. Also we are
only interested in movement due to rotation and not the robot falling over, jumping or pushing
itself away from somewhere. This leaves us with two options to initiate the rotation of the robot.
The first is pushing the rods into the ground and thus creating torque. If the robot is supposed
to move in one direction (from now on forward), the rods on the back have to extend, to push
into the ground. This is illustrated in Figure 2.2. Obviously the angle, of the rods, that extend,
between the bottom of the sphere an the rod (from now on ζ) has to be greater than 0 rad. If it
were 0 rad it only pushes the robot upward and doesn’t create any rotational speed. Similarly
ζ has to be less than 0.5π rad, otherwise the extending rod never touches the ground, or if ζ
is greater than 1.5π rad, the rod pushes against the desired rotation. But as the rods have a
maximum extended length, there is also a maximum ζ < 0.5π rad, until which the rods extend.

3



4 Chapter 2. Background

Figure 2.1: Visualization of a TLDR robot. [12]

This is why in the last state in Figure 2.2 the rod, that was the first to extend, is retracted, even
though its ζ is smaller than 0.5π rad. For any other values of ζ (including between 0.5π rad and
2π rad) the rods contract.
The second option to initiate a rotation of the robot, is by leverage, shown in Figure 2.3. For
this we will extend the rods if ζ is greater than π rad. Therefore their mass moves forward and
outward, so they create a torque due to their increased leverage. This leads to an increase in
forward rotational speed. As soon as ζ is greater than 1.5π rad the rods contract, to prevent
hitting the ground and therefore inadvertently reducing the rotational speed. This is the reason,
why the rod, that was extended in the first state in Figure 2.3 isn’t anymore in the second state.
This covers most of the movement needs, although there some scenarios, for which this simple
kind of movement isn’t enough. These are either obstacles to tall to just roll up, or slopes and

Figure 2.2: A sketch of a TLDR robot extending rods at the back pushing into the ground, thus
initiating a rotation and movement to the front.

Different Virtual Pose Instruction Plane control strategies for uniform
linear motion on Telescopic Linear Driven Rotation Robots



2.1. Telescopic Linear Driven Rotation Robot 5

Figure 2.3: A sketch of the TLDR robot extending rods in the front, thus initiating rotation and
movement to the front.

ridges so steep they need active braking. In case of downward slopes active braking is needed.
This is achieved by initiating a backward rotation. As long as this is actively controlled, this
will manage the increase of rotational speed due to gravity and not let the robot roll back uphill.
More difficult to control are ridges, both up and down. In the case of an upward ridge i.e. a
larger rock or plate, the robot has to lift itself upward. For this the robot rolls against the
ridge (Figure 2.4, Phase 1) and a rod, or multiple, with ζ greater than 0 rad, but small enough
to still easily reach the ground, extend into the ground. This pushes the robot up the ridge,
leaning against it the entire time, another reason a spherical robot is an ideal choice (Figure 2.4,
Phase 2). For any ζ smaller than 0 rad, the corresponding rod pushes the robot up, but away
from the ridge, which leads to it falling over. Therefore only rods with ζ greater than 0 rad are
used. Similarly we can lower the robot, by contracting one rod, or multiple, while the robot
leans against the ridge. Before rolling over the edge, any rod, which has a ζ smaller than 0 rad,
when the robot is completely over the edge, but still large enough so it reaches the ground,
extends to support the robot (Figure 2.5, Phase 1). Then the robot rolls over the edge, but not
so far, that it falls over the supporting rods. Then the supporting rods get contracted, to lower
the robot down (Figure 2.5, Phase 2).

2.1.2 Balancing

Other than in the case of a pendulum driven robot, as planed for the DAEDALUS mission
(Chapter 1), the TLDR robot can not move side to side. To create a curved motion, the robot
therefore has to lean into the curve. The same is also true for balancing the robot just in reverse.
Therefore these problems can be viewed as the same. To balance the robot evenly, the rods op-
posite of each other, have to extend to different lengths. This only effects the rods, that are
currently pushing into the ground. The ones on the lower side have to extend further, and the
ones on the higher side have to extend less. This won’t affect the forward / backward movement
of the robot, but will just balance it. To drive in a curve, instead of perfectly balancing the
robot, it has to tilt in the desired direction. Therefore the length of opposite rods have to adjust
accordingly.

Different Virtual Pose Instruction Plane control strategies for uniform
linear motion on Telescopic Linear Driven Rotation Robots



6 Chapter 2. Background

Figure 2.4: A TLDR robot pushing itself up a ridge, and using both pushing and leverage to keep
moving at the top of the ridge.

Even though we now have a general strategy for how to balance and move the robot, we still
don’t know how far exactly the individual rods have to extend. Hard coding necessary exten-
sions for different ζ for all the different movement possibilities and balancing cases is not only
very complicated, but also leaves no opportunities to properly control the robot. One option,
to combine movement and balancing and make the system controllable, is the VPIP.

2.2 Virtual Pose Instruction Plane

Now we will take a look at the VPIP, which combines the movement and balancing of the robot.
Here we will only look at a flat ground, as the VPIP doesn’t provide a solution for the special
movement cases, but only the ones, where pushing into the ground or extending rods for leverage
is enough to initiate rotation.
Let the y-axis be the direction in which the robot is moving forwards, the z-axis perpendicular
to the ground going through support point of the robot, and the x-axis completes a right handed
coordinate system. The virtual plane, that describes the VPIP, is fixed at the support point of
the robot on the ground. Now we describe the plane only using two angles: θV P IP , the pitch
measured around the x-axis, and ϕV P IP , the roll measured around the y-axis. This is illustrated
in Figure 2.6. Each of the rods now extends to the exact point, where they touch the VPIP, as
shown in Figure 2.7. In Figure 2.6 we have a positive θV P IP and ϕV P IP . Therefore the rods at
the back right side of the robot extend through the ground and the rods at the front left side
retract to be above the ground. Thus the robot starts rolling to the front left. The exact length
of the rods on the front right and back left depend on the the exact angles, that are chosen
for θV P IP and ϕV P IP , and no general statement about these rods is possible. Using the VPIP

Different Virtual Pose Instruction Plane control strategies for uniform
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2.2. Virtual Pose Instruction Plane 7

Figure 2.5: A TLDR robot lowering itself down a ridge.

we have created a controllable system. We can control the rotational speed of the robot just
by changing θV P IP . If we desire a greater rotational speed, θV P IP is increased, so that rods in
front of the robot extend, without touching the ground, in doing so creating torque by leverage
without braking. The rods in the back extend further, thus creating torque by pushing into the
ground. Therefore we are able to control the rotational speed of the robot, by changing θV P IP .
Similarly we can control the balancing, by changing ϕV P IP . As soon as the robot tilts to the
right, the VPIP also tilts to the right, thus the rods on the right extend further forcing the robot
back upright. In an ideal case a θV P IP of 0circ has no influence on the rotational speed of the
robot at all. All the rods extend to the exact position where they touch the ground, but not any
further. Thus no torque is created, only stabilizing the robot. Any existing rotational speed is
conserved.

