
Institute for Computer Science VII
Robotics and Telematics

Bachelor’s thesis

Implementation and evaluation of object
detection using neural networks for use in

an automated optical rocket tracking system

David Baldsiefen

March 2022

First reviewer: Prof. Dr. Andreas Nüchter
Supervisor: Prof. Truong Thu Huong

Abstract
Nowadays, large-scale rocket launch campaigns are often documented on film for public out-

reach and error analysis purposes. This footage is created using complex and manually operated
machinery. An automated optical rocket tracker would give model and sounding rocket enthusi-
asts access to the same kind of visual documentation. However, such a system requires an image
processor which is capable of reliably detecting rockets at high speeds. This work proposes a
neural network based approach which achieves a throughput of over 50 frames per second and a
latency of 18.30ms on an NVIDIA Jetson AGX Xavier embedded computing board, while being
able to correctly identify the target rocket in nine out of ten cases. Therefore, it is fast enough
for use in an automated optical rocket tracker while also being very accurate. As the image
processor is embedded in the Robot Operating System (ROS) framework, it is compatible with
a wide range of robtics systems, including the optical rocket tracker developed by WüSpace e.
V. and the TU Wien Space Team as part of the T-REX project.

Zusammenfassung
Konventionelle, groß angelegte Raketenstarts werden häufig visuell dokumentiert, um Film-

material zur Fehleranalyse und für Werbezwecke zu erstellen. Diese Aufnahmen werden üblicher-
weise mit Hilfe mit komplexen, handbedienten Anlagen erstellt. Ein automatisierter optischer
Raketen-Tracker würde Modellraketen-Enthusiasten Zugang zu ähnlich hochqualitativem Bild-
material ermöglichen. Allerdings stellt ein solches System hohe Ansprüche an die zugrun-
deliegende Bildverarbeitung, da Raketen auch bei großen Geschwindigkeiten zuverlässig erkannt
werden müssen. Diese Arbeit stellt einen auf neuronalen Netzen basierenden Ansatz vor, welcher
auf einem NVIDIA Jetson AGX Xavier Modul einen Durchsatz von 50 Bildern pro Sekunde bei
einer Latenzzeit von 18.30ms erreicht. Dabei erkennt der Algorithmus in durchschnittlich neun
von zehn Bildern die Zielrakete. Der vorgeschlagene Ansatz ist somit sehr genau und schnell
genug, um in einem automatisierten optischen Raketen-Tracker eingesetzt zu werden. Da die
Software im Robot Operating System (ROS) eingebettet ist, ist sie zu einer Vielzahl von Robotik-
Systemen kompatibel. Dies beinhaltet auch den Raketen-Tracker, welcher vom WüSpace e. V.
und dem TU Wien Space Team im Rahmen des T-REX Projektes entwickelt wird.

The NVIDIA Jetson AGX Xavier used in this work was generously sponsored by the NVIDIA
Corporation as part of the NVIDIA Academic Hardware Grant Program.

Contents

1 Introduction 1
1.1 Thesis Goal . 2
1.2 Thesis Outline . 2

2 Background and Terminology 3
2.1 T-REX . 3
2.2 Object Detection . 3
2.3 Neural Networks . 4

2.3.1 Components of Neural Networks . 5
2.3.2 Training Neural Networks . 6
2.3.3 Convolutional Neural Networks . 7
2.3.4 State of the Art in Object Detection using Neural Networks 8

2.4 NVIDIA Jetson AGX Xavier . 9

3 Performance Criteria for the Image Processor 11
3.1 General Performance Criteria . 11
3.2 Calculating Speed Requirements of the Image Processor 12

3.2.1 Latency and Throughput . 12
3.2.2 Setting up a Formula . 12
3.2.3 Choosing Suitable Parameters . 14

4 Model Selection and Training 15
4.1 Selecting Promising Neural Network Models . 15
4.2 Deploying and Evaluating Performance on NVIDIA Jetson AGX Xavier 18

4.2.1 Technical Background . 18
4.2.2 Testing Methodology . 19
4.2.3 Results . 19

4.3 Dataset Creation . 20
4.3.1 Collecting Data . 20
4.3.2 Labeling . 21
4.3.3 Splitting Training, Validation and Test Sets 22

4.4 Training . 22
4.4.1 Initiating Training with Random vs. Pretrained Weights 23
4.4.2 Varying Batch Sizes . 23

vii

4.4.3 Hyperparameter Evolution . 24
4.5 Results and Discussion . 25

5 Implementation in the ROS Framework 27
5.1 Robot Operating System . 27

5.1.1 General . 27
5.1.2 T-REX Node Structure . 28

5.2 Testing Methodology . 29
5.3 Implementation in ROS and Deployment on NVIDIA Jetson 30

5.3.1 Basic Implementation . 30
5.3.2 Using Shared Memory . 32
5.3.3 Adding YOLOX Support . 33
5.3.4 Things That Did Not Work . 34

5.4 Performance of Different Models and Setups . 35
5.4.1 Publisher/Subscriber vs. Shared Memory Implementation 35
5.4.2 FP16 vs. FP32 Precision . 36
5.4.3 Pre- and Postprocessing . 36
5.4.4 Performance of Small Object Detectors YOLOv5s and YOLOX-S 37

5.5 Lessons Learned . 37

6 Summary, Conclusion and Outlook 41
6.1 Summary . 41
6.2 Conclusion and Outlook . 42

Appendix A 45

viii

Chapter 1

Introduction

We are so used to seeing high quality videos of rocket launches every month on the TV, computer
or smartphone, that it is easy to forget how complicated it is to produce that footage. At any
given moment, the rocket, which is travelling at very high speeds at an ever-rising altitude, has
to be centered perfectly within the camera frame. This process of keeping the rocket centered
at all times is described as rocket tracking.

Nowadays, conventional rocket launches are usually manually filmed, using heavy and ex-
pensive equipment, which was often originally developed for military purposes and consists of
complex tracking mounts and large cameras [27]. Thus, the many advantages of gathering
high-quality footage of rocket launches, such as error analysis and publicity, remain reserved
to large-scale launch campaigns that can afford to acquire, maintain and operate such systems.
Meanwhile, model rocket enthusiasts often have to resort to insufficient hand-recorded videos.
The higher acceleration of model and sounding rockets provides a special challenge when trying
to visually document these launches. The fact that model rocket events often take place in
varying multi-purpose locations, such as meadows or off-season crop fields, adds an additional
portability requirement to a potential tracker.

As of yet, there is no single system combining the requirements of portability, affordability
and automation that need to be met to make optical tracking of model and sounding rockets
viable. The T-REX project, a cooperation between WüSpace e. V.1 and the TU Wien Space
Team2, has the goal of creating such a system.

However, the project’s previous approaches to image processing have proven insufficient to
reliably detect model and sounding rockets. While basic properties such as colour and contrast
depend strongly on the rocket being clearly discernible from its environment, feature-based
algorithms such as Haar cascades are too simplistic to reliably differentiate between rockets and
similarly-shaped objects. Therefore, another approach is needed. One promising candidate is
the use of neural networks. In recent years, neural network based object detection algorithms
have become increasingly fast and accurate, meaning they can be trained on small datasets while
being deployable in real-time speeds on edge devices.

1https://wuespace.de/ (Accessed 27.02.2022)
2https://spaceteam.at/ (Accessed 27.02.2022)

1

https://wuespace.de/
https://spaceteam.at/

2 Chapter 1. Introduction

1.1 Thesis Goal

The goal of this thesis is to develop a neural network based image processor, that is well suited
for use in an automated optical rocket tracker. As such, it should be

• accurate enough to reliably detect model and sounding rockets in a variety of settings and
environments.

• fast enough to reliably track model and sounding rockets when deployed on an NVIDIA
Jetson AGX Xavier embedded computing board.

• integrated into the Robot Operating System (ROS) to enable compatibility with a wide
variety of robotics systems.

1.2 Thesis Outline

Chapter 2 gives an overview of the technological and scientific background of the thesis, describ-
ing the inner workings of neural networks in the process. In the third chapter, a performance
requirement for the image processor is derived mathematically based on the specifications of
common model and sounding rockets. This requirement is used to choose a suitable neural
network based object detection model in the fourth chapter, which is then trained using footage
from the T-REX project. Finally, an image processor that is capable of loading and running
the trained model is implemented in the ROS framework in chapter 5, and its performance
evaluated on the NVIDIA Jetson AGX Xavier. The results are then summarised in chapter 6,
with a conclusion being drawn in regards to the initial thesis goal.

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

chapter:training

Chapter 2

Background and Terminology

2.1 T-REX

The Tracking Rocket EXperiments (T-REX) project is a cooperation between WüSpace e. V.
and the TU Wien Space Team, with the goal of creating an affordable, portable and reliable
automated optical rocket tracking system. The project was initiated in 2018 as a direct result
of the failed REXUS 24 launch. During the launch, a failing retention mechanism caused the
payload to unintentionally separate from the motor, striking the tail fin on its fall down and
ultimately causing the rocket to disintegrate after around nine seconds of flight[40]. Even though
many spectators were filming the launch manually using smartphones and DSLR cameras, it
happened to be that no single videographer actually captured the moment of the explosion.
Thus, the idea of an automated rocket tracker for error analysis was born.

The T-REX software is built on the Robot Operating System (ROS) framework[28]. It can
be deployed on any conventional computer running Ubuntu 18.04. While it is possible to run the
tracking-software and graphical user interface (GUI) on a single computer, the most common
setup consists of a dedicated tracking computer, with the GUI being connected via network.

As of January 2022, the tracking-software supports up to two cameras. Image processing
is performed based on colour, contrast, brightness or Haar features. It is supplemented with a
Kalman filter, which helps mitigate the effects of false positives as well as false negatives. The
outputs of the image processor are then fed into a PID-controller, which finally communicates
with the motor interface.

On the hardware side, two stepper motors are used to move the dual-axis camera mount.
Additional external cameras can be mounted on the tracker. A NVIDIA Jetson AGX Xavier
serves as tracking computer.

2.2 Object Detection

Object detection is a field of computer vision that combines both object classification and object
localization. As such, the goal of object detection is to identify different object classes in an
image (e.g. ’car’, ’cat’, ’rocket’) and draw bounding boxes around these objects.

Historically, simple features such as colour, edges and Haar features were used to perform

3

4 Chapter 2. Background and Terminology

Figure 2.1: Picture of the T-REX rocket tracker.
Picture by courtesy of Antonius Adler.

both of these tasks. While these algorithms can be very fast, they require the user to define the
desired features beforehand, making it hard to reliably detect complex objects. But in recent
years, advances in the fields of artificial neural networks and machine learning introduced neural-
network based approaches as meaningful alternative. Despite often being slower, they offer high
reliability when detecting complex structures, given sufficient training beforehand. The act of
producing a certain set of outputs from a given input is commonly referred to as inference.

2.3 Neural Networks

In recent years, artificial neural networks have become one of the most prominent approaches to
machine learning. Based off of their biological counterparts, neural networks consist of thousands
to millions of neurons, which are connected by weighted edges to produce a complex and deeply
connected network. Multiple neurons are usually grouped into structures called ”layers” and
only connected to neurons in the preceding and following layer. The first layer contains all the
neurons activated by the input data, while the last layer contains the neurons representing the
model’s output. The remaining layers are referred to as ”hidden layers”, as they contain the
inner structure of the network and are not ”visible” from the outside. The number of hidden
layers is commonly referred to as the networks ”depth”, thus coining the term Deep Learning.
Figure 2.2 gives an overview of a neural network’s structure.

Using different learning algorithms, neural networks are trained on sample data with the
goal of transferring the gained ”experience” to unfamiliar problems. The advantage of neural
networks is that they can find optimal solutions to problems which can not be easily defined
mathematically. In object detection, this means that neural networks learn to identify certain
common features among all labeled objects which are often not recognised as such by human
brains. The disadvantage is that the model’s creator never knows the exact problem the neural
network found the optimal solution to. This is often the result of incomplete or insufficient

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

2.3. Neural Networks 5

(a) Neurons are the core building block of neural
networks. Each neurons value (”activation”) is de-
termined based on a weighted sum of all its inputs,
which is then passed through an activation function f .
The bias C is omitted in this figure for clarity. Neural
networks are created by connecting many neurons.

(b) Every network contains at least one input and one
output layer, with none or multiple hidden layers in-
between. Each layer contains hundreds to thousands
of neurons. The two hidden layers in this case are so-
called fully connected layers, as every neuron in one
layer is connected to every neuron in the next.

