
Robotics and Telematics3D Point Cloud Processing
7/23/14

1

The image depicts how our robot Irma3D sees
itself in a mirror. The laser looking into itself

creates distortions as well as changes in
intensity that give the robot a single eye,

complete with iris and pupil. Thus, the image is
called

"Self Portrait with Duckling".

3D Point Cloud
Processing

Prof. Dr. Andreas Nüchter

Basic
 Data Structures

2
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

3D Point Cloud as ...

… vector of (x,y,z)-values

• In 3DTK we have …
– While reading a 3D Point Cloud

 virtual void readScan(const char* dir_path,
 const char* identifier,
 PointFilter& filter,

 std::vector<double>* xyz,
 std::vector<unsigned char>* rgb,

 std::vector<float>* reflectance,
 std::vector<float>* amplitude,
 std::vector<int>* type,
 std::vector<float>* deviation);

– Called e.g., in the function BasicScan::get()
– Finally the data ist stored in a STL-map

 std::map<std::string, std::pair<unsigned char*, unsigned int>>
 m_data;

3
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

3D Point Cloud as ...

… as range / intensity image

• 2D array for kinect-like sensors
• Laser scanners

4
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

3D Point Cloud as ...

… as range / intensity image

• 2D array for kinect-like sensors
• Laser scanners

5
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

3D Point Cloud as ...

… as range / intensity image

• 2D array for kinect-like sensors
• Laser scanners

6
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

3D Point Clouds as 2D arrays (1)

• Laser scanners
– Equirectangular projection

7
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

3D Point Clouds as 2D arrays (2)

• Laser scanners
– Cylindrical projection

8
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

3D Point Clouds as 2D arrays (3)

• Laser scanners
– Cylindrical projection

9
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

3D Point Clouds as 2D arrays (4)

• Laser scanners
– Mercator projection

• Cannot be “constructed”, only computational
principle

• The Mercator projection is an isogonic
projection, i.e., angles are preserved

10
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

3D Point Clouds as 2D arrays (5)

• Laser scanners
– Rectilinear
– also “gnomonic" or “tangentplane" projection.

The primary advantage of the
rectilinear projection is that it
maps straight lines in 3D space
to straight lines in the 2D image.

11
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

3D Point Clouds as 2D arrays (6)

• Laser scanners
– Rectilinear
– also “gnomonic" or “tangentplane" projection.

12
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

3D Point Clouds as 2D arrays (7)

• Laser scanners
– Pannini, also called Panini or "Recti-Perspective"

or "Vedutismo"
• This projection can be imagined as the rectilinear

projection of a 3D cylindrical image.

• This image is itself a projection of the
sphere onto a tangent cylinder.

• The center of the rectilinear projection
can be different and is on the view axis
at a distance of d from the cylinder axis

• The recommended field of view for the
Pannini projection is less than 150° in
both vertical and horizontal directions.

13
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

3D Point Clouds as 2D arrays (8)

• Laser scanners
– Pannini projection

14
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

3D Point Clouds as 2D arrays (9)

• Laser scanners
– Stereographic projection

• It can be imagined by placing a paper
tangent to a sphere and by illuminating
it from the opposite pole.

• R = 1 generates exactly the same equations as the Pannini
projection and high values for R introduce more distortion.

15
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

3D Point Clouds as 2D arrays