Different Virtual Pose Instruction Plane control strategies for uniform
linear motion on Telescopic Linear Driven Rotation Robots



8 Chapter 2. Background

Figure 2.6: The VPIP (blue) is tilted by θV P IP and ϕV P IP , away from the ground (grey), thus moving
the robot (red) into the direction of v. [12]

Figure 2.7: The rods of the robot extend to the point, where they touch the VPIP (blue).

Different Virtual Pose Instruction Plane control strategies for uniform
linear motion on Telescopic Linear Driven Rotation Robots



Chapter 3

Theoretical Background

3.1 Virtual Pose Instruction Plane
Here we take a closer look at the mathematics behind the VPIP, which leads to a formula, with
which we calculate the necessary length for each of the rods. Setting the support point of the
robot to (0, 0, 0) we derive

ΠV P IP = {(x, y, z) | tan (ϕV P IP ) · x + tan (θV P IP ) · y + z = 0}, (3.1)

which describes the the VPIP only using θV P IP and ϕV P IP . To calculate the length for each
of the rods, we need a mathematical representation for each rod, illustrated in Figure 3.1. We
define the point pm at the center of the side disc, and pt as the tip of the fully contracted rod,
which we assume to be at the edge of the side disc. With ϕr the roll angle of the sphere, ds

m the
distance between the center of the sphere and the side disc, rm the radius of the sphere and rs

the radius of the side disc, we derive pm to be

pm =


cos (ϕr) · ds

m

0
rm − sin (ϕr) · ds

m

 . (3.2)

Figure 3.1: Sketch of a rod for calculating l. The blue points represent pm and pt. [12]

9



10 Chapter 3. Theoretical Background

Let dmt be the vector from pm to pt, then we derive pt to be

pt = pm + dmt = pm +


− cos (ζ) · rs · sin (ϕr)

− sin (ζ) · rs

− cos (ζ) · rs · cos (ϕr)

 . (3.3)

As we have a sphere ds
m is constant.

ds
m = sin

(
arccos

(
rs

rm

))
· rm (3.4)

Until now we have only looked at the right side disc in direction of the y-axis, but with the
addition of a side factor sf , which is +1 for the right side and −1 for the left, we derive a
general pm as

pm =


sf · cos (ϕr) · ds

m

0
rm − sf · sin (ϕr) · ds

m

 . (3.5)

From this we calculate the line Lr(ζ, ϕr, sf ), that represents a specific rod, which goes through
pm in direction of dmt.

Lr(ζ, ϕr, sf ) =




x

y

z

 |


x

y

z

 = pm + λ · dmt | λ ∈ R

 (3.6)

λ represents how far the individual rods extend, 0 representing to pm, which is not physically
possible, 1 to pt, which is the minimum. By normalizing dmt, where ||dmt|| is equal to rs, as it
is the vector from pm, the inside of the side disc, to pt, on the edge of the disc, and replacing λ
with rs + l, we derive Lr(ζ, ϕr, sf ) to be

Lr(ζ, ϕr, sf ) =




x

y

z

 |


x

y

z

 = pm + (rs + l) · dmt

||dmt||
| l ∈ R


=




x

y

z

 |


x

y

z

 =


sf · cos (ϕr) · ds

m

0
rm − sf · sin (ϕr) · ds

m

+ (rs + l) ·


− cos (ζ) · sin (ϕr)

− sin (ζ)
− cos (ζ) · cos (ϕr)

 | l ∈ R

 , (3.7)

with l the length of each individual rod. As the rods extend to the intersection of Lr(ζ, ϕr, sf )
and ΠV P IP , we set the components of Equation 3.7 into Equation 3.1, to calculate l.

ΠV P IP = Lr(ζ, ϕr, sf )
⇔ tan (ϕV P IP ) · Lr(ζ, ϕr, sf )x + tan (θV P IP ) · Lr(ζ, ϕr, sf )y + Lr(ζ, ϕr, sf )z = 0

⇔ l = tan (ϕV P IP ) · sf · cos (ϕr) · ds
m + rm − sf · sin (ϕr) · ds

m

tan (ϕV P IP ) · cos (ζ) · sin (ϕr) + tan (θV P IP ) · sin (ζ) + cos (ζ) · cos (ϕr) − rs (3.8)
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Figure 3.2: Schematic overview of an open- vs. closed-loop control system.

This calculation is done for all of the rods, giving us the length l for each one of them. This still
leaves the possibility for a negative l, in which case the rod fully retracts, and a l larger than
the maximum length of a rod lmax, which just means a full extension of the rod.

3.2 Open-loop vs. Closed-loop controller

In control theory we differentiate between open- and closed-loop control. The difference is
whether the control system uses feedback (closed-loop) or not (open-loop). An open-loop con-
troller, as depicted in Figure 3.2a, uses a reference input as the input for a controller, that passes
a system input on to the dynamic system. This then results in a system output. Crucially the
controller works completely independent from the system output, so there is no possibility to
react to potential disturbances or unexpected system behaviour. It is not even possible to detect
any of these disturbances. Also there is no way to know the initial state of the system, so this
control system can only be used, in very simple cases, where we understand the dynamic system
precisely, and the initial state is irrelevant. The only sensible controllers are a timer, which just
lets the system run for a certain amount of time, or a look up table, which associates a system
input with a specific desired output.
In the closed-loop case (Figure 3.2b) we use a sensor, that measures the system output. This then
gets compared to the reference input, so that the controller no longer uses the reference input
directly as an input, but an error, describing how far off the desired result we are. Therefore we
detect and incorporate the output of the dynamic system into the controller. The output of the
controller is passed to the dynamic system, same as in the open-loop case. For the closed-loop
control system there are many different controllers, that all share the same goal of minimizing
the control error. Following are descriptions of a few.
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Figure 3.3: Schematic overview of a PID controller

3.3 PID controller
One of the most common controllers is a Proportional-Integral-Derivative (PID) controller. As
with all controllers for closed-loop control systems, it takes a control error as an input, and
calculates a system input from the error. The PID controller does this by adding three different
parts together, as shown in Figure 3.3. The first is the proportional (P) part, defined by the kp

gain. It simplify multiplies the error by kp. The second is the integral (I) part, defined by the
ki gain. For this we integrate the error over time and then multiply it by ki. As an integration
is not realizable in an actual implementation, we take the sum over all the error values and
multiply that by the time in between two successive control cycles. This therefore represents
the integration, after which we multiply the error sum by ki. The third is the derivative (D)
part, defined by the kd gain. Similar to the I part, we first process the error and then multiply
it by kd. In this case we take the derivative of the error, before multiplying by kd. As with
the integration also a differentiation is not possible in a real implementation of the controller.
Instead we take the difference of the latest and second to last error value and divide that by the
time in between two successive control cycles. This then forms the differentiation, after which
we multiply it by kd. This gives us the final equation for a PID controller.