Figure 2.2: Main components of neural networks. Left: Structure of a single neuron. Right: Topology
of neural networks.[39]

training data. For example, a model may have learned to identify rockets in the given training
dataset based solely on the colour of their exhaust fumes while ignoring all other features, thus
failing to detect rockets that have left the burning phase. A solution to this simplified problem
is to include rockets of all flight stages in the training data.

The goal of this section is to provide some insight into the mathematical inner workings of
neural networks. In addition, prominent neural network models used in object detection are
presented.

2.3.1 Components of Neural Networks

Neurons

Neurons are the fundamental component of every neural network. Each neuron receives n inputs
x1...n and produces a single output y. The inputs originate from the networks input data, or
other neurons. The output is usually normalised to a range of 0 to 1, and called the neurons
activation. Each connection between neurons is associated with an individual weight factor wi.

In order to calculate a neuron’s activation, all the inputs are multiplied by the weight of their
connections and then added together. This sum is extended by one more summand, the bias C.
Lastly, the total sum is passed through an activation function f(s), which usually restricts the
neurons activation to a range of 0 to 1.

y = f

((
n∑

i=1
xiwi

)
+ C

)
(2.1)

The actual activation function used can vary significantly between different models and even
layers. For example, You Only Look Once (YOLO) uses a linear activation function for the
final layer and a leaky Rectified Linear Unit (ReLU) activation function for all other layers[31].

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

6 Chapter 2. Background and Terminology

Figure 2.3: Common activation functions (left to right): Linear, ReLU, Leaky ReLU, Sigmoid, Heavy-
side

Other activation functions commonly used in neural networks are the Sigmoid function and the
Heavyside step function (see figure 2.3).

Layers

As mentioned in the introduction to this section, neurons are usually grouped together in layers.
In feedforward networks, neurons only receive information from the previous layer, and only
send information to the next, thus causing a single-directional flow of information. In recurrent
networks, neurons also connect to neurons of the same or previous layers, allowing cycles and
loops. When every neuron in one layer is connected to every neuron in the next, they are called
fully connected layers. When a group of neurons in one layer is combined into a single neuron in
the next, thus reducing the amount of neurons in that layer, it is called a pooling layer. This has
a downsampling effect. In maxpool layers, the weighted sum is replaced by a max() operation,
whereas it is replaced by an unweighted average in avgpool layers.

2.3.2 Training Neural Networks

At its core, training a neural network refers to finding optimal weights and biases for all con-
nections and neurons, so that a given input produces the desired outputs. As even a very small
neural network consisting of only two fully connected 10-neuron layers already has 10×10 = 100
connections and ten biases, tuning those parameters by hand is rarely an option (and also not
the point of using neural networks). Instead, training algorithms based on mathematical opti-
misation are used to adjust the weights and biases according to real input data.

The most common training approach used in object detection is that of supervised learning.
In supervised learning, the training dataset consists of pairs of inputs and desired outputs. For
example, an object detection training dataset contains images together with labels and bound-
ing box coordinates. Other types of learning include unsupervised learning, where the model is
not provided with desired outputs initially (useful for pattern recognition), and reinforcement
learning, where the computer is placed in a dynamic environment with the goal of maximising
some form of feedback-based reward[6]. The most common algorithm used for training neural
networks is backpropagation, and was first introduced by Rumelhart, Hinton and Williams in
1986[34]. Its core principle is described in the following paragraph.

First, one image from the training dataset is fully processed by the neural network. After
this forward pass, the actual and desired outputs are compared, and an error (or cost) is cal-

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

2.3. Neural Networks 7

Figure 2.4: Visualization of the structure of a convolutional layer with a 2D input and output map.
The kernel in the center contains the weights of the layer. [29]

culated using a loss function. By estimating the gradient of this loss function, local minima
are determined with respect to the model’s weights and biases. Thus, this gradient ”points”
towards the direction that the weights need to be tuned in order to achieve better results. This
process is repeated for every layer starting from the last, until one full backward pass has been
completed. Now, all parameters are tuned according to the gradients, and the entire process is
repeated with the next image[34].

This procedure is performed hundreds or thousands of times for the entire dataset, until
optimal weights and biases have been found. During the process, the network is evaluated on
an independent set of data in regular intervals, to get a sense of how well it is progressing, and
to notice when it stops improving.

2.3.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of neural network which are particularly use-
ful for computer vision tasks. The reason for this is that they significantly reduce the amount
of weights between different layers by using a special layer structure called convolutional layer.
Instead of connecting all neurons in one to all neurons in the next layer, convolutional layers
employ a sliding window approach, where a square matrix of weights (called the kernel) is moved
over equally sized pixel-squares of the input matrix. The value of the neuron in the output layer
is then computed by calculating the dot product of the kernel’s inputs with the kernel’s weights
(see figure 2.4). This concept can be easily applied to multi-channel inputs, by extending the
kernel to a third dimension. The reason why this approach is particularly useful for computer
vision tasks is that it significantly reduces the amount of weights per layer. Instead of growing
exponentially with the resolution of the input image, the amount of weights in a convolutional

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

8 Chapter 2. Background and Terminology

layer is of fixed size, defined only by the kernel’s dimensions. At the same time, the sliding
window approach means that each neuron in a new layer is only calculated based on small,
spatially restricted regions in the preceding layer. This mimics the biological setup of the visual
cortex of animals, and is particularly good for detecting localised features such as edges[20]. By
adjusting the stride of the kernel, the overlap between each kernel window can be reduced, as
well as the size of the output layer.[3]

Most CNNs are composed of multiple convolutional layers, followed by pooling and fully
connected layers. Adjusting the structure and setup of each layer is a core part of neural
network design.

2.3.4 State of the Art in Object Detection using Neural Networks

Up until the publication of YOLO[31] by Joseph Redmon et. al in 2016, there were two major
ways to perform object detection using neural networks. First, there are deformable parts mod-
els (DPM), which involve moving a sliding window over the image and running a classifier on
each possible position [14]. Secondly, there are Region Based Convolutional Neural Networks (R-
CNNs) which use region proposal methods like selective search for generating potential bounding
boxes, extract features using CNNs and finally run classifiers on these features to finalise the
object detection[16][38].

Instead of improving on this multiple-step approach, Joseph Redmon et. al reframed object
detection as a regression problem, where a single neural network predicts bounding boxes and
class probabilities straight from the input image[31]. This is achieved by dividing the input
image into a S ×S grid, where each grid cell is responsible for detecting any object whose center
falls within said cell. Therefore, each cell predicts B bounding boxes together with a confi-
dence score. In addition, each cell determines a single set of C class confidences for its content.
These class confidences are combined with each bounding box prediction, resulting in a total of
S × S × B predictions. Finally, overlapping bounding boxes are eliminated using non-maximum
suppression.[31]

The network, consisting of 24 convolutional layers followed by two fully connected layers,
proved to be very fast, outperforming any other real-time object detectors at the time in terms
of speed and accuracy. In addition, the fact that it evaluated the whole image at once while
performing classification and localization means that contextual information is implicitly en-
coded in the model as well, leading to a reduced amount of background errors. Its structure also
allowed it to perform better on generalised representations of objects, such as artwork. However,
the model does struggle with small structures, especially when they appear in groups.[31]

Because of these results, many researchers started adapting and improving the existing mod-
els, leading to the development of advanced models such as (Scaled-)YOLOv4[9, 41], YOLOv5[21],
YOLOX[15] and PP-YOLO[19, 25]. As of 2021, most real-time object detectors are based on
the YOLO approach[36].

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

2.4. NVIDIA Jetson AGX Xavier 9

2.4 NVIDIA Jetson AGX Xavier

The NVIDIA Jetson AGX Xavier is an embedded computing board developed by NVIDIA, and,
as of March 2022, the most powerful module in the NVIDIA Jetson family. It is optimised for
accelerating artificial intelligence, deep learning and computer vision tasks, and offers compara-
tively high performance at a small form factor (105mm × 105mm) and low power consumption
levels.[11]

The module is equipped with a 8-Core ARM CPU in combination with a 512-core NVIDIA
Volta GPU with 64 Tensor Cores. Together with two Deep Learning Accelerators (DLA),
these processors can compute up to 16 trillion half-precision floating point operations per sec-
ond (TFLOPS) for deep learning and computer vision tasks. In comparison, the Tesla V100
GPU commonly used for neural network benchmarking offers ”only” twice the performance (32
TFLOPS) at roughly 8 times the power consumption (250W vs. 30W)[10]. The developer kit
used in this work comes equipped with 32GB of RAM, and runs the latest JetPack SDK (version
4.6). All of the performance tests in chapters 4 and 5 are performed in the 30W power mode
with jetson clocks enabled, which locks the CPUs clocks to their maximum.[11]

The computing board’s high performance and power efficiency at a comparatively low cost
and form factor make it a good candidate for any optical rocket tracking system, which is why
it was chosen as the main hardware platform for the T-REX project.

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

Chapter 3

Performance Criteria for the Image
Processor

3.1 General Performance Criteria

The image processor developed in this work needs to reliably detect model and sounding rockets
of all shapes and sizes. In order to allow the image processor to be used for automated optical
tracking, this detection has to be performed at high speeds and accuracy. Detection speed is
measured based on how many frames can be fully processed every second. Accuracy is measured
based on several factors which are discussed in detail in chapter 4.

While tracking shall be possible during all stages of flight, the launch phase is the most
critical and challenging detection phase. This is because a good initial estimate of the rockets
velocity and acceleration are necessary to allow the controller to predict its future movement.
The acceleration of the tracker motors is also highest during the launch phase, the relative angu-
lar velocity of the rocket in relation to the tracker decreases with increasing height and distance.
The much more varied and chaotic background during the launch phase adds an additional
challenge to accurately detecting rockets in the camera frame.

Table 3.1 contains a selection of model and sounding rockets commonly used today. As
model rockets are usually custom combinations of motors, propellants, fairings and payloads, it
is nearly impossible to define the ”average” model rocket. Therefore, table 3.1 contains popular
pre-built sets sold by three of the most well-known manufacturers. Their launch accelerations are
manually calculated based on the thrust- and weight specifications of the model in combination
with the listed motor. The table also includes specifications of some of the rockets encountered
during the T-REX project.

11

12 Chapter 3. Performance Criteria for the Image Processor

Rocket Manufacturer Launch acceleration Length
Crossfire ISX (C6-5) Estes 26g 0.40m
Pegasus (D9-7) Raketenmodellbau Klima 13g 0.50m
Aspire (F10-8) Apogee 21g 0.74m
Vanadium TU Wien Space Team 12g 0.90m
The Hound TU Wien Space Team 30g 4.00m
REXUS Alcojet, ZARM 20g 5.60m
Black Brant IX Magellan Aerospace 17g 12.20m

Table 3.1: Selected model and sounding rocket specifications. [4, 5, 17, 24, 35]

3.2 Calculating Speed Requirements of the Image Processor

3.2.1 Latency and Throughput

Before any calculations start, it is important to understand the two most relevant speed metrics
used in image processing: Latency and throughput.

Latency describes how long it takes to fully process a single image. In this case, it is the time
difference between the moment a new frame is captured and the moment the image processor
outputs its results.

Throughput describes how many frames can be processed in a given timeframe. It is usu-
ally measured in frames per second (fps).

Even though for basic image processors both metrics describe essentially the same thing (fps
being the inverse of the latency), they can differ greatly in more complex scenarios. For example,
a multi-threaded image processor may be able to compute two frames at a time, thus doubling
its throughput even though the latency is unaffected. Many neural network models also offer
batch processing, a technique where multiple frames are loaded into the GPU and processed ”in
one go” before outputting any results. This reduces throughput due to reduced memory calls,
but at the same time increases latency, as the results for the first frame of the batch are only
available once processing of the other frames has finished too. Therefore an inference batch size
of one is usually the best option for real-time applications.

3.2.2 Setting up a Formula

In order to make the footage produced by the tracker usable for error detection, it is necessary
for the rocket to fill up a significant portion of the image at all times. While there are many
considerations flowing into the correct positioning of the tracker relative to the rocket, the main
factors relevant for the design of the image processor are the size of the rocket in the frame as
well as its acceleration within the frame.

Let’s assume that for decent error detection, the rocket needs to initially fill up one fifth of

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

3.2. Calculating Speed Requirements of the Image Processor 13

the frame. This means that the rocket can cover four times its own length before starting to
move out of frame, as long as it was positioned at the bottom initially. Although the actual
relation between pixel-size on the frame and real height is not linear due to optical distortions,
this effect is negligible at small fields of view such as that of a zoomed-in tracking camera.

