

Goals of this Class

I am aiming at enabling students

- To understand the basic principles of all aspects of 3D point cloud processing
- To understand the Simultaneous Localization and Mapping (SLAM) problem
- To enable your to talk to engineers / surveyors / CV-people / CS-people / ...
- To solve problems of modern sensor data processing
- To experience that real application scenarios are challenging
 - In terms of computational requirements
 - In terms of memory requirements
 - In terms of implementation issues

What is 3D Point Cloud Processing?

a few Examples for 3D Point Clouds

Modern Computer Vision

Microsoft Kinect

- Video 30 Hz
- RGB video: 8-bit VGA resolution (640 × 480 Pixel)
- Monochrome Video Stream (depth information): 11-bit VGA 2048 depth values
- Depth: 1,2 3,5 m, (enhanced: 0,7 6 m)
- FOV: 57° (h) × 43°(vert)
- Tilt unit 27°
- Cost effective

More Traditional Laser Scanner

c = 299.792.458 m/s (Vacuum), also

 $d = 299.792.458 \text{ [m/s]} \times t/2 (d \text{ Distance[m]}, t \text{ time-of-flight[s]})$

With a resolution of 10mm: Precision of the time-of-flight measurement in the order of pico seconds (10⁻¹² s) needed!

(2D laser scan)

A Custom Made 3D Laser Scanner

3D laser scanner for mobile robots based on SICK LMS

- Based on a regular (e.g., SICK LMS-200) laser scanner
- Relatively cheap sensor
- Controlled pitch motion (120° v)
- Various resolutions and modi, e.g., reflectance measurement {181, 361, 721} [h] x {128, ..., 500} [v] points
- Fast measurement, e.g., 3.4 sec (181x256 points)

Mounted on mobile robots for 3D collision avoidance and building 3D maps.

(Video Crash)

(Video NoCrash)

3D Scanning Principles

Symbol Mode Cont. rotating pivoting Yaw Yaw-Top Roll Pitch

Advantages

- + Complete 360° scans
- + Good point arrangements
- High point density at top
- + Fast scanning (half rot.)
- High point density at top
- Ground not measured
- + Fast scanning (half rot.)
- + High point density in front
- Unusual point arrangement
- High point density at the sides
- Small apex angle
- + Good point arrangements
- + Easy to build

http://www.rts.uni-hannover.de/index.php/%C3%9Cbersicht der m%C3%B6glichen Scannerkonfigurationen

Professional 3D Scanning

- Professional 3D scanners
 - Structured light (close range)

pulsed laser vs. time-of-flight (mid and long range)

3DTK – Hands-on-experience

- What you should learn now, using the show program
 - Most robotic data sets acquired by a rotating SICK scanner contain some outliers (it is worse with the kinect)
 - Data sets of professional scanners can be very large

- Things to try
 - Viewing a single small 3D scan acquired in Schloß Dagstuhl
 bin/show -s 1 -e 1 dat
 - Viewing a high resolution outdoor 3D scan
 bin/show -s 0 -e 0 -f riegl_txt --reflectance bremen_city
 - Viewing a high resolution outdoor 3D scan with colors

bin/show -s 0 -e 10 --reflectance -f uosr ~/dat/nachbargarten/