u(t) = kp · e(t) + ki ·
∫ t

0
e(τ) dτ + kd · d

dt
e(t) (3.9)

The three different parts of the PID controller make it possible to react in different ways to a
changing control error. While the P part is responsible to get rid of the significant part of the
error, the I part is able to neutralize error, that remains over a longer period of time, effectively
looking into the past. The D part works against large changes in the error, preventing a large
overshoot, once the desired value is reached, effectively looking into the future. The necessity
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for and sizing of each of the parts depends on the dynamic system. By setting the different
gains we tune the PID controller to the different systems, and to our preferred system response.
If we leave out one or two of the gains (set them to 0), it is no longer considered a PID, but P,
PI, PD or I controller. Depending on the system this may be preferable to create the desired
system response.
One prominent problem with the integral part is integral windup. If we change the reference
input of the system by a large amount at once, the resulting error is fairly large. During the
time it takes the system to respond the integral winds up to a to high value, that leads to a
large overshoot. In this case the I part no longer responds to a persisting steady state error, but
to the large system response itself. This is not the desired effect of the I part, therefore there
are multiple ways to reduce this behaviour. A simple solution is to limit the magnitude of the
integral to a certain maximum value. If chosen correctly, this means, that the integral ignores
most of the major change in the system response following a rapid major change in the reference
input, and instead only focuses on a persisting steady state error. In a real implementation, in
which the integral is replaced by a sum, we achieve this by capping the magnitude of the sum
to certain value. [1]

3.4 LQR
The Linear-Quadratic Regulator (LQR) is a optimal state controller. To use a LQR we therefore
must first define a linear state space system model. This is a method to describe a linear system,
using a state x and a formula to calculate ẋ.

ẋ = A · x + B · u, (3.10)

where A is the system matrix, B the input matrix, and u the input signal. The aim of the LQR
is to lead x towards 0. Now we set up a cost function

J =
∫ ∞

0
x(t)⊤Qx(t) + u(t)⊤Ru(t) dt, (3.11)

that describes how costly a specific system response is. In this function Q ⪰ 0 describes the
cost associated with x not being 0, and R ≻ 0 describes the cost associated with a large u.
In particular the diagonal entries qi,i describe the cost associates with xi not being 0, and ri,i

describe the cost associates with ui. Therefore xi converges towards 0 faster, if qi,i is increased,
and an increase in ri,i reduces the maximum ui used in the response. There is no general way to
describe what effect the values qi,j and ri,j with i ̸= j have, so they are typically set to 0. This
also ensures Q ⪰ 0 and R ≻ 0, as long as qi,i ≥ 0 and ri,i > 0. Minimizing the cost function J
you can show, that the following is true for u: [11]

u = −Kx , with (3.12)
K = R−1B⊤P, (3.13)

where P is the only positive-definite solution to the algebraic Riccati equation

PA + A⊤P − PBR−1B⊤P + Q = 0. (3.14)
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14 Chapter 3. Theoretical Background

As long as we know the system described by Equation 5.3, and have set Q and R, we calculate
K using Equation 3.14 and 3.13 once at the beginning. Then the controller calculates the system
input using Equation 3.12 once per control cycle.
To find the solution for K we must first calculate P by solving Equation 3.14. As this Equation
is quadratic in P, the solution is non trivial. But if and only if the underlying system described
by A and B is stabilizable, there is exactly one positive-definite solution for P, which we then
use to calculate K. For the system to be stabilizable, it has to be either controllable or the real
part of all Eigenvalues of A have to be negative.
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Chapter 4

Controlling of the VPIP

This thesis focuses on the controlling of the rotational speed ω of the robot, using θV P IP . So
we don’t consider ϕV P IP , which is always set to 0◦, or the orientation of the robot. Further
research has to be done in controlling the orientation using ϕV P IP .
In this chapter we setup multiple theories on control strategies for the pitch of the VPIP θV P IP .
We run multiple experiments in Chapter 5, that are designed to verify or contradict the theories,
described in the following.

(1) Any control system, that is used, works in the same way, both in the forward and back-
ward direction. This also means braking is simply a backward acceleration, so no special
considerations have to be given to braking or backward movement, as any control strategy
can work with negative θV P IP and error values, to achieve these types of movement.

(2) As described in Section 2.2 a θV P IP of 0◦ theoretically has no influence on the movement
of the robot. Similarly a θV P IP of 90◦ leads to no rods extending at all, which also has no
influence on the movement of the robot. Therefore there has to be maximum useful angle
for θV P IP somewhere between 0◦ and 90◦, where the impact on the rotation of the robot
is the largest. Increasing θV P IP further than that leads to a smaller impact.

(3) Analogous to (2) there is also a minimum angle for θV P IP , before it has any impact on the
robot at all. Even though theoretically a θV P IP of 0◦ has no impact on the movement, the
robot actually slows down, so a continuous θV P IP > 0◦ is necessary to achieve a constant
positive rotational velocity, which means there is no impact on the robot. An even larger
angle is necessary to accelerate.

(4) We theorize, that the system response for a specific θV P IP is characterized by a certain
final value for ω, but more significantly also by a certain acceleration ω̇. This means even
though an open-loop controller is able to achieve a specific desired rotational speed ωdes,
a closed-loop controller with feedback, does so much faster, using more aggressive θV P IP .

(5) We assume, that the robot has very high friction, so the natural damping of the system
is high. Therefore, if a PID controller is used, no D gain is necessary. So a PI controller
achieves similarly good results.

15



16 Chapter 4. Controlling of the VPIP

(6) Based on the high natural damping of the system theorized in (5) and the necessary
θV P IP > 0 in (3), we assume, that when using a PID controller the I gain is necessary, to
get rid of an otherwise persisting steady-state error.
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Chapter 5

Experiments

To validate the different theories presented in Chapter 4 we run multiple experiments, using
both open-loop and closed-loop control systems with varying controllers. As the TLDR robot is
a theoretical concept, that needs further research, there is no actual functioning TLDR robot,
on which the experiments are run. Instead a simulation is used. The simulation used was first
created and setup in [9]. It uses a combination of the Gazebo simulator and Robot Operating
System (ROS) to simulate a TLDR robot, with a rm of 23.2 cm, rs of 7.0 cm and lmax of 37.8 cm.
The simulation implements multiple locomotion approaches, including the VPIP, and supports
different terrains. In all of the following experiments we only use the VPIP based locomotion
on a flat ground. Also all test runs start the exact same way: the robot starts with 0 rad/s
rotational velocity, from where the different control strategies take over.
As seen in Figure 5.1a the open-loop control system is very simple, using θV P IP as a reference
input, feeding it directly into the dynamic system, in this case a TLDR robot using the VPIP
locomotion approach. This allows us to characterize both the acceleration and final achieved
rotational velocity for different VPIP angles. Some of these results (Section 6.1) are used to set
up controllers for the closed-loop control approach.
Figure 5.1b shows the used closed-loop control system, for which we use varying controllers. We
set a desired rotational speed ωdes as a reference input, from which the actual rotational speed
ω is subtracted, to give us the control error e. This is the input for the controller, that is being
tested, which gives us a θV P IP as an output. Same as in the open-loop case, this is passed to
the simulation, from which we track the output ω, to validate the controllers.