Despite the fact that the acceleration of most rockets fluctuates over time due to the burned
fuel reducing the overall mass and due to the fuel input in general being often non-linear, a near
linear acceleration in the very first milliseconds of the launch can be assumed for model rockets.
This is because the amount of fuel burned in that time is usually relatively low compared to the
total rocket’s weight. For example, the total mass of the Crossfire ISX model rocket decreases
by around 20% during the 1.6 second thrust duration. As the C6-5 engine has a constant burn
rate, this means that the acceleration of the rocket only increases by roughly 2.6% in the first
200ms. This work generally assumes linear launch acceleration for the remaining chapter, but
the inaccuracy is covered for by choosing a higher k in subsection 3.2.3.

The distance covered by a linearly accelerating object in the time frame t is described by the
formula s = 1

2at2. Let r be the portion of the frame the rocket fills up. Using the length l and
acceleration a of the rocket, the total time T it spends completely in the frame is calculated by

T =
√

2s

a
=
√

2l

a
(r−1 − 1) 0 < r < 1, a > 0 (3.1)

This means that once T seconds have passed, the rocket tracker needs to start moving in
order to keep the rocket in the camera frame. Thus, within T , enough information needs to be
gathered by the image processor to allow the controller to send appropriate commands to the
motors.

Let’s define k as the minimum number of detections the controller needs to accurately predict
the rockets future movement. Then the image processor needs to finish processing k frames
before T is over. At a throughput of f , the kth frame starts being processed after (k − 1) · f−1

seconds, and finishes after another latency-period of t seconds. This leads to the following
relation between throughput, latency and T:

k − 1
f

+ t < T (3.2)

As discussed in subsection 3.2.1, the relation between latency and throughput for a basic
image processor can be described by t = f−1. Using this, the formulas for minimum throughput
and maximum latency are defined as follows:

fmin >
k

T
= k

√2l

a
(r−1 − 1)

−1

k, f, T > 1, a > 0, 0 < r < 1 (3.3)

tmax <
T

k
= k−1

√2l

a
(r−1 − 1)

 k, f, T > 1, a > 0, 0 < r < 1 (3.4)

However, any image processor that satisfies equation 3.2 is still suitable. Note how both
requirements get more strict when the length-to-acceleration relation of the rocket minimises.

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

14 Chapter 3. Performance Criteria for the Image Processor

3.2.3 Choosing Suitable Parameters

Among the rockets listed in table 3.1, the Crossfire ISX model rocket has the lowest length-to-
acceleration ratio at l

a ≈ 0.0016s2. While rockets with even lower ratios do certainly exist, it
serves as a good estimate for what an optical rocket tracker is likely to encounter.

The portion of the screen the rocket shall fill up depends largely on the personal preference
of the user, the resolution of the camera and the intended use case of the footage. This work
uses r = 1/5. Please note that this parameter is only used to calculate the overall performance
target, and that the image processor is still able to detect smaller and larger rockets.

According to equation 3.1, the total time the rocket spends within the frame at the given
parameters is T = 112ms.

The amount of consecutive detections k that the controller requires to produce good track-
ing results varies greatly based on the controller used. Naturally, more input data increases the
accuracy of the controller. If the very initial acceleration of the rocket is actually near-linear, a
well-tuned PID-controller may be able to reliably predict its future movements from just three
measurements. Experience during the T-REX project confirms this assumption. Nevertheless,
this is not always be the case, and as table 3.1 shows, the different rockets vary greatly in regards
to their initial acceleration. Thus, a higher k is a more suitable choice. In this work, the fps
target is calculated with k = 5.

Inserting these parameters into equations 3.3 and 3.4 returns a throughput requirement of
44.6 fps at a latency of 22.4ms. However, these calculations do not account for the fact that the
rocket tracker needs some additional time to pass the detections through the controller and set
the motors in motion. Thus, I define the final performance requirement as 50.0fps at a latency of
20.0ms, which gives the tracker 12 additional milliseconds to start moving before T is reached.

While the image processor developed in this work is optimised for this performance target, it
is important to note that by adjusting camera zoom (and thus r) or the controller (and thus k)
it is still usable for rockets exceeding the length-to-acceleration relation defined at the beginning
of this section.

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

Chapter 4

Model Selection and Training

While the previous chapter defined general performance criteria for an automated optical rocket
tracker’s image processor, the goal of this chapter is to identify promising neural network models
which are capable of fulfilling these requirements. In addition, this chapter covers the creation
of the training dataset, as well as the subsequent training of the best-performing model. This
trained model is then used as the foundation for the image processor developed in chapter 5.

4.1 Selecting Promising Neural Network Models

There are many promising neural network models being developed with the goal of offering
high-accuracy real-time object detection. In relevant literature, the real-time limit is commonly
defined as 30 fps. However, as the speed of any model largely depends on the computing power
available, many models far surpass this limit in order to still enable real-time detection on low-
end devices. The goal of this section is to identify the most accurate candidates for object
detection at 50fps on the NVIDIA Jetson AGX Xavier.

The most common metric used to compare the accuracy of different object detection model’s
is the mean Average Precision (mAP), which describes the model’s detection performance on
a certain task. In most cases, this means running the object detector on a large, predefined
and standardised dataset. Microsofts Common Objects in Context (COCO) is one of the most
common datasets used to evaluate and compare different models. Microsoft also defines specific
guidelines on how to perform the measurements[23]. In order to understand how the mAP is
calculated, it is necessary to define Precision, Recall and Intersection over Union (IoU) first:

• Precision describes how many of the model’s predictions are actually true. It is equal to
the number of true positives divided by the total number of predictions

• Recall describes how good the model is at correctly finding all the existing positives. It
is equal to the number of true positives divided by the number of ground truths.

• Intersection over Union describes how well a predicted bounding box and the actual
bounding box overlap. It is equal to the area of overlap divided by the area of union of
both bounding boxes (see figure 4.1).

15

16 Chapter 4. Model Selection and Training

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.5

0.6

0.7

0.8

0.9

1
TP TP

FP

TP

FP

TP
TP

FP

P = T P
T P +F P

R = T P
T P +F N

Recall

Pr
ec

isi
on

Figure 4.1: Left: Visualization of Intersection over Union (IoU) determination. Right: Example of
AP-calculation using the precision-recall curve. The predictions are sorted in descending order according
to their confidence score, and then classified as either true or false positive (TP or FP). Precision and
recall are calculated based on the accumulated count of true and false positives. The Average Precision
is equal to the area below the curve.

When determining whether a given prediction made by an object detector is a true positive,
the IoU of the prediction is compared to a predefined threshold. The prediction is classified as
true positive only if the classification is correct and the IoU is larger or equal than that thresh-
old. Every other prediction counts as a false positive.

In order to calculate the Average Precision (AP) of a model, all the model’s predictions
in a given test set are classified as either true or false positive, and then sorted in descending
order according to their confidence score. Next, the the number of true and false positives
are accumulated in the same order, and then used to calculate the precision and recall of each
element. This results in a precision-recall curve as shown in figure 4.1. The Average Precision is
equal to an approximation of the area under the precision-recall curve. For the COCO challenge,
it is approximated based on a 101-point interpolation[23].

To get the mean Average Precision of a given object detection model, the AP value is aver-
aged over all object classes and different IoU thresholds. For the COCO challenge, this includes
80 classes, with the AP being calculated for each class with ten different IoU values (0.5 to 0.95
in steps of 0.05). The mAP at a single IoU threshold of 0.5 is often determined in addition to
the ”general” mAP value (mAP@0.5 or mAP50). Some researchers also specify mAP values for
differently sized objects.

In literature, mAP and AP are often treated like synonyms, even though both have different
meanings. When this occurs, it is much more common that mAP is wrongly referred to as AP,
than vice versa.

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

4.1. Selecting Promising Neural Network Models 17

Model Backbone Size mAP mAP50 Throughput (fps)
w/o TRT w/ TRT†

YOLOv4[9] CSPDarknet53 608 43.5% 65.7% 62 105.5
YOLOv4-CSP[41] CSPDarknet53s 640 47.5% 66.2% 73 -
YOLOv5s[19][21] - 640 36.7% 55.4% 113.0 -
YOLOv5m[19][21] - 640 44.5% 63.1% 88.2 -
PP-YOLO[25] ResNet50-vd-dcn 608 45.9% 65.2% 72.9* 155.6
PP-YOLOv2[19] ResNet50-vd-dcn 640 49.5% 68.2% 68.9 106.5
PP-YOLOv2[19] ResNet101-vd-dcn 640 50.3% 69.0% 50.3 87.0
YOLOX-S[15] Mod. CSP v5 640 39.6% - 102.0† -
YOLOX-M[15] Mod. CSP v5 640 46.4% 65.4% 81.3† -
YOLOX-DarkNet53[15] DarkNet53 640 47.4% 67.3% 90.1† -
EfficientDet-D1[37] EfficientNet-B1 640 40.5% 59.1% 74.1* -

Table 4.1: Comparison of throughput and accuracy of different neural network based object detection
models. All measurements were performed on the MS-COCO test set (test-dev 2017) on a Tesla V100
GPU at batch size 1. Fields where no official data is available are marked with ’-’. Timings marked with
’†’ were measured in FP16 precision. ’*’ indicates that the measurement includes bounding box decode
time (1-2ms).

It is important to point out that for the rocket tracker itself, mAP may not be the ideal
accuracy metric. While mAP is calculated based on all predictions of a neural network, a rocket
tracker can only follow one rocket at a time, meaning that it is only necessary for the most
confident prediction to be actually correct. Therefore, it does not matter for the tracker if
predictions with a lower confidence score are correct as well. Nevertheless, this chapter mainly
focuses on optimising mAP, as it is the de facto industry standard and still a good indicator of
a model’s general performance.

Table 4.1 contains an overview of some of the most popular and promising object detection
model’s for the given use case. The presented model size refers to the maximum width and
height of the input image, and is chosen based on the frame-size of the current T-REX camera
(480x640). However, most models can be scaled up and down at a cost of accuracy. For YOLOv4
and PP-YOLO, the original papers only contain measurements at a model size of 608[9, 25]. It
is important to note that among the papers, different authors often employ very different ways
of measuring the speed of their models. For example, some[37, 41] include postprocessing in
the final timings, while others[9, 31] do not disclose the details of what is included and what
is not. That is why these values always have to be compared with care. As of March 2022,
no official paper for YOLOv5 has been released, which is why the corresponding rows contain
results obtained by Xin Huang et al. as part of PP-YOLOv2 in 2021[19].

Tiny object detectors, such as PP-PicoDet-L[42], PP-YOLO-Tiny[42] and YOLOv4-tiny[41],
are intentionally disregarded, as they lack the accuracy of larger models while being optimised
for weaker hardware.

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

18 Chapter 4. Model Selection and Training

Some models are directly ruled out as candidates based on their metrics. For example,
YOLOv4 and PP-YOLO are outperformed by YOLOv4-CSP both in terms of speed and ac-
curacy. Furthermore, benchmarks in the official repository for PP-YOLO1 reveal the model to
reach just 20fps on the Jetson AGX Xavier when using TensorRT, which is significantly slower
than the 50fps required for the rocket tracker. Based on this information, PP-YOLOv2 is also
ruled out, as it is even slower than PP-YOLO according to the original benchmarks of the
paper[19]. EfficientDet-D1 is 1.1fps faster but 7.0% points less accurate than YOLOv4-CSP.

YOLOX-M, YOLOX-DarkNet53 and YOLOv5m are all accurate and fast, even though it
has to be noted that throughput of the YOLOX models was measured with FP16 precision. The
fastest models are the small object detectors YOLOv5s and YOLOX-S, even though they are
much less accurate than their full-sized counterparts.

Finally, I chose YOLOv4-CSP, YOLOv5 and YOLOX for further investigation due to their good
speed/accuracy trade-off.

4.2 Deploying and Evaluating Performance on NVIDIA Jetson
AGX Xavier

In this section, the different models are deployed on the NVIDIA Jetson and compared in terms
of speed and accuracy. To make best use of the Jetsons capabilities and its limited hardware,
each model is first converted to a half-precision TensorRT engine, and then evaluated using
the trtexec tool provided by NVIDIA. In addition, accuracy is determined by testing the
converted model against the COCO2017-validation dataset.

The results of each measurement are listed in table 4.2. Where possible, tests are performed
with the newest available version based on the official GitHub repositories. Accuracy is only
determined for models that are able to achieve at least 45fps.

4.2.1 Technical Background

ONNX

Open Neural Network Exchange (ONNX) is an open source software ecosystem with the purpose
of enabling and simplifying compatibility and interoperability between machine and deep learn-
ing projects and formats. ONNX also defines an extensible computation graph model, which is
used to transfer neural network models between different frameworks. All of the models listed
in table 4.1 are provided with tools for ONNX conversion.[7]

TensorRT

TensorRT is a SDK developed by NVIDIA with the purpose of optimising deep learning in-
ference on NVIDIA GPUs. By utilizing NVIDIA’s CUDA platform, which allows software to
perform highly parallelizable computations on the GPU, software can be sped up significantly

1https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.3/deploy/BENCHMARK_INFER_en.
md (Accessed 16.02.2022)

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.3/deploy/BENCHMARK_INFER_en.md
https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.3/deploy/BENCHMARK_INFER_en.md

4.2. Deploying and Evaluating Performance on NVIDIA Jetson AGX Xavier 19

when compared to conventional CPU deployment. In addition, TensorRT allows neural network
models to be calibrated for 16-bit floating-point (FP16) and 8-bit integer (INT8) formats. As
a lower precision reduces requirements for storage and bandwidth significantly, it can cause a
significant speedup for tasks where large numbers of calculations have to be performed. For
most neural network models, the loss in accuracy is far outweighed by the performance gains
(this is also shown in the measurements performed in this work, see subsection ??). TensorRT
supports most major neural network frameworks, such as PyTorch, TensorFlow and ONNX.[12]

trtexec

trtexec is a command line tool provided as part of TensorRTs Open Source Software (OSS)
components. It includes basic functionalities for engine serialization and benchmarking. New
engines can be generated from ONNX, UFF or Caffee protoxt models. [13]

4.2.2 Testing Methodology

All TensorRT engines are generated based off of ONNX models using trtexec and FP16
precision. Modifying and calibrating the engine for INT8 precision is not necessary to get a
representative performance comparison. The benchmarks are performed with a warmup pe-
riod of 10s and an execution period of 3000 iterations. A 3x640x640 tensor representing a
three channel input image is used as input shape. The batch size is 1. Accuracy is measured on
the COCO validation dataset using the tools provided in the YOLOv5 and YOLOX repositories.

During the entire process, the jetson is operating in MAXN power mode with jetson clocks
enabled.

4.2.3 Results

Model mAPval mAPval
50 Throughput

YOLOv4-CSP - - 34.6
YOLOv5s 36.0% (36.4%) 55.4% (56.5%) 113.0
YOLOv5m 43.1% (44.3%) 62.7% (63.8%) 54.7
YOLOX-S 40.3% (40.5%) 58.9% (59.3%) 104.7
YOLOX-M 46.6% (46.9%) 65.1% (65.6%) 50.4
YOLOX-DarkNet53 47.4% (47.7%) 66.5% (67.0%) 49.6

Table 4.2: Throughput and accuracy measurements made on the NVIDIA Jetson AGX Xavier. All
models were converted to TensorRT engines with FP16 precision. For engines that surpassed 45fps,
accuracy was determined based on the COCO2017-validation dataset, with the accuracy of the default
(non-TensorRT) models being listed in brackets.

Of the tested engines, four reach the performance target of 50fps at an input resolution
of 640x640. Of those, YOLOX-M achieves the highest accuracy at 46.6%mAP on the COCO

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

20 Chapter 4. Model Selection and Training

validation dataset. YOLOv5m comes in second at 43.1%mAP and 54.7fps, which is 4.3fps faster
than YOLOX-M. The fastest engine is YOLOv5s at 113fps. However, YOLOX-S is 4.3 percent
points more accurate than YOLOv5s while only being 7% slower. The conversion to FP16
precision caused the mAP to drop by 0.5% points on average

Overall, YOLOv5m offers the best speed/accuracy trade-off: it is fast enough for detecting
rockets in real-time, while still offering some margin for potential performance losses during pre-
and postprocessing. However, YOLOX-S is a promising alternative when a faster model is of
need.

4.3 Dataset Creation

The key component to successfully training any neural network is the dataset. In order to be
able to learn generalised representations of an object, the neural network needs to be provided
with specific examples from all possible situations first. This includes (but is not limited to) all
the angles, lighting conditions, sizes and colours in which the object is likely to appear. That is
why it is not uncommon for big datasets to contain hundreds of thousands of labeled images.

4.3.1 Collecting Data

The dataset used to train the neural network needs to contain imagery that is as close as pos-
sible to the real conditions the tracker will encounter. While a human is able to easily draw a
connection between a picture of the space shuttle in space and a model rocket on the ground,
a neural network will just be confused by these very different scenes, as they do not share a lot
of visual features. That is why it is not a feasible approach to just label the first 1000 results
returned by entering ”Sounding Rocket” in a search engine.

Instead, the imagery in this work is derived from pictures and videos gathered during the T-
REX project. The advantage of this approach is that the images are very close to future imagery
in regards to setting, lighting conditions, camera properties, rockets etc. The disadvantage is
that the available footage is quite limited. Over the second phase of the T-REX project, five
rocketry events were visited, resulting in 216 videos totaling around 45 minutes of raw footage.

By extracting selected frames out of these videos, the dataset is created. These frames
are chosen to be as diverse as possible, representing all phases of the launch (rocket sitting on
launchpad, launching, flying and dropping). While it is possible to extend the dataset by in-
cluding more frames with higher similarity, training advantages would get increasingly limited.
The fact that the footage was created with a diverse set of cameras, optics and setups increases
variety among the images extracted. At the same time, it improves the neural network’s ability
to handle different setups in the future.

As final step in the dataset creation process, it is necessary to decide on how to resize
differently-sized images. As discussed before, the chosen model is trained for an input size of
640x640, meaning that larger imagery needs to be downscaled before being usable for training.
While there are many different methods to choose for this process (e.g. stretching, cropping or

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

4.3. Dataset Creation 21

Figure 4.2: Annotation heatmap of the dataset (left) and bounding box sizes (right). The average
bounding box size of the dataset is 18x66 pixels. Images created using Roboflow Annotate[33].

fitting), most of them distort the image, meaning that the network learns incorrect represen-
tations of the objects it is supposed to recognise. In this work, fitting is used, which means
that large images are rescaled wile maintaining their aspect ratio. The same method is used to
preprocess images in the image processor developed in chapter 5.

4.3.2 Labeling

Image labeling is the process of identifying and marking different object classes present in an
image. As a matter of fact, most people label images on a day-to-day basis without even notic-
ing, as it is one way how companies like Google perform their ”I am not a robot”-checks. For
the present work, image labeling includes drawing bounding boxes around all rockets present in
each image of the dataset, including those which are not fully visible or occluded partly. The
tool used in this work is the open-source Computer Vision Annotation Tool (CVAT) developed
by Intel2.

The final dataset consists of 525 images, containing 627 annotated rockets. Figure 4.2 shows
a heatmap of all bounding boxes across all images. It is clearly visible that the rockets are mainly
focused around a vertical column in the center of the image. This information can be used when
considering cropping images to gain performance. The second image in figure 4.2 contains a
centered representation of all bounding boxes, giving a good depiction of average bounding
box dimensions. This information is often used by neural network developers to determine so-
called anchor boxes, which can be understood as predefined bounding boxes for which the model
searches first. Appendix A contains examples of labeled images.

2https://cvat.org/ (Accessed 04.01.2022)

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

22 Chapter 4. Model Selection and Training

4.3.3 Splitting Training, Validation and Test Sets

Before the actual training can start, it is necessary to split the dataset into subsets for training,
validation and testing. This is necessary to avoid a phenomenon called overfitting. Overfitting
occurs when the model starts aligning too closely to the training data, meaning that it learns
to ”memorise” the data instead of recognizing general patterns. Thus, the model’s effectiveness
when processing new images it wasn’t trained on starts to decrease.[32]

The training set is the largest portion of the dataset and used for the actual model training.
After each training iteration, the model is evaluated based on its performance on the validation
set. This allows the developer or algorithm to get a sense of how well the model performs on
images it never saw before. The results of this evaluation are also generally used to further
enhance the model, e.g. by tuning its parameters. A test set is used to make a final assessment
of the model’s effectiveness. This prevents the final evaluation from being skewed towards the
validation set as a result of the developer manually overfitting the model in its design process.
In many object detection challenges, the labeled test data is not available publicly for the same
reason.

There is no clear consensus on how to ideally divide the data into the three subsets. It largely
depends on the total size of the dataset as well as the general task at hand, and can be considered
an optimisation problem itself. For this work, the data is divided into 70% for training, 20% for
validation and 10% for testing, which is the split recommended by the developers of YOLOv5[32].

4.4 Training

There are three main ways how the general performance of a neural network based object de-
tection model can be improved.

The first and most obvious step is extending and improving the training dataset. As
mentioned before, a diverse and complete dataset is the key component to decently training any
model. Increasing variety among images and excluding those which divert too much from the
sought-after objects almost certainly improve a model’s training performance.

Secondly, developers can adjust training parameters to change how the model learns.
For example, one can change the number of epochs, the batch size or the training-related hy-
perparameters such as learning rate and decay.

Lastly, it is possible for experienced developers to modify the model itself. This includes
changing, adding and removing layers from the model, modifying the activation function or per-
forming similar adjustments to the model’s structure and topology. Many new neural network
models are created through this way.

This work focuses on adjusting training parameters.

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

4.4. Training 23

0 150 300 450 600 7500

0.2

0.4

0.6

Epoch

m
A

P

Random weights
COCO weights

0 50 100 150 200 250
Epoch

batch size 1
batch size 4
batch size 8
batch size 32

Figure 4.3: Accuracy development during model training. The left plot visualises how much longer it
takes for the model to converge when initiating it with random weights. The right side visualizes how
different batch sizes affect the initial training performance.

4.4.1 Initiating Training with Random vs. Pretrained Weights

The first training is performed with the default YOLOv5m training configuration with batch
size 16. Instead of starting from scratch with random weights, it is initiated based on an existing
model trained on the COCO dataset. The training is performed over 1000 epochs, meaning the
entire dataset passes through the network just as often. However, the early-stopping algorithm
implemented in YOLOv5 stops the training earlier if no improvement is seen over 100 consecu-
tive epochs. The first training automatically stops after 720 epochs, with the best results being
observed at epoch 619. The final accuracy values on the validation dataset are 66.4%mAP and
93.1%mAP50.

The next training is executed with the same parameters, but with random weights instead of
starting from a pretrained model. After 683 epochs, the model stopped training at an accuracy
of 61.8%mAP (92.2%mAP50). The results are visualised in figure 4.3. It is interesting to see
how it takes significantly longer for the model to start converging when the weights are initiated
randomly. These results clearly confirm that, at least in the given case, it is better to start from
a pretrained state instead of starting from scratch when training a new model.

4.4.2 Varying Batch Sizes

Next, the performance of the model when trained at different batch sizes is compared. The
batch size defines how many samples are passed through the neural network before adjusting
any weights. A larger batch size usually allows for a more accurate estimate of the gradient, but
comes at a higher memory cost and often leads to degrading generalization performance[22]. At
the same time, training usually converges faster when using smaller batch sizes, as weights are

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

24 Chapter 4. Model Selection and Training

Batch
Size

Initial
Weights

Hyper-
parameters mAPval mAPval

50 Epochs

1 COCO default 66.1% 92.1% 714
4 COCO default 66.0% 92.7% 627
8 COCO default 66.3% 94.0% 677
8 COCO evolved 66.3% 92.5% 960
16 random default 61.8% 92.2% 683
16 COCO default 66.4% 93.1% 720
16 COCO evolved 65.7% 94.5% 933
32 COCO default 65.0% 94.3% 683

Table 4.3: YOLOv5 performance on the rocket validation dataset after training with different configu-
rations.

updated after each pass[18]. For YOLOv5 however, it is important to note that the developers
decided to automatically adjust two hyperparameters together with the batch size: loss and
weight decay. This was done as to make training performance of the model as indifferent to the
batch size as possible.

In this work, training is evaluated for batch sizes 1, 4, 8, 16 and 32. A higher batch size
is not possible due to the limited memory availability on the NVIDIA Jetson. The results are
listed in table 4.3 and visualised in figure 4.3.

The final accuracy is quite similar across all batch sizes. The highest mAP is observed at
batch size 16, even though mAP50 was slightly higher for batch size 32 at 94.3%. While the
very initial gain in accuracy differs greatly across the batch sizes, it converges after around 200
epochs. It is interesting to note that the total training time was very different across the different
batch sizes. At a batch size of 32, the algorithm took an average of 20 seconds per epoch, which
is almost six times faster than the 116 seconds it took to compute one epoch at a batch size of
one. This can be explained by the higher amount of forward- and backwards passes necessary
per epoch (the number of passes necessary equals the amount of training samples divided by the
batch size).