5.1 Open-loop controller

The first test case we run is the open-loop control system. In total we run nine test runs with
varying θV P IP angles. All of the tests runs start at standstill and are simulated until a final
ω is reached. We run these tests to give us a first general understanding, of the effects of
the VPIP on the rotational speed of the robot. We therefore test a wide spread of positive
angles: 10◦, 15◦, 20◦, 30◦, 40◦, 50◦ and 60◦. To characterize the backwards movement we also
choose some negative angles, that are then compared to the result of the corresponding positive
angle: −30◦ and − 15◦.

17
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θV P IP ωVPIP +
TLDR robot

(a) open-loop

e θV P IP ωωdes controller
VPIP +
TLDR robot

(b) closed-loop

Figure 5.1: Schematic overview of the open- and closed-loop control systems used for our experiments.
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Figure 5.2: The resulting rotational speed ω of the TLDR robot for varying input angles θV P IP .
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θV P IP initial acceleration [rad/s2] final ω [rad/s]
−30◦ −0.19244 −3.4348
−15◦ −0.10044 −1.3958
10◦ −0.00020271 0.011113
15◦ 0.079745 1.3707
20◦ 0.13893 2.3794
30◦ 0.16257 3.5476
40◦ 0.18522 3.1273
50◦ 0.16448 2.8708
60◦ 0.14259 2.7045

Table 5.1: The initial acceleration (average over the first 10 s), and the final value (average over the
last 5 s) of the open-loop responses, depending on their θV P IP .

θV P IP [◦] ω [rad/s] θrobot [◦] ϕrobot [◦]
40 ±0.1 ±2 ±15
50 ±0.2 ±3 ±20
60 ±0.3 ±5 ±25

Table 5.2: Magnitude of oscillations in ω, θrobot and ϕrobot for varying high θV P IP . This is also shown
in Figure 6.3.

Figure 5.2 shows the response of the TLDR robot for varying θV P IP . The first two seconds of
the trajectory are the same for each of the different angles. Only after that point do the tra-
jectories differ from one another. For an input angle θV P IP of 10◦ we see an oscillation around
0 rad/s. The final value for ω is 0 rad/s, so the robot moves neither significantly forward nor
backwards, but only sways back and forward. Table 5.1 shows the initial acceleration and the
final value for ω of the different open-loop responses. The initial acceleration is given by the
average acceleration over the first 10 s of the test run, and the final value is the average value
over the last 5 s. Both in the response to 15◦ and −15◦ we notice a smaller and faster oscillation,
compared to the oscillation of the response to 10◦. For higher θV P IP (40◦, 50◦ and 60◦) we also
observe an oscillation, as soon as the final value for ω is reached. The larger θV P IP is, the larger
the oscillation gets. We show this in Table 5.2.

5.2 PID controller

The first closed-loop controller we test is the PID controller. We use a standard PID controller
set up in Section 3.3, that runs at a frequency of 100 Hz, with varying kp, ki and kd gains. The
only small adjustment we make is to limit θV P IP to ±50◦, as explained in Section 6.1. We start
by only using a kp gain, so a P controller, before adding in a ki and kd gain. All of the tests
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Figure 5.3: The response of ω to the test runs (a) using a P controller with varying kp gains.

will use one of two test runs. The test runs start with the robot at standstill, from where it is
supposed to accelerate to a rotational speed of 1 rad/s (ωdes is set to 1). After 30 s we either
change ωdes to −1 (test run (a)) or to 0 (test run (b)). Test run (a) tests both the ability of the
robot to brake, which we didn’t test using the open-loop control structure, and the ability to
move backwards with a specific target for ω and not just moving backwards in general. With test
run (b) we also characterize the ability of the controller to control the robot at low rotational
speeds.

5.2.1 P tuning

The first test runs use a simple P controller limiting θV P IP to ±50◦. We run the test for a kp of
40, 60 and 80.
The system response to test run (a) is depicted in Figure 5.3. We see the characteristic start
pattern (first 1.5 s) described in Section 6.1, before the actual response starts. All of the response
curves share a common course with varying parameters. Table 5.3 lists these parameters. We
notice a small difference in the positive acceleration, which is the average acceleration over the
first 5 s of the response. Then ω settles at a value below 1 rad/s leaving us with a steady-state
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kp positive acceleration [rad/s2] braking [rad/s2] negative acceleration [rad/s2]
40 0.12247 −0.075688 −0.11527
60 0.14257 −0.066200 −0.13580
80 0.15162 −0.054324 −0.15540

kp steady-state error at ωdes = 1 [rad/s] steady-state error at ωdes = −1 [rad/s]
40 0.26390 −0.25275
60 0.17088 −0.15127
80 0.12229 −0.13693

Table 5.3: Acceleration, braking and steady-state error for the responses to the test run (a) using a
P controller with varying kp gains.

kp positive acceleration [rad/s2] braking [rad/s2]
40 0.13061 −0.27897
60 0.14824 −0.094646
80 0.15324 −0.061238

Table 5.4: Acceleration and braking for the responses to the test run (b) using a P controller with
varying kp gains.

error, which is calculated by taking the average steady-state error from second 25 through 30.
After 30 s ωdes is set to −1 rad/s, leading to the robot braking. We consider the braking phase
to last until a ω of 0 rad/s is reached. The average deceleration over this period is also listed
in Table 5.3. The next 5 s determine the negative acceleration, before ω settles at a final value
above ωdes. We gather, that the magnitude of this negative steady-state error is similar to the
corresponding positive one.
The results of test run (b), shown in Figure 5.4 are similar during the first 30 s. Both the initial
acceleration and steady-state error are closely matched (cf. Table 5.3, 5.4 and Figure 5.3). The
braking is much faster for the lower kp gain of 40, but similar for the higher kp gains. We also
notice a large, slowly decaying oscillation. In the extreme case kp = 40 up to ±0.3 rad/s and
over 40 s of decay time.