4.4.3 Hyperparameter Evolution

There are about 25 hyperparameters that can be tuned to optimise the training performance
of YOLOv5. While adjusting them all manually is always an option, it requires a lot of experi-
ence and research to find optimal values by hand. That is why YOLOv5 offers a feature called
hyperparameter evolution, a hyperparameter optimisation method using a genetic algorithm at
its core. As genetic algorithms are a whole big topic on their own, this section only describes
the methodology used in the YOLOv5 implementation. A more generalised introduction can be
found in [26].

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

4.5. Results and Discussion 25

The YOLOv5 hyperparameter evolution algorithm works as follows. First, the model is
trained for a specific set of epochs with default parameters. Then, these parameters are mu-
tated according to the formula described below. Next, a new generation is trained based on the
new parameters. This procedure has to be repeated for many generations, with every genera-
tion choosing its starting parameters based on the best performing generations that preceded
it. This selection process is slightly randomised on its own, so that there is a slight chance of
choosing the second or third best generation as a starting point instead of the best. During
mutation, there is a 80% chance of a parameter value being changed. If that is the case, a
mutation factor is calculated based on a normal distribution (mean = 1, variance = 0.04) and
a parameter-specific gain value. The original hyperparameter is then multiplied by this factor
and limited to predefined constraints.[21]

While there is a good chance of hyperparameter evolution producing optimised parameters,
it is a very time-intensive process that cannot guarantee ideal outcomes. In this work, evolution
is performed for 300 generations of 20 epochs each (6000 epochs in total). The batch size is 16.
The evolved hyperparameters (as well as the defaults) can be found in table A1 of the appendix.

Using these parameters, training is re-initiated at batch sizes 8 and 16. For batch size 8,
the evolved parameters proved to be worse than the standard ones, leading to a lower mAP
and mAP50 (table 4.3). For batch size 16, only mAP50 increased slightly by 1.4% points while
mAP degraded by 0.7% points. Overall, these results indicate that the default hyperparameters
may already be near-optimal for the given use case, and that much more generations might be
necessary to find better values.

4.5 Results and Discussion

To get a final and unbiased evaluation of the trained models, the most promising two are con-
verted to FP16 TensorRT engines again using trtexec and evaluated using the test set of the
rocket dataset. This includes the models that were trained at batch size 8 and 16 with otherwise
default configurations.

The model trained at batch size 8 achieves a final mAP of 53.9% (86.9% mAP50), compared
to slightly better 55.9% for the model trained at batch size 16 (87.4% mAP50). The lower accu-
racies on the test set can be explained by the low amount of images within the set: It is unlikely
that just 50 images properly represent all possible detection scenarios, and if only five images
contain exceptionally difficult settings, 10% of the set are already affected. Considering this,
the viability of using such small subsets can be questioned. As long as the dataset is not sig-
nificantly larger, it might make more sense to omit the test set and use its contents for training
and validation instead.

Nevertheless, the final model is still very accurate and well suited for use in an optical rocket
tracker. Figure 4.4 shows that the model performs decently well at detecting all rockets, but

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

26 Chapter 4. Model Selection and Training

0 0.2 0.4 0.6 0.8 10

20

40

60

80

100

IoU Threshold

%

mAP

test
train
val

0 0.2 0.4 0.6 0.8 1
IoU Threshold

Correct #1 Prediction

test
train
val

Figure 4.4: Left: mAP of the final model at different IoU thresholds. Right: Percentage of cases where
the most confident prediction of the model is correct. Note how the model performs almost ideally on
the training set, whereas it struggles more with images that it has never seen.

struggles with accurately fitting bounding boxes, leading to worse performance at higher IoU
thresholds. For a potential tracker, this means that general trends - like the rocket’s acceleration
and direction - are most likely reproducible, even though the detected position of the rocket at
a given moment might deviate slightly from the actual one.

When evaluating just the model’s most confident predictions (as it will be the case during
real-world deployment), it is able to correctly detect rockets in 90.4% of the test and validation
images at an IoU of 50%. Actively including this metric into the selection, training and validation
process would be an interesting approach to investigate in future works.

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

Chapter 5

Implementation in the ROS
Framework

The goal of this chapter is to develop an image processor which is capable of loading and running
the YOLOv5m model trained in the previous chapter in real-time on a NVIDIA Jetson AGX
Xavier. Using ROS ensures a high level of compatibility with different robotics software, making
the image processor ideal for use in an automted optical rocket tracker. The code is fully available
on GitHub (https://github.com/DavidBaldsiefen/rocket_tracker) including instructions
on how to reproduce the results of section 5.4.

5.1 Robot Operating System

5.1.1 General

The Robot Operating System (ROS) is an open source software framework for robotics appli-
cations. Next to an extensive set of software libraries and interface definitions, the software
development kit also includes several tools for logging, debugging, visualization and more. The
modular architecture facilitates fault isolation, separation of independent code blocks and clear
communication interfaces between different sensors, actuators and software elements.[28, 30]

ROS supports multiple programming languages such as Python and C++, though only the
latter is used in this work. This section gives an overview of the frameworks key important
components.

Nodes are the core component of any ROS-based software project. Each node can be under-
stood as an individual process that is responsible for performing a specific task. In order to allow
for high parallelization and synchronization, each node spawns multiple threads responsible for
receiving, storing and processing incoming messages. This requires little to no user interaction
as it is mostly handled by the ROS backend.

Topics are the primary way of communication between different nodes. By creating a
message publisher, associated with a specific datatype and unique name, nodes can broadcast

27

https://github.com/DavidBaldsiefen/rocket_tracker

28 Chapter 5. Implementation in the ROS Framework

information to all other nodes on the same network, provided they have a corresponding sub-
scriber. Again, communication is entirely handled by the ROS backend. It is also possible to
have different nodes communicate across devices using TCP. Once a node receives a message
through a topic, it is handled in a user-defined callback method. By default, those callbacks are
protected by mutexes, meaning that only one callback on a specific topic is executed at a time.
However, if a node subscribes to multiple topics simultaneously, their callbacks may be executed
in parallel. Naturally, any level of parallelization is limited by the amount of threads the under-
lying hardware is able to execute in parallel. If a receiving node is busy while new messages are
arriving in one of its subscribers, those messages are collected in a queue of user-defined length,
with the oldest ones being discarded first once that length is exceeded. It is possible for multiple
nodes to publish and subscribe on the same topics.

The parameter server is another communication interface ROS offers. However, unlike
topics, it is neither optimised for performance nor large chunks of data. Instead, as the name
indicates, its main purpose is to share configuration parameters between different nodes. Every
parameter can be set and retrieved by any node based on a unique identifier. In addition, it is
possible to load and store parameters from and to configuration files.

Launchfiles are the most convenient way of starting several nodes at once. They contain
information about the nodes to spawn, as well as arguments and parameters to set initially.
They are written in XML format and executed by using the roslaunch command line tool.

5.1.2 T-REX Node Structure

Figure 5.1: T-REX node composition. Incoming frames are processed by the framegrabber, and then
published to the GUI, diskwriter and image processor. The diskwriter is responsible for saving any new
images to the hard drive. The image processor is responsible for detecting rockets in the incoming images.
Whenever a rocket is found, its coordinates within the frame are published to the controller node, which
calculates the way the motors shall move based on the rockets current and past positions. Lastly, the
motor interface communicates those new commands to the tracker motors.

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

5.2. Testing Methodology 29

As noted in section 2.1, the T-REX software is built on the ROS distribution Melodic
Morenia[28]. OpenCV 4[2] serves as a library to perform most tasks related to image acqui-
sition and processing. A modified version of cv-bridge allows ROS Melodic and OpenCV4 to
compile together. The graphical user interface (GUI) was developed in the form of a rqt-plugin.

The core software of T-REX (excluding the GUI) consists of up to ten nodes. Independent
from the amount of cameras used, the software always spawns one logger node, one controller
node, one motor interface node and one main node. While the controller node is responsible
for calculating the way the motors shall move next based on the rockets coordinates within the
camera frame, the motor interface node is responsible for communicating the controllers output
to the actual motors. The main node is managing communication and synchronization between
different nodes, but is planned to become deprecated in a future release. The logger node logs
information of the other nodes to logfiles and the console output.

Apart from those base nodes, the software spawns three nodes per input camera, with up to
two cameras being supported.

The first node spawned is the framegrabber node. It initialises the video capture using
OpenCV, gathers new frames from the capture at a predefined rate and publishes those to the
other nodes using an image transport publisher.

The second node is the diskwriter node. Its only task is to subscribe to the image topic and
store frames on the hard drive.

The third node is the image processor. It also subscribes to the image topic, but processes
every incoming frame with the goal of identifying rockets. Depending on the configuration, a
Kalman filter supports the algorithm in that process. All current image processing methods are
based on colour, contrast, brightness, Haar-like features or a combination of the four. Once a
likely target has been identified in the image, its coordinates within the frame are published
together with a confidence score and metadata such as the frame ID and timestamps.

As the software for the framegrabber and image processor is identical for each camera, this
work considers single-camera setups only. The image processor developed in this chapter is
loosely based on the T-REX node structure.

5.2 Testing Methodology

This section describes the testing methodology behind all performance measurements obtained
on the NVIDIA Jetson AGX Xavier as part of this chapter.

In every performance test, a 480x640 pixel video is used as input. The video consists of
training and validation images of the dataset from chapter 4. It is played at 50fps and looped
constantly. For every processed frame, the image processor logs the latency as well as time
measurements of individual processing steps. Latency is always determined based on the time
difference between frame capture and detection publication. After 1000 processed frames, av-
erages over the last 1000 measurements are calculated and printed to the console. In addition,
throughput of the image processor is calculated based on the time difference between the first

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

30 Chapter 5. Implementation in the ROS Framework

and last frame of each batch. The image processor also checks incoming frames for continuity.
Whenever a frame ID is skipped, the frame is considered ”dropped”. It is important to note that
throughput is always limited by the publishing rate of the framegrabber. All time measurements
are taken using ros::Time .

5.3 Implementation in ROS and Deployment on NVIDIA Jet-
son

The software developed in this chapter consists of three nodes, which are based on their T-REX
counterparts: A framegrabber that is responsible for reading new frames from the input video,
an image processor which is responsible for processing the images and publishing detections, and
an optional evaluator node which can be used as a GUI to visualise the detection process. As
the evaluator node is only receiving information and not at all relevant to the detection process,
it is not described further in this work.

Because chapter 4 showed that TensorRT offers significant performance gains at only small
losses in accuracy, neural network inference of the software is also based on TensorRT.

5.3.1 Basic Implementation

Before any programming starts, it is necessary to install and link all required libraries, which
includes TensorRT 8.0, CUDA 10.2+, CuDNN 8.2, Boost 1.65 and OpenCV 4. All of these
come bundled with the NVIDIA Jetpack 4.6 installed on the NVIDIA Jetson. The libraries are
linked by the CMakeLists.txt of the rocket tracker software. In addition, it is necessary to
install and compile a modified version of CV Bridge that is compatible with OpenCV 4. One
such version can be acquired at https://github.com/DavidBaldsiefen/vision_opencv.

The framegrabber node only performs one task. After loading the video from a source
which can be configured by command line arguments, its main loop spins at a rate defined by the
rocket tracker/fg fps target ros parameter (default: 50). Upon every loop, a new frame
is captured from the video using OpenCV, appended with a frame-ID and timestamp and then
published through an image transport publisher. When the end of the video is reached, the
capture-position is set to the first frame again causing an infinite loop.

The image processor node is responsible for the actual detection process. First, a Ten-
sorRT runtime is created and initialised using the TensorRT API. This involves loading the
engine file and deserializing it. Next, the input and output buffers of the engine need to be
prepared so they can be accessed by the GPU to read and write data. The TensorRT API
offers several interfaces through which the engine’s input and output bindings can be accessed,
returning information about their names, datatypes and dimensions. For example, the bindings
of the base YOLOv5m engine in FP16 precision look as follows:

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

https://github.com/DavidBaldsiefen/vision_opencv

5.3. Implementation in ROS and Deployment on NVIDIA Jetson 31

Binding "images", Datatype kFLOAT, Dimensions [1 3 640 640]

Binding "528", Datatype kHALFS, Dimensions [1 3 80 80 85]

Binding "594", Datatype kHALFS, Dimensions [1 3 40 40 85]

Binding "660", Datatype kHALFS, Dimensions [1 3 20 20 85]

Binding "output", Datatype kFLOAT, Dimensions [1 25200 85]

The input and output bindings contain important information about the engine itself. For
example, the input binding contains information about the input image format (here 3-channel
640x640 images, the ”1” denoting batch size). The output binding contains information about
the class count (here 80; For each of the 25200 detections, there are four coordinates, one box
confidence and 80 class confidences). It can also be seen how the input and output bindings
need to be in kFLOAT format, so that they are compatible with C++ floats, even though the
rest of the engine is using FP16 precision.