5.2.2 I tuning

After the tuning of kp is done we go on tuning ki. For these test runs we set kp to 40, as it doesn’t
have a significant impact on acceleration or braking, only on the remaining steady-state error,
that in the PI controller is handled by the I part. In these test runs the integral is implemented
using a sum, that starts at the beginning of the test run and sums up all errors. We test ki

gains of 0.5, 1, 2 and 5. For the I tuning we test only using the test run (a).
Figure 5.5 shows the response of the simulation to the PI controller. The response is very similar
to the to the P controller (cf. Figure 5.3). Both positive and negative acceleration are similar,
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Figure 5.4: The response of ω to the test runs (b) using a P controller with varying kp gains.

with braking again being considerably slower. The difference to the P controller lays in the
steady-state error, shown in Table 5.5, and the large overshoot in the second phse of the tet run.

5.2.3 I tuning with Integral limit

As theoretically explained in Section 3.3 and seen in Figure 5.5 integral windup leads to a
problem, if we have a large jump in ωdes. To mitigate this we implement a maximum value of
5 rad for the integral, in our implementation a sum. Whenever the sum is above or below 5 rad,
it is set to ±5 rad. Now we repeat the test runs (a) from Section 5.2.2, but only for ki gains of
1, 2 and 5. We also test this controller using the same gains with test run (b).
Figure 5.6 shows the course of ω over the test run (a). Again the response is very similar to
Figure 5.5, but this time the control responses also reach a steady-state error close to 0 rad/s
for ωdes = −1 rad/s, and without the large overshoot. This is listed in Table 5.6. The result
for test run (b) is shown in Figure 5.7. The first 30 s show the same behaviour, after which we
see similar behaviour to the P controller response (cf. Figure 5.4). The braking is faster than
in test run (a), leaving us with some oscillations up to ±0.2 rad/s in magnitude, decaying to
under ±0.1 rad/s within 20 s.
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Figure 5.5: The response of ω to the test run (a) using a PI controller with a kp gain of 40 and varying
ki gains.

ki steady-state error at ωdes = 1 [rad/s] steady-state error at ωdes = −1 [rad/s]
0.5 0.16444 0.0070556
1 0.12935 0.24307
2 0.041075 0.0029226
5 −0.026303 1.4051

Table 5.5: The remaining steady-state error in ω for the responses to the test run (a) using a PI controller
with a kp of 40 and varying ki gains.

ki steady-state error at ωdes = 1 [rad/s] steady-state error at ωdes = −1 [rad/s]
1 0.12975 −0.12500
2 0.025124 −0.0042719
5 −0.047355 0.072218

Table 5.6: The remaining steady-state error in ω for the responses to the test run (a) using an integral
limited PI controller with a kp of 40 and varying ki gains.
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Figure 5.6: The response of ω to the test run (a) using a integral limited PI controller with a kp gain
of 40 and varying ki gains.

5.2.4 D tuning

Now that we are done tuning the kp and ki gain, we go on testing a full PID controller by
tuning the kd gain. For this we run through test run (a) using kp = 40, ki = 5 and kd = 20.
As described in Section 3.3 the differentiation of the error can not be calculated. Therefore we
take the difference between the last and second to last error and multiply it with the frequency
of the controller.
The response both for ω and θV P IP is depicted in Figure 5.8. In the course of ω there is virtually
no difference compared to the PI controller with kp = 40 and ki = 5 in Figure 5.6. The difference
is in the large (up to ±15◦) and very fast oscillations of θV P IP .

5.2.5 D tuning with filter

As seen in Figure 5.8 we have to change the implementation of the D part, as it otherwise leads
to large oscillations in θV P IP . Instead of taking the difference between the last and second to
last error value, we use average values. We save both the average error over the last second and
over the second before that. We use the difference between these average values divided by 1 s,
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Figure 5.7: The response of ω to the test run (b) using an integral limited PI controller with a kp gain
of 40 and varying ki gains.

as they lay 1 s apart from one another, to represent the differentiation. We run both test runs
(a) and (b) for kp = 40, ki = 5 and varying kd values of 20, 50 and 100.
Figure 5.9 shows the response of the system to test run (a). Comparing it to the PI controller in
Figure 5.6 we see no significant difference. The acceleration is slightly lower and the oscillations
are slightly larger for the highest kd gain of 100. The result of test run (b) in Figure 5.10 convey
a similar picture. The acceleration and braking are slightly decreased and higher kd values also
have higher oscillations.

5.3 LQR

To set up a LQR we must first set up a linear state space system. As we want to control ω, it
must be a part of the state x. To now set up A and B, we need a formula for ω̇. Assuming
we only want to control relatively low rotational speeds of up to ∼ 1 rad/s, we use the initial
acceleration from Table 5.1 for the positive θV P IP angles. As θV P IP is limited to 50◦ as with all
controllers, we ignore the data point for θV P IP = 60◦. As the system has to be linear we now
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Figure 5.8: Response of ω and θV P IP to test run (a) with a PID controller using kp = 40, ki = 5 and
kd = 20.

approximate ω̇ with

ω̇ ≈ m · θV P IP + s, (5.1)

with m = 0.007 rad/s2/◦ and s = −0.06 rad/s2. These values for m and s don’t represent the
best fit, but put more significance on the data point for θV P IP = 10◦, as it is crucial, that this
point is adhered to (cf. Theory (3)). This gives us the linear state space system with

x =
(

ω

s

)
, A =

(
0 1
0 0

)
, b =

(
m

0

)
and u = θV P IP . (5.2)

Unfortunately this system is not stabilizable, as it isn’t controllable (s can’t change) nor are the
real parts of the Eigenvalues of A negative (both are 0). Therefore we transform the system to:

x′ =
(

ω

s

)
, A′ =

(
0 1
0 0

)
, B′ =

(
m 0
0 1

)
and u′ =

(
θV P IP

s′

)
. (5.3)

We now set up Q and R to be

Q =
(

q 0
0 0

)
and R =

(
r 0
0 ∞

)
. (5.4)
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Figure 5.9: Response of ω to test run (a) using a PID controller with kp = 40, ki = 5 and varying kd

gains.

q22 and r22 are set to 0 and ∞ respectively as s must not change. We substitute Equations 5.3
and 5.4 into the Riccati Equation 3.14, and solve numerically for P′.

P′ =

√ q·r
m2

r
m

r
m ∞

 (5.5)

Using P′ and Equation 3.13 we get numerically

K′ =

√ q
r

1
m

0 0

 . (5.6)

With K = K′
1 we get from Equation 3.12

θV P IP = −K · x = −
√

q

r
· ω − s

m
. (5.7)
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Figure 5.10: Response of ω to test run (b) using a PID controller with kp = 40, ki = 5 and varying kd

gains.

Using the control law from Equation 5.7 ω goes towards 0 rad/s. Instead we want the control
error e to go towards 0 rad/s. As e = ωdes − ω, we replace ω with −e to get

θV P IP = k · e − s

m
, (5.8)

with the gain k =
√

q/r. As we set up the state space model only using the positive values of
θV P IP , Equation 5.8 is only used for positive ωdes. For negative ωdes s has to be multiplied by
−1 and for ωdes = 0 rad/s s has to be 0 rad/s2. This gives us

θV P IP =


k · e − s

m for ωdes > 0 rad/s
k · e for ωdes = 0 rad/s
k · e + s

m for ωdes < 0 rad/s
(5.9)

We test this LQR with the control law described by Equation 5.9 both with test run (a) and
(b) and use k gains of 20, 40 and 60, with the control cycle again running at 100 Hz.
Figures 5.11 and 5.12 show the response of ω to the two test runs. The initial 30 s show almost
the same response, with higher k gains showing faster responses and lower steady-state errors.
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Figure 5.11: Response of ω to test run (a) using a LQR with varying k gains.

The magnitude of the steady-state error at ωdes = −1rad/s in test run (a) is similar to the one
at ωdes = 1rad/s, as shown in Table 5.7. The braking and backwards acceleration are slower
the higher the k gain is. For test run (b) all k gains show similar braking speeds and show a
decreasing oscillation around 0 rad/s.

k steady-state error at ωdes = 1 [rad/s] steady-state error at ωdes = −1 [rad/s]
20 0.15342 −0.10279
40 0.063487 −0.010601
60 0.039298 −0.040483

Table 5.7: The remaining steady-state error in ω for the responses to the test run (a) using a LQR with
varying k gains.
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Figure 5.12: Response of ω to test run (b) using a LQR with varying k gains.
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Chapter 6

Evaluation

In this chapter we take a closer look at the responses to the different experiments done in
Chapter 5. We explain the results, that we observe, and then confirm or contradict the theories
set up in Chapter 4, based on the results. We go through explaining the results of the experiments
in the same order we did them in Chapter 5.

6.1 Open-loop controller

There is one observation we made with all experiments we did. The first 1.5 seconds of the
simulation are always the same (cf. Figure 5.2). This is due to the way the simulation works, in
particular the way the robot is created. When the robot is set into the world, all of the rods are
completely retracted. Even though the necessary length of the rods get calculated immediately
using the VPIP, it takes some time for them to extend and interact with the ground. Due the
layout of the robot, in particular the starting angles ζ of the rods, that are not symmetrical
about the xz-plane, the robot first rotates backward with up to −0.2 rad/s, than forwards with
up to 0.15 rad/s before slowing down again. So at the point in time the rods interact with the
ground and take over responsibility for the locomotion of the robot ω is roughly 0 rad/s, but ω̇ is
negative. This leads to the fact, that initial movement in the negative direction is slightly easier,
and therefore faster, than in the positive direction. This also explains the course of the graph in
Figure 6.1. This graph plots the difference in magnitude of ω between a positive and a negative
θV P IP . This is done for 15◦ and 30◦. We notice, that in the beginning (first 15 s) the negative
ω is larger than the positive. This is also seen in Table 5.1, the negative acceleration is larger
in magnitude compared to the corresponding positive (0.079745 rad/s2 vs. −0.10044 rad/s2

and 0.16257 rad/s2 vs. −0.19244 rad/s2). The magnitude of the final values though are very
similar again (1.3707 rad/s vs. −1.3958 rad/s and 3.5476 rad/s vs. −3.4348 rad/s). They are
within 0.2 rad/s of each other, which we see in Figure 6.1. All of these observations support our
Theory (1), that says that backward acceleration works in the same way as forward. To verify
the statement about braking we use the PID controller (Section 6.2).
For low θV P IP we observed an oscillation in ω. This oscillation is correlated with the pitch of
the robot θrobot, visualized in Figure 6.2 for 10◦, 15◦ and −15◦ θV P IP . We see, that the θrobot

is highly correlated with ω, so if the robot moves forwards, it is also tilted forwards and vice
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Figure 6.1: The difference in magnitude of rotational speed ω between the same positive and negative
θV P IP .

versa (cf. Figure 6.2b and 6.2c). We also notice, that the oscillations in θrobot are shifted slightly
forward compared to the ones in ω. We observe this the best in Figure 6.2a. This explains
especially the oscillations for 10◦ of θV P IP , which are up to ±0.2 rad/s. As soon as the robot
tilts forwards, it also starts to rotate forwards, which is then blocked by the rods, not moving out
of the way, due to the low θV P IP . Then the robot tilts back, letting the robot rotate backwards.
This cycle repeats over and over, resulting in the oscillations in ω seen both in Figure 5.2 and
6.2a. The smaller oscillations for 15◦ and −15◦ of θV P IP (under ±0.1 rad/s) have the same
explanation, but the rotation of the robot is stabilized, by the movement itself, leading to lower
and therefore faster oscillations.
Besides the oscillations at low θV P IP we observe similar oscillations at high θV P IP , that have
the same effect on ω and θrobot, but have a different cause. While the increase in rotational speed
leads to a stabilization of θV P IP and therefore also ω itself, demonstrated by the fact, that there
are virtually no oscillation for a θV P IP of 20◦ or 30◦ and much lower oscillation at 15◦ than at
10◦, there are increasing oscillation for even higher values for θV P IP . The increase in oscillation
is not limited to ω, but also the pitch θrobot and roll ϕrobot of the robot increases. This suggests
a general unstableness of the system at such high θV P IP . We see this both in Figure 6.3 and
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Figure 6.2: The oscillations of ω, once the robot reaches its final speed, at low θV P IP are a result of
the oscillating pitch of the entire robot θrobot.
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Figure 6.3: The oscillations of ω, once the robot reaches its final speed, at high θV P IP are a result of
the oscillating pitch θrobot and roll ϕrobot of the entire robot, due to general unstableness.
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Figure 6.4: A TLDR robot in the simulation with a θV P IP of 60◦. There is only one pair of rods
pushing into the ground, thus creating little torque and offering little support.

Table 5.2. The oscillation of θrobot are again highly correlated, to the ones we see for low θV P IP .
The oscillation in ω are therefore again explained by the ones in θrobot, but the high ω is no
longer sufficient to stabilize them. This is were the oscillations in ϕrobot come into play. Their
frequency is exactly half that the oscillations in ω and θrobot. Whenever the magnitude of ϕrobot