The buffer memory for each binding is allocated using cudaMallocHost . This leads to a
small performance gain compared to cudaMalloc , as it allocates page-locked memory which in
turn accelerates memory access by the GPU. The size of each buffer equals the product of every
dimension of its binding (e.g. 3×640×640×sizeof(float)=4800KiB for the input).

Once everything is initialised, the node constantly listens for new incoming messages from
the framegrabber, and handles all new images in the subscribers callback method. To make sure
that the image processor always evaluates the newest frame, its subscribers queue size is set to
one. For every new image, the following three steps need to be taken: preprocessing, model
inference and postprocessing.

Preprocessing

During preprocessing, the image needs to be rescaled to fit into the model input shape, and
then written to the input buffer. Rescaling is performed using OpenCV, and only done when
either of the images’ dimensions exceeds that of the model (no upscaling). During rescaling, the
aspect ratio of the original image is maintained. All of the remaining preprocessing steps are
combined into the following code snippet:

1 img.forEach <cv:: Vec3b >([&](cv:: Vec3b &p, const int * position) -> void{
2 // p[0 -2] contains bgr data
3 // position [0 -1] contains row - column location
4 // model_size contains the product of the model ’s width and height
5 // TensorRT expects input buffer in order [RRR ... GGG ... BBB]
6

7 int index = model_height * position [0] + position [1];
8 inputBuffer [index] = p[2] / 255.0f;
9 inputBuffer [model_size + index] = p[1] / 255.0f;

10 inputBuffer [2 * model_size + index] = p[0] / 255.0f;
11 });

Snippet 5.1: Input preprocessing

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

32 Chapter 5. Implementation in the ROS Framework

First of all, the image of type cv::Mat is iterated using the forEach expression. This is
considerably faster than any other iteration method, such as pointer-access or cv::Mat::at , the
reason being parallel execution of the lambda operator by OpenCV[1]. Specifying the reference
operator ”&” in line 1 also ensures that objects are passed by reference and not by value, saving
additional time. Then, the buffer array is subsequently filled up with the RGB data of the
image. As OpenCV stores the video frame in BGR order internally, it needs to be accessed
in reverse order during this process. Again, combining these steps is much faster than using
cv::cvtColor separately. Lastly, YOLOv5 expects the input array to contain floats in a range
of 0.0 to 1.0, which means that the elements of the cv::Mat need to be divided by 255.

Model Inference

Once the image data is written to the input buffer, the actual inference is initiated on the
GPU using nvinfer1::IExecutionContext::executeV2(buffers) . Unlike enqueueV2 , this
method call is fully synchronous, meaning it only returns once the inference is complete.

Postprocessing

After inference is complete, postprocessing can start on the CPU. As this call is fully syn-
chronous, the output buffers can be accessed directly without copying the contents to a different
location first, saving time. Each detection follows the following format:

[centerX, centerY, width, height, box confidence, n×class confidences]

Thus, for the default YOLOv5 models trained on the COCO dataset, each detection occu-
pies 85 datapoints. Because the rocket tracker can always only track one object at a time, it is
sufficient to determine the most likely target from all the detections, by iterating over all con-
fidence values and selecting the highest one. This offers significant speed advantages compared
to ”normal” post processing, where additional steps such as non-maximum suppression need
to be taken to eliminate overlapping bounding boxes. For single-class models such as the one
developed in this work, the class confidence is disregarded.

Once the most likely target has been determined, its coordinates, confidence, class ID and a
timestamp are collected and published by the image processor’s output publisher. The detection
process is now complete and the image processor ready to process the next frame. With this
approach, the trained model achieves an average latency of 19.35ms at a throughput of 50fps,
which means it satisfies the performance criteria of chapter 3.

5.3.2 Using Shared Memory

Stripping down the time measurements provides additional insight into potential areas of im-
provement. Even though the average latency is 19.35ms, the actual sum of preprocessing, in-
ference and postprocessing is significantly lower at 17.39ms. Thus, 1.96ms can be accounted to
neither of the three processing steps. Considering that only a few operations are not covered by
the time measurements, this discrepancy is most likely caused by ROS’ communication pipeline.

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

5.3. Implementation in ROS and Deployment on NVIDIA Jetson 33

This subsection describes the attempt to circumvent this bottleneck by replacing the pub-
lisher/subscriber pipeline of ROS with a shared memory approach. Even though this goes
against the core design principles of ROS, it offers two significant advantages: First, using
shared memory allows both the framegrabber and image processor threads to communicate ex-
tremely fast, skipping the publisher/subscriber pipeline which contains several serialization and
deserialization steps. This promises latency improvements. Second, it opens up the opportunity
of performing the preprocessing asynchronously inside of the framegrabber instead of the image
processor. Therefore, new frames can be preprocessed simultaneously to old frames being infer-
enced or postprocessed, which allows the system to work at a potentially higher throughput. It
is theoretically possible to do the same for postprocessing, but the advantage would be minimal
considering it already takes less than 0.1ms for the custom model.

Implementation Steps

The shared memory approach is implemented using the boost::interprocess library. First,
two vectors are constructed inside of a managed shared memory segment, which is directly
accessible by both threads. The first vector contains the preprocessed input, while the second
contains meta information about the new frame, such as frame ID, timestamp and preprocessing
time.

Upon every loop in the framegrabber, the newly captured frame is preprocessed and written
into the image vector using the same code as in snippet 5.1. However, instead of accessing the
vector elements through traditional ways such as vector::at or vector::operator[] , it is
first cast to a float pointer and then accessed like a normal array. This causes a measurable
speedup of around 0.5ms per frame, as all vector-based exception handling is skipped.

Last, the frame ID inside of the metadata vector is incremented by one, which informs the
image processor that a new frame is ready for processing. Copying the image vectors contents
into the engine’s input buffer is achieved fastest by using std::copy . Two alternative methods
were also evaluated for comparison: For the 480x640 test input, cudaMemcpy took an average
of 0.86ms, compared to std::memcpy at 0.75ms and std::copy at 0.53ms. Once the input
buffer is prepared, the image processor starts computing the new frame in the same way as before.

Despite the additional copying operation that has to be performed for every frame, the
usage of shared memory reduces the overall latency by roughly 1ms, resulting in a total latency
of 18.30ms for the trained model. At the same time, the potential throughput without dropping
frames increases by roughly 4fps (cf. figure 5.2).

5.3.3 Adding YOLOX Support

As YOLOX and YOLOv5 share very similar input and output structures, support for YOLOX
engines can be added to the software with only few modifications to the original code.

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

34 Chapter 5. Implementation in the ROS Framework

For the input buffer, the only difference is that YOLOv5 expects the RGB information in
form of floats with a range of 0.0 to 1.0, while YOLOX uses floats with a range of 0.0 to
255.0. This difference is accounted for by replacing the 255.0f divisor of snippet 5.1 with a
custom float variable, which is then set to 1.0f whenever the software is launched with the
yolox model launch parameter.

As for the output buffer, the only difference is that the bounding box coordinates are stored
in a different way when using YOLOX. Instead of absolute coordinates, the model uses local
coordinates within each predictions respective grid cell. By applying the same output decode
logic that is used in the official YOLOX repository, the coordinates can be easily converted to
the coordinate system used by the remaining tracker software. As this additional transformation
is only necessary for the most likely bounding box, the impact on performance is rather minimal.
At the same time, YOLOX-S only makes 8400 individual predictions, which is much lower than
the 25200 predictions of YOLOv5s. Thus, postprocessing is performed at an overall faster rate
for YOLOX (see table 5.2).

5.3.4 Things That Did Not Work

Despite the success of the shared memory approach, it was preceded by several unsuccessful
attempts at improving performance, which are listed here in short detail.

Running Pre- and Postprocessing Asynchronously Inside of the Image Processor

The first attempt at increasing throughput of the image processor was to perform pre- and
postprocessing asynchronously. This is achieved by using TensorRTs enqueue method instead
of execute , which returns control to the CPU immediately after starting inference. The core
pipeline looked as follows:

1. Upon receiving a new frame, perform preprocessing and store it in a local buffer.

2. Constantly poll the GPU and when it is available, copy the contents of the local buffer
into that of the GPU to start inference.

3. Immediately after starting a new inference job, perform postprocessing of the engine’s
(old) output and publish the results.

In theory, this allows the GPU to work on inference for almost the entire time, with the CPU
performing pre- and postprocessing in parallel. However, this approach proved to be even slower
than the base approach, caused by the fact that the three steps regularly got out of sync. In
addition, it did not tackle the latency issues caused by the ROS publisher/subscriber pipeline.

Combining the Framegrabber and Image Processor in a Single Node

Another attempt consisted of merging the framegrabber and image processor into a single node.
The advantage of this approach is that the entire publisher/subscriber pipeline is skipped, re-
moving the bandwidth bottleneck altogether. However, it meant that all image processing was

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

5.4. Performance of Different Models and Setups 35

now performed by a single thread, which was under high load constantly. In addition, the entire
thread was blocked whenever TensorRT started inference, meaning that no new frames could
be captured in that time. Overall, this approach proved to be slower than the base approach,
while also being unable to even capture new frames at a rate of 50fps. Therefore it is unfit for
use in a rocket tracker.

Using the Shared Memory Segment for TensorRT Buffers

Last but not least, it was attempted to place the entire TensorRT input buffer inside of a shared
memory segment. This would allow the framegrabber to write directly into the input buffer
after preprocessing, making the additional call to std::copy obsolete. However, the technical
hurdles of this approach could not be successfully overcome, as the GPU drivers are very strict
about where the memory segments may be that they access. Thus, this approach is still subject
of further research.

5.4 Performance of Different Models and Setups

As mentioned before, both implementations allow the trained YOLOv5m model in FP16 preci-
sion to be deployed at a latency of under 20ms while maintaining a throughput of 50fps, making
them well suited for use in an optical rocket tracker according to chapter 3. The shared memory
implementation even exceeds these criteria, allowing the model to run fluidly up until 58fps.
The purpose of this section is to take a more detailed look at the image processor’s performance
when using different models at different frame rates. For that reason, tables 5.1 and 5.2 also
contain measurements for the base YOLOv5m model in FP16 and FP32 precision, as well as
for the small object detectors YOLOv5s and YOLOX-S. Figures 5.2, 5.3 and 5.4 visualise the
performance of different models at varying framegrabber publishing rates.

5.4.1 Publisher/Subscriber vs. Shared Memory Implementation

The shared memory approach outperforms the publisher/subscriber implementation in all rele-
vant metrics. At a framegrabber publishing rate of 50fps, latency is on average 1.19ms lower for
all models. At the same time, the shared memory implementation allows for a higher potential
throughput and less dropped frames across a wide range of framegrabber fps, as shown in figures
5.2 and 5.3. Likewise, the total processing time for five frames is more than 5ms faster for the
trained YOLOv5m model before dropping frames. These results clearly indicate that the pub-
lisher/subscriber pipeline is a significant performance bottleneck when developing a real-time
image processor in ROS.

Furthermore, the figures neatly visualise what happens when the image processor’s latency
exceeds the time it takes for the framegrabber to publish a new frame. As soon as this happens,
it has a snowball effect on following frames, causing each consecutive frame to start and finish
processing increasingly late. This effect causes a significant spike in the average latency, as seen
in figure 5.2. In addition, the saturated throughput means that frames start being dropped at
regular intervals. This can be imagined like two marathon runners running laps around a small

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

36 Chapter 5. Implementation in the ROS Framework

football field: When one runner is just slightly slower, the other one will end up overtaking
him several times before finishing the marathon. In our case, this relates to the framegrabber
publishing more frames in a given amount of time than the image processor is able to process,
causing them to be dropped. Knowing the point where the latency exceeds the publishing rate
is therefore essential when trying to maximise a model’s real-time performance.

5.4.2 FP16 vs. FP32 Precision

As expected, all FP16 engines significantly outperform their FP32 counterparts in terms of la-
tency and throughput. On average, the latency of half-precision engines is over 50% lower with
throughput more than doubling. When considering the comparatively low loss in accuracy of
around 0.5% mAP (cf. chapter 4), these results show that half-precision TensorRT engines have
a much better speed vs. accuracy trade-off, making them well suited for real-time applications
such as the one discussed in this work.