is large – so when the robot is tilted to either side – θrobot is above its average value, although it
again is shifted slightly backwards, due to some reaction time. During the time the robot tilts
to the other side, it is also tilted backwards, relative to its average tilt, which isn’t 0◦, because
the robot always tilts forwards, when moving forwards. So the oscillation in θrobot and therefore
in ω are caused by the oscillations in ϕrobot. This suggests very low stability of the system at
high θV P IP . In Figure 6.4 we see, that only one pair of rods actually touch the ground, due to
the extreme angle of 60◦ for θV P IP . This one pair of rods only provide very little support to
either side, thus allowing the robot to tilt to either side, when also tilting forwards. Only when
the robot tilts over significantly (how much exactly depends on θV P IP , cf. Table 5.2), tilts it
back and then to the other side, thus creating the oscillations in ϕrobot.
From Table 5.1 we gather that a θV P IP of 40◦ has the largest initial acceleration, while 30◦ leads
to the largest final rotational speed. This confirms our Theory (2), that there is a maximum
useful angle for θV P IP . Therefore the output of all closed-loop controllers are limited to a
θV P IP of 50◦. More precisely there are two different maximum useful angles, one ∼ 40◦ for
maximum acceleration and a second one ∼ 30◦ for maximum ω. This effect is also explained by
Figure 6.4, as there is only one pair of rods pushing into the ground, there is also less torque
created, compared to more rods pushing into the ground but with less force. Why the maximum
acceleration angle and the maximum speed angle are different is unclear, but there is also no
reason for them to be the same, as acceleration and top speed are different concerns.
Also from Table 5.1 we gather, that a θV P IP of 10◦ has no effect on the long term speed of
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the robot. We therefore need an angle θV P IP > 10◦ for θV P IP to get the robot moving, thus
confirming part of Theory (3). Whether a θV P IP > 0◦ is also necessary to keep moving is
examined with an closed-loop controller (cf. Section 6.2).
Looking at Table 5.1 at a whole, we see that a certain θV P IP is both associated with a specific
acceleration and a final ω, though the acceleration is more relevant for lower rotational speeds.
Thus a closed-loop controller is able to make use of the different accelerations to reach and then
hold a specific desired rotational speed ωdes. Whether it achieves this faster than an open-loop
controller is discussed in Section 6.2, so Theory (4) is for now only partly confirmed.
Finally looking at Figure 5.2 we notice, that the robot is very inert. It takes multiple seconds
before the robot reacts to any change in θV P IP and it takes over 20 s before the robot hits its
final speed, no matter what θV P IP we choose.

6.2 PID controller

6.2.1 P tuning

Both in Figure 5.3 and Table 5.3 we see, that both acceleration and braking in test run (a)
see only little difference, when changing kp. This is because for the initial acceleration and
deceleration θV P IP is at ±50◦ anyways, no matter what kp is. Therefore the resulting ω̇ doesn’t
change significantly. But we do notice, that braking is considerably slower than accelerating.
This is because, even though they are initiated the same way, by changing θV P IP , the actual
process is somewhat different. During acceleration rods at the back side of the robot extend,
thereby push into the ground, thus creating torque. But during braking the relevant rods are at
the front of the robot retracting, essentially being squished between the robot and the ground,
which also creates torque in the opposite direction. The extending of the rods and thereby
pushing into the ground is more efficient than the compression. Therefore acceleration is faster
than braking. This means, that our Theory (1) is partly correct, as backwards movement works
in the same way as forward movement, but braking is slower than accelerating, but doesn’t need
any special control.
We also notice both in Figure 5.3 and Table 5.3, that there remains a significant steady-state
error, which decreases when increasing kp, but doesn’t vanish. This verifies Theory (6), that
states we need an I part to get rid of the steady-state error. Because an error remains, there also
remains a θV P IP of ∼ 10◦ in all of the test cases, thereby confirming Theory (3), which states,
that an angle θV P IP > 0◦ is not only necessary to start moving but also to keep moving. If 0◦

is enough to keep on moving, there wouldn’t be a steady-state error remaining. The magnitude
of the remaining steady-state error at ωdes = −1 rad/s is the same as the corresponding one at
ωdes = 1 rad/s, therefore once again supporting Theory (1).
The first 30 s of test run (b), shown in Figure 5.4, show the same response, as up that point
test run (a) and (b) are identical. The braking in test run (b) is much faster for the lower
kp gain of 40, seen in Table 5.4. Because the error at the beginning of the braking process
is much lower than in test run (a), θV P IP doesn’t reach −50◦. Though this is only true for
kp = 40. Apparently braking is more efficient, when using a more gradual approach, than an
extreme value of −50◦ for θV P IP . This fast braking leads to a overshoot of 0.3 rad/s, which in
addition to the general unsteadiness of the system at low ω explored in Section 6.1, leads to the
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oscillations. The P controller reduces the oscillations only slowly, as the impact of small changes
on an an already small θV P IP < 10◦ is very limited (cf. Section 6.1). For the larger kp gains the
braking is slower, so the overshoot is smaller, thus the oscillations are smaller and decay faster.

6.2.2 I tuning

The similar acceleration and braking speeds compared to the P controller (Figure 5.5 vs. Fig-
ure 5.3), are explained by the fact, that θV P IP is at ±50◦ no matter whether we use a P or a
PI controller. The positive steady-state error at ωdes = 1 rad/s is much smaller than with the
P controller (Table 5.5 vs. Table 5.3). ki gains of 0.5 and 1 still have a persisting steady-state
error greater than 0.1 rad/s, but ki gains of 2 and 5 get rid of the steady-state error entirely. This
supports both our Theory (6), that an I part is necessary to get rid of the steady-state error,
and Theory (3), as even with no error the integral leads θV P IP to be greater than 0◦, to achieve
constant forward motion. In the steady-state error at ωdes = −1 rad/s and the Figure 5.5 we
see the effect that integral windup has on ω. While the low ki gain of 0.5 and the corresponding
integral windup coincidentally match up perfectly, the other responses are worse. For a ki gain
of 1 there is an overshoot of 25%, that doesn’t get cancelled in a timely manner, due to ki still
being small. At ki = 2 the overshoot increases to 60%, but is cancelled after a further 35 s,
leaving us with no steady-state error. Finally a ki gain of 5, which showed a good result for the
initial step response, leads to a overshoot of more than 150%. This is to large, leaving the robot
in an uncontrollable state. So even though this implementation of the I part shows good results
for the initial step response, we have to adapt it to make it a useful controller. We do this by
implementing a limit to the integral (Section 5.2.3).

6.2.3 I tuning with Integral limit

The first 30 s of the test runs (both (a) and (b)) show the same characteristics as described in
Section 6.2.2. The steady-state error at ωdes = 1 rad/s for ki = 1 is slightly above 0.1 rad/s,
while it is essentially 0 rad/s for the higher ki gains, gathered from Table 5.6. The second half of
the response to test run (a) changes to the better, as seen in Figure 5.6. The limit on the integral
lowers the effect that integral windup has on ω drastically. The magnitude of the remaining
steady-state error at ωdes = −1 rad/s matches the one at ωdes = 1. Only the highest tested ki

gain of 5 still shows an overshoot – now just 20% –, while the other responses show no overshoot
at all. Clearly the integral limit has a large improvement over the PI controller without one.
The impact of the integral limit on test run (b) is much lower. As explained in Section 6.2.1
the braking is slightly slower than in the response to the P controller with a kp gain of 40
(Figure 5.4), due to the integral increasing the overall gain. Therefore the oscillations are also
lower and decay faster but generally remain, due to the unstableness of the system explored in
Section 6.1.

6.2.4 D tuning

The fact that the course of ω in Figure 5.8 has virtually no difference to the one using a
PI controller (cf. Figure 5.6) shows, that this implementation of the D part has no effect on
the robot. This because this implementation of the D part is flawed, which also explains the
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large oscillations in θV P IP . As ω has small but fairly fast oscillations thorough all test runs, the
difference between the last and second to last error, has a large effect on θV P IP . This explains
the large oscillation and why there is no impact on the robot, which due to its high inertness
automatically filters θV P IP and acts as if the fast oscillations aren’t there. To implement a
useful D part we must do the same, which we do in Section 5.2.5.

6.2.5 D tuning with filter

Both Figures 5.9 and 5.10 show a decreased acceleration and braking for higher kd gains com-
pared to the PI controller (Figures 5.6 and 5.7). This is expected, as the kd gain works against a
large change in the control error. Therefore the responses slow down. The increased oscillations
for higher kd especially 100 are caused by the D part. As explained in [1] a to large kd gain,
leads to an increase in oscillations as the system overcorrects due to the high kd gain. This is
what happens, increasing the unavoidable high frequency oscillations originally caused by the
systems instability at low ω. So a high kd gain increases the high frequency oscillations, whereas
a low kd gain, e.g. 20, has no effect on the robot. This confirms our Theory (5), showing that
no D part is necessary to control the robot. We also see this illustrated, if we ignore the high
frequency oscillations by plotting the rolling average over the last two seconds of the response of
ω to a PI controller in Figure 6.5. We notice, that no low frequency oscillations, against which
the D part is effective, exist, supporting Theory (5).

Tuning the PID controller, we saw the best results for a PI controller, with a kp gain of 40
and a ki gain between 2 and 5 depending on whether minimal overshoot or faster response times
are desired. We also saw rise times to 1 rad/s of slightly above 5 s, in line with the accelerations
of ideal θV P IP (40◦), but not achievable using an open-loop controller with the aim of 1 rad/s,
which leads to a θV P IP < 15◦. This supports Theory (4), by showing that a closed-loop con-
troller achieves a ωdes much faster. Finally we also demonstrated the ability to reach and stay
at a given ωdes.

6.3 LQR
Looking at Equation 5.9 we notice, that due to the simplifications and assumptions we made
the LQR is a P controller with a constant offset. Therefore we expect the response to be similar
to the one of the P controller. Looking at Figures 5.11 and 5.12 vs. Figures 5.3 and 5.4 we see
that this is in fact the case. Though using the LQR the steady-state error is much smaller than
in the corresponding P controller case (Table 5.7 vs. Table 5.3). This is due to the constant
offset added to θV P IP when using the LQR. Both the oscillations around 0 rad/s in test run (b)
and the fact, that higher gains lead to slower braking, have the same reasons as discussed in
Section 6.2.1. So even though the LQR shows an improvement over the P controller, it shows
no improvement over the PI controller (cf. Figure 5.6 and 5.7). This is expected using the
highly simplified state space model we used to set up the LQR. Further research has to be done
creating a more complex and detailed model of the workings of the VPIP and the TLDR robot.
With such a model a more complex LQR will be set up, giving it the possibility to create a more
desirable system response.
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Figure 6.5: The rolling average over the last two seconds of ω for the response to the test runs using a
PI controller with kp = 40 and ki = 2.
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Conclusion and Future Work

This thesis set up, implemented and tested various control strategies for the VPIP. Starting
with the open-loop control, we set the pitch of the VPIP θV P IP to various constant values,
looking at the rotational speed of the robot. We saw, that the VPIP works as a locomotion
approach for a TLDR robot and that changing θV P IP both changes the acceleration and final
top speed of the robot. The highest rotational speed of 3.5 rad/s was reached with a θV P IP

of 30◦, while the greatest acceleration of 0.19 rad/s2 was achieved using a θV P IP of 40◦. For
any higher angles we saw an decrease in effectiveness and in lateral stability, making any θV P IP

of more than 50◦ undesirable. We also noticed, that there is a minimum angle of ∼ 10◦ to
get the robot rolling and keep it moving with a constant velocity. We also confirmed, that the
VPIP works in the same way backwards as it does forwards, although braking is slower than
acceleration. For optimal braking we noticed, that θV P IP should change gradually and not jump
to an extreme value at once. We also tested various PID controllers, with different kp, ki and kd

gains. As we expected from the fact, that an angle larger than 0◦ is necessary to keep moving,
a P controller leaves us with a considerable steady-state error. We eliminated the steady-state
error by introducing an I part to the controller, where we saw the effects of integral windup.
To beat this we introduced a limit to the integral of 5 rad, which left us with the overall best
system responses for a kp gain of 40 and a ki gain of somewhere between 2 and 5, depending
on whether minimal overshoot or faster response times are desired. Introducing a D part to the
system didn’t have a positive effect, as the system is highly inert anyways, leaving us with no
low frequency oscillations, that can be controlled with a D part. The oscillations, that we did
see, are all due to the lower stability of the robot at lower rotational speeds. Finally we set up a
LQR. To do this we simplified the system quite drastically, so the resulting LQR was simply a
P controller with a constant offset. Even tough this produced better results than the P controller
with significantly lower steady state errors, it didn’t preform as good as the PI controller, which
is more adaptive using an I part instead of the constant offset to θV P IP .
Of course there is still much future work to do. Further research has to be done into setting up
a more precise mathematical representation of the entire system. This then allows the creation
of a more detailed LQR, which is necessary to create an alternative to the PI controller. A
Quadratic-Quadratic Regulator as described in [2] can also be used instead of an LQR, so that
the system doesn’t have to be linearized. Although the oscillations at ω = 0 rad/s are limited,
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they have to be reduced, by either further tuning the gains of the PID controller, or potentially
using a better suited controller. There also has to be research into steering with the VPIP.
This is done by changing the roll of the VPIP ϕV P IP , which same as with θV P IP also has to
be controlled. When these two controllers are combined, we will have a control strategy, that
allows us to control both the rotational speed of the robot as well as its orientation. We will
then go on testing the TLDR robot in more complex situations, like on uneven terrain or at
ridges, which requires further development of the VPIP. For this the Virtual Pose Instruction
Map (VPIM) introduced in [12] is used. Instead of using a virtual plane, we use a virtual map,
that represents the surrounding terrain. In doing so the calculation of the length of the rods
also takes into account the terrain surrounding the robot, so the controllers for the VPIP have
to be readjusted and verified to also work for the VPIM. Finally everything that is tested in
a simulation also has to be tested using a real prototype of the TLDR robot. So even though
this thesis showed promising results for the control of the rotational speed of the robot using a
closed-loop controller, much is still to be done.

Different Virtual Pose Instruction Plane control strategies for uniform
linear motion on Telescopic Linear Driven Rotation Robots
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