5.4.3 Pre- and Postprocessing

Postprocessing for the trained YOLOv5m model takes 0.06ms on average, making it significantly
faster than the 2.85ms it takes to perform postprocessing for the base models. This can be ex-
plained based on the different model output sizes. The output array of the base model contains
up to two million datapoints due to the higher class count, compared to only 100.000 datapoints
in the custom model. Similarly, postprocessing for YOLOX-S is more than two times faster than
for YOLOv5s, as it only makes 8400 predictions compared to YOLOv5’s 25200. As a result, the
otherwise faster YOLOv5s model is outperformed by YOLOX-S in both implementations.

While the output arrays vary greatly in size based on the amount of classes and predic-
tions made, input arrays are of identical size and do not depend on the model used. Thus,
the expected results are almost identical preprocessing times across all models for both imple-
mentations. However, that is not the case. For the shared memory approach, preprocessing
of the small object detectors YOLOv5s and YOLOX-S is around 14% slower when compared
to YOLOv5m. Meanwhile on the publisher/subscriber implementation, preprocessing appears
consistent at around 1.0ms across all FP16 engines, whereas the FP32 engines are 70% slower
at an average of 1.7ms.

Despite a lot of experiments with code and model modifications, I was unable to find the
root cause of these variations. One theory is that it is related to the CPU cache being exhausted
due to the larger engine size. The profiling tool Valgrind confirmed the timings, but did not
reveal any more information about possible causes. Thus, they are subject for further research.
They are especially interesting as finding the origin of the anomalies might open up room for
further performance enhancements.

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

5.5. Lessons Learned 37

5.4.4 Performance of Small Object Detectors YOLOv5s and YOLOX-S

Both small object detectors easily exceed the latency and throughput requirements defined in
chapter 3. In the shared memory implementation, YOLOv5s and YOLOX-S achieve a total
processing time for five frames of 62.63ms and 60.26ms respectively, meaning that they are able
to process up to three additional frames before reaching the time limit of 100ms. Overall, the
lower postprocessing time of YOLOX-S allows it to reach a throughput of up to 84fps before
dropping more than 0.2% of frames, making it 4fps faster than YOLOv5s. Considering the fact
that on the COCO dataset, YOLOX-S is 4.3% points more accurate than YOLOv5s and only
2.8% points less accurate than YOLOv5m, this indicates that YOLOX-S is more suitable for use
in an automated optical rocket tracker than YOLOv5s, and may even outperform YOLOv5m
in scenarios that require higher speeds.

5.5 Lessons Learned

Even though the image processor developed in this chapter is already capable of running neural
networks at sufficient speeds for use in an automated optical rocket tracker, there are many
lessons to be learned for potential future improvements.

First of all, this chapter shows that in terms of speed, ROS may not be the ideal framework to
use in an automated optical rocket tracker. Although the publisher/subscriber implementation
is still able to fulfill chapter 3’s performance criteria, it is consistently slower than the shared
memory implementation, leading to the question whether there are additional bottlenecks hidden
in the ROS framework.

Secondly, subsection 5.3.4 shows that there are many structural code modifications which
can still be explored to offer additional performance gains. For example, solving the technical
hurdles of placing TensorRT buffers in the shared memory would most likely lead to an immediate
latency improvement of over 0.5ms, as it eliminates the need to perform an additional copying
operation for every frame.

Lastly, developing this image processor made clear that it is very important to carefully
examine each line of code when looking for potential performance improvements on such a high-
speed level. There are many seemingly irrelevant changes which actually lead to measurable
performance increases, such as iterating over vectors using pointers instead of method calls. It
is likely that many more such ”tricks” exist which allow the software to run even faster. Sim-
ilarly, section 5.4 revealed that there is still unexpected behaviour in the preprocessing code
which may be caused by such details.

Overall, the image processor developed in this work is not to be understood as a ”definite
solution”, but more as a basic foundation upon which projects such as T-REX may improve.

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

38 Chapter 5. Implementation in the ROS Framework

Latency PRE INF PST Throughput Dropped
Engine (ms) (ms) (ms) (ms) (fps) Frames
YOLOv5m custom (FP16) 19.35 0.80 16.54 0.05 50.0 0
YOLOv5m custom (FP32) 55.95 1.93 42.83 0.06 22.2 1251
YOLOv5m base (FP16) 33.03 1.02 18.10 2.84 45.1 108
YOLOv5m base (FP32) 61.74 1.46 45.26 2.88 20.1 1488
YOLOv5s base (FP16) 14.48 1.02 8.86 2.82 50.0 0
YOLOX-S base (FP16) 13.60 0.98 9.88 0.93 50.0 0

Table 5.1: Final performance measurements of different TensorRT engines in ROS when using the
publisher/subscriber implementation. All values are averages over 1000 processed images of size 480x640.

Latency PRE (FG IP) INF PST Throughput Dropped
Engine (ms) (ms) (ms) (ms) (fps) Frames
YOLOv5m custom (FP16) 18.30 1.64 (1.17 0.47) 16.53 0.05 50.0 0
YOLOv5m custom (FP32) 54.47 1.59 (1.08 0.51) 42.85 0.06 23.0 1175
YOLOv5m base (FP16) 32.45 1.54 (0.98 0.56) 18.17 2.86 46.2 81
YOLOv5m base (FP32) 59.66 1.55 (0.99 0.56) 45.16 2.84 20.6 1427
YOLOv5s base (FP16) 13.52 1.83 (1.29 0.54) 8.82 2.85 50.0 0
YOLOX-S base (FP16) 12.60 1.78 (1.22 0.56) 9.87 0.93 50.0 0

Table 5.2: Final performance measurements of different TensorRT engines in ROS when using the
shared memory implementation. Preprocesssing times include the time spent in the framegrabber (FG)
and in the image processor (IP). All values are averages over 1000 processed images of size 480x640.

30 45 60 75 90 105 1200

5

10

15

20

25

30

35

Framegrabber fps

La
te

nc
y

(m
s)

publisher/subscriber
shared memory

30 45 60 75 90 105 12030

35

40

45

50

55

60

65

Framegrabber fps

T
hr

ou
gh

pu
t

(fp
s)

publisher/subscriber
shared memory

Figure 5.2: Latency and throughput of both implementations based on different publishing rates of the
framegrabber. The model used is the trained YOLOv5m version in FP16 precision.

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

5.5. Lessons Learned 39

30 45 60 75 90 105 1200

250

500

750

1,000

1,250

Framegrabber fps

D
ro

pp
ed

Fr
am

es

publisher/subscriber
shared memory

30 35 40 45 50 55 6080

90

100

110

120

130

140

150

Framegrabber fps
T

(m
s)

publisher/subscriber
shared memory

Figure 5.3: Dropped frames and total processing time for five frames for both implementations based
on different publishing rates of the framegrabber. Measurements where more than 0.2% of frames were
dropped are disregarded for the total processing time. The model used is the trained YOLOv5m version
in FP16 precision.

30 40 50 60 70 80 90

60

80

100

120

140

Framegrabber fps

T
(m

s)

YOLOv5s

publisher/subscriber
shared memory

30 40 50 60 70 80 90

60

80

100

120

140

Framegrabber fps

T
(m

s)

YOLOX-S

publisher/subscriber
shared memory

Figure 5.4: Total processing time for five frames for both implementations based on different publishing
rates of the framegrabber. Measurements where more than 0.2% of frames were dropped are disregarded.
On the left are results for the base YOLOv5s model in FP16 precision. On the right are results of
base YOLOX-S model in FP16 precision. Everything above the dashed black line does not pass the
performance requirements of chapter 3.

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

Chapter 6

Summary, Conclusion and Outlook

6.1 Summary

Automatically detecting and tracking rockets in real-time is a challenging task which requires
a fast and accurate image processing algorithm. To make automated optical rocket tracking
viable for use in model rocketry, the algorithm needs to be deployable on portable and affordable
hardware platforms, such as embedded computing boards. This work investigated the viability
of neural network based approaches in combination with a NVIDIA Jetson AGX Xavier.

While chapter 1 introduces the goals and motivation of the thesis, chapter 2 offers an insight
into the theoretical background of rocket tracking, object detection and neural networks. It also
contains a description of the NVIDIA Jetson module used in this work, and explains why it is
a viable choice for an automated optical rocket tracker.

In chapter 3, performance criteria for such a tracker are defined based on common model and
sounding rocket specifications. Latency and throughput are presented as the two most important
speed metrics in image processing, and a formula to calculate both is derived mathematically.
The chapter concludes with the finding that the image processor needs to be able to process
five frames in less than 100ms, suggesting a throughput requirement of 50fps at a latency of less
than 20ms.

Chapter 4 details the neural network selection and training process. At the beginning of the
first half, mean Average Precision (mAP) is presented as the most common accuracy benchmark
for object detection tasks. This metric is then used to select promising neural network models,
which are subsequently deployed on the NVIDIA Jetson to evaluate their performance in FP16
precision. YOLOv5m proves to be the model with the best speed/accuracy trade-off, at a
throughput of 54.7fps and a mAP of 43.1%. The speed-tests also illustrate the advantages
of converting the models to half-precision TensorRT engines. Furthermore, the tests reveal
YOLOX-S as a faster, but slightly less accurate, alternative to YOLOv5m. The second half of
the chapter outlines the dataset creation and training process. First, footage from the T-REX
project is used to create the training dataset, which is split into three subsets for training,
validation and testing. Then, different training configurations are evaluated including varying
batch sizes and hyperparameter evolution. The best results were achieved by training at batch
size 16 with otherwise default configuration, leading to a final accuracy of 55.9%mAP. However,

41

42 Chapter 6. Summary, Conclusion and Outlook

the model’s ability to correctly identify a rocket with its most confident prediction is much
higher at 90.4%. This is relevant because the image processor exclusively uses the model’s most
confident detection. Overall, the chapter shows that extending the dataset is the most promising
way of increasing the model’s performance.

Finally, chapter 5 describes the implementation of an image processor capable of loading and
running the trained neural network model. It is fully embedded in the ROS framework, which
is introduced at the beginning of the chapter. Because ROS’ communication interface turns out
to be a measurable performance bottleneck in real-time scenarios, two possible implementations
are proposed at the end of the chapter. The first uses the default publisher/subscriber pipeline
and achieves a latency of 19.35ms at a throughput of 50fps with the trained model. The second
one uses shared memory, and achieves a latency of 18.30ms in the same scenario. A comparison
of different neural network models in both implementations proves that the shared memory
approach outperforms its counterpart in every metric, and once again demonstrates the speed
advantages of half-precision TensorRT engines. It also reveals YOLOX-S to be faster than
YOLOv5s within the full detection pipeline. The small object detector is able to fully process five
frames in 60.26ms, meaning it is able to process up to three additional frames before surpassing
100ms. This is especially interesting, as YOLOX-S is just 2.8% less accurate than YOLOv5m
on the COCO dataset. Finally, the chapter concludes with a list of learned lessons, which point
out some ways in which the proposed image processor’s performance could be improved even
further.

6.2 Conclusion and Outlook

The goal of this thesis is to develop a neural network based image processor which is fast and
accurate enough to be used in an automated optical rocket tracker. The final implementation
achieves speeds of over 50fps when deployed on a NVIDIA Jetson AGX Xavier, satisfying the
performance criteria of chapter 3. Therefore, it is fast enough to be used in an automated optical
rocket tracker. At the same time, the trained model correctly identifies a target rocket in over
nine out of ten cases. This is most likely more accurate than any of the conventional object
detection methods currently used in the T-REX project, such as colour, contrast and brightness.
However, this assumption still needs to be verified empirically, and is therefore up for further
research. Overall, it can be concluded that the image processor developed in this work is fast
enough to be used in an automated optical rocket tracker, while also being very accurate. The
usage of the ROS framework allows the software to work seamlessly with a variety of robotics
systems, including the rocket tracker developed as part of the T-REX project.

Furthermore, some findings of this work already found their way into the real world: As
chapters 4 and 5 show, half-precision TensorRT engines are on average more than two times
faster than their FP32 counterparts while only being slightly less accurate (-0.5% points mAP).
This prompted the author to submit a corresponding change request to the official YOLOv5
repository, which makes FP16 the default option while also allowing the user to customise the
engine’s input binding. The change request was merged into the main code base on 6th March
2022.[8]

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

6.2. Conclusion and Outlook 43

Even though the results of the thesis are more than satisfactory, there are several approaches
that can be taken to improve upon this work. For example, chapter 4 indicates that accuracy
of the model can most likely be enhanced by further extending the training dataset. It also
suggests the use of a custom accuracy metric that reflects the fact that the tracker can only
target one object at a time. On the performance side, switching to YOLOX-S promises speed
improvements of over 30fps while coming at a potentially insignificant accuracy loss. Besides
upgrading the hardware, switching to a faster model is probably the most feasible way of increas-
ing the image processor’s detection speed. Looking beyond the neural network based approach
suggested in this work, there are many alternatives which may be even better suited for the
given use case. For example, feature trackers examine differences between consecutive images to
identify moving objects, and are comparatively fast. It is also conceivable to combine different
object detection algorithms, for example by using feature trackers to generate region proposals
and then running classifiers on those regions. Once again, this underlines the importance of
investigating the accuracy and performance of different approaches empirically.

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

Appendix A

45

46 Appendix A

Figure A1: Hyperparameter evolution visualization, with accuracy (mAP) on the y-axis and the pa-
rameter value on the x-axis. Yellow indicates higher concentrations, while straight lines indicate that the
parameter was disabled during evolution. The parameters were evolved for 300 generations of 20 epochs
each.

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

Appendix A 47

Parameter Default Evolved Description
lr0 0.01 0.02241 initial learning rate (SGD=1E-2, Adam=1E-3)
lrf 0.01 0.10105 final OneCycleLR learning rate (lr0 * lrf)
momentum 0.937 0.95843 SGD momentum/Adam beta1
weight decay 0.0005 0.00066 optimizer weight decay
warmup epochs 3.0 2.3886 warmup epochs
warmup momentum 0.8 0.95 warmup initial momentum
warmup bias lr 0.1 0.07734 warmup initial bias lr
box 0.05 0.05885 box loss gain
cls 0.5 0.47486 cls loss gain
cls pw 1.0 1.3565 cls BCELoss positive weight
obj 1.0 0.98752 obj loss gain (scale with pixels)
obj pw 1.0 1.6004 obj BCELoss positive weight
iou t 0.20 0.2 IoU training threshold
anchors 3 3.771 anchors per output layer
anchor t 4.0 3.7503 anchor-multiple threshold
fl gamma 0.0 0.0 focal loss gamma
hsv h 0.015 0.00946 image HSV-Hue augmentation (fraction)
hsv s 0.7 0.88938 image HSV-Saturation augmentation (fraction)
hsv v 0.4 0.58234 image HSV-Value augmentation (fraction)
degrees 0.0 0.0 image rotation (+/- deg)
translate 0.1 0.12582 image translation (+/- fraction)
scale 0.5 0.48823 image scale (+/- gain)
shear 0.0 0.0 image shear (+/- deg)
perspective 0.0 0.0 image perspective (+/- fraction)
flipud 0.0 0.0 image flip up-down (probability)
fliplr 0.5 0.5 image flip left-right (probability)
mosaic 1.0 0.94532 image mosaic (probability)
mixup 0.0 0.0 image mixup (probability)
copy paste 0.0 0.0 segment copy-paste (probability)

Table A1: Overview of the final evolved hyperparameters and their default values. Evolution was
performed for 300 generations of 20 epochs each. Descriptions from [21].

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

48 Appendix A

Figure A2: Examples of labeled images in the final dataset.

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

Appendix A 49

Figure A3: Predictions made by the final model, together with their confidence score.

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

Bibliography

[1] Opencv 4.1.1 documentation. https://docs.opencv.org/4.1.1/, July 2019. Accessed
February 21st, 2022.

[2] OpenCV. Version 4.x. Open source computer vision library. https://opencv.org/, 2018.

[3] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a convolutional
neural network. In 2017 international conference on engineering and technology (ICET),
pages 1–6. Ieee, 2017.

[4] Inc. Apogee Components. Aspire. https://www.apogeerockets.com. Accessed February
21st, 2022.

[5] Encyclopedia Astronautica. Black brant. http://www.astronautix.com/b/blackbrant.
html. Accessed March 8th, 2022.

[6] Taiwo Oladipupo Ayodele. Types of machine learning algorithms. New advances in machine
learning, 3:19–48, 2010.

[7] Junjie Bai, Fang Lu, Ke Zhang, et al. Onnx: Open neural network exchange. https:
//github.com/onnx/onnx, 2022.

[8] David Baldsiefen and Glenn Jocher. Default fp16 tensorrt export. https://github.com/
ultralytics/yolov5/pull/6798, 2022.

[9] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed
and accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020.

[10] NVIDIA Corporation. Nvidia tesla v100 gpu architecture, version 1.1. https://images.
nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.
pdf, August 2017.

[11] NVIDIA Corporation. Jetson agx xavier series system-on-module datasheet, version
1.6. https://developer.nvidia.com/jetson-agx-xavier-series-datasheet, Decem-
ber 2021.

[12] NVIDIA Corporation. Nvidia tensorrt. https://developer.nvidia.com/tensorrt, 2022.

[13] NVIDIA Corporation. Nvidia tensorrt open source software. https://github.com/
NVIDIA/TensorRT, 2022.

51

https://docs.opencv.org/4.1.1/
https://opencv.org/
https://www.apogeerockets.com
http://www.astronautix.com/b/blackbrant.html
http://www.astronautix.com/b/blackbrant.html
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://github.com/ultralytics/yolov5/pull/6798
https://github.com/ultralytics/yolov5/pull/6798
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://developer.nvidia.com/jetson-agx-xavier-series-datasheet
https://developer.nvidia.com/tensorrt
https://github.com/NVIDIA/TensorRT
https://github.com/NVIDIA/TensorRT

52 Bibliography

[14] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object
detection with discriminatively trained part-based models. IEEE transactions on pattern
analysis and machine intelligence, 32(9):1627–1645, 2009.

[15] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox: Exceeding yolo series
in 2021. arXiv preprint arXiv:2107.08430, 2021.

[16] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 580–587, 2014.

[17] Raketenmodellbau Klima GmbH. Pegasus rtf modellrakete. https://www.
raketenmodellbau-klima.de/. Accessed February 21st, 2022.

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[19] Xin Huang, Xinxin Wang, Wenyu Lv, Xiaying Bai, Xiang Long, Kaipeng Deng, Qingqing
Dang, Shumin Han, Qiwen Liu, Xiaoguang Hu, et al. Pp-yolov2: A practical object detector.
arXiv preprint arXiv:2104.10419, 2021.

[20] David H Hubel and Torsten N Wiesel. Receptive fields of single neurones in the cat’s striate
cortex. The Journal of physiology, 148(3):574, 1959.

[21] Glenn Jocher, Alex Stoken, Ayush Chaurasia, Jirka Borovec, NanoCode012, TaoXie,
Yonghye Kwon, Kalen Michael, Liu Changyu, Jiacong Fang, Abhiram V, Laughing, tkianai,
yxNONG, Piotr Skalski, Adam Hogan, Jebastin Nadar, imyhxy, Lorenzo Mammana,
AlexWang1900, Cristi Fati, Diego Montes, Jan Hajek, Laurentiu Diaconu, Mai Thanh Minh,
Marc, albinxavi, fatih, oleg, and wanghaoyang0106. ultralytics/yolov5: v6.0 - YOLOv5n
’Nano’ models, Roboflow integration, TensorFlow export, OpenCV DNN support, October
2021.

[22] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp
minima. arXiv preprint arXiv:1609.04836, 2016.

[23] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755. Springer, 2014.

[24] Estes Industries LLC. Crossfire isx. https://estesrockets.com/. Accessed February
21st, 2022.

[25] Xiang Long, Kaipeng Deng, Guanzhong Wang, Yang Zhang, Qingqing Dang, Yuan Gao,
Hui Shen, Jianguo Ren, Shumin Han, Errui Ding, et al. Pp-yolo: An effective and efficient
implementation of object detector. arXiv preprint arXiv:2007.12099, 2020.

[26] Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

https://www.raketenmodellbau-klima.de/
https://www.raketenmodellbau-klima.de/
http://www.deeplearningbook.org
https://estesrockets.com/

Bibliography 53

[27] NASA. Shuttle launch imagery. https://www.nasa.gov/pdf/167722main_
LaunchImagery06.pdf, 2006.

[28] Inc. Open Source Robotics Foundation. Robotic operating system. version melodic morenia.
https://www.ros.org, 2018.

[29] Michael Plotke. 2d image-kernel convolution animation. https://commons.wikimedia.
org/wiki/File:2D_Convolution_Animation.gif, Jan. 28, 2013. CC BY-SA 3.0 License.

[30] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, Andrew Y Ng, et al. Ros: an open-source robot operating system. In ICRA
workshop on open source software, volume 3, page 5. Kobe, Japan, 2009.

[31] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.

[32] Inc. Roboflow. Roboflow blog: The train, validation, test split and why you need it.
https://blog.roboflow.com/train-test-split/, 2020.

[33] Inc. Roboflow. Roboflow annotate. https://roboflow.com/annotate, 2022.

[34] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations
by back-propagating errors. nature, 323(6088):533–536, 1986.

[35] Katharina Schuettauf, Rainer Kirchhartz, et al. Rexus user manual, 2017.

[36] Shrey Srivastava, Amit Vishvas Divekar, Chandu Anilkumar, Ishika Naik, Ved Kulkarni,
and V Pattabiraman. Comparative analysis of deep learning image detection algorithms.
Journal of Big Data, 8(1):1–27, 2021.

[37] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient object
detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 10781–10790, 2020.

[38] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeulders.
Selective search for object recognition. International journal of computer vision, 104(2):154–
171, 2013.

[39] Sandra Vieira, Walter HL Pinaya, and Andrea Mechelli. Using deep learning to investi-
gate the neuroimaging correlates of psychiatric and neurological disorders: Methods and
applications. Neuroscience & Biobehavioral Reviews, 74:58–75, 2017.

[40] Stefan Völk, Mikael Viertotak, Stefan Krämer, Simon Mawn, and Katharina Schüttauf.
Rexus 24 failure investigation. 2019.

[41] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Scaled-yolov4: Scaling
cross stage partial network. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13029–13038, June 2021.

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

https://www.nasa.gov/pdf/167722main_LaunchImagery06.pdf
https://www.nasa.gov/pdf/167722main_LaunchImagery06.pdf
https://www.ros.org
https://commons.wikimedia.org/wiki/File:2D_Convolution_Animation.gif
https://commons.wikimedia.org/wiki/File:2D_Convolution_Animation.gif
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://blog.roboflow.com/train-test-split/
https://roboflow.com/annotate

54 Bibliography

[42] Guanghua Yu, Qinyao Chang, Wenyu Lv, Chang Xu, Cheng Cui, Wei Ji, Qingqing Dang,
Kaipeng Deng, Guanzhong Wang, Yuning Du, et al. Pp-picodet: A better real-time object
detector on mobile devices. arXiv preprint arXiv:2111.00902, 2021.

Implementation and evaluation of object detection using neural networks for
use in an automated optical rocket tracking system

Proclamation

Hereby I confirm that I wrote this thesis independently and that I have not made use of any
other resources or means than those indicated.

Hanoi, 11th of March 2022

	Introduction
	Thesis Goal
	Thesis Outline

	Background and Terminology
	T-REX
	Object Detection
	Neural Networks
	Components of Neural Networks
	Training Neural Networks
	Convolutional Neural Networks
	State of the Art in Object Detection using Neural Networks

	NVIDIA Jetson AGX Xavier

	Performance Criteria for the Image Processor
	General Performance Criteria
	Calculating Speed Requirements of the Image Processor
	Latency and Throughput
	Setting up a Formula
	Choosing Suitable Parameters

	Model Selection and Training
	Selecting Promising Neural Network Models
	Deploying and Evaluating Performance on NVIDIA Jetson AGX Xavier
	Technical Background
	Testing Methodology
	Results

	Dataset Creation
	Collecting Data
	Labeling
	Splitting Training, Validation and Test Sets

	Training
	Initiating Training with Random vs. Pretrained Weights
	Varying Batch Sizes
	Hyperparameter Evolution

	Results and Discussion

	Implementation in the ROS Framework
	Robot Operating System
	General
	T-REX Node Structure

	Testing Methodology
	Implementation in ROS and Deployment on NVIDIA Jetson
	Basic Implementation
	Using Shared Memory
	Adding YOLOX Support
	Things That Did Not Work

	Performance of Different Models and Setups
	Publisher/Subscriber vs. Shared Memory Implementation
	FP16 vs. FP32 Precision
	Pre- and Postprocessing
	Performance of Small Object Detectors YOLOv5s and YOLOX-S

	Lessons Learned

	Summary, Conclusion and Outlook
	Summary
	Conclusion and Outlook

	Appendix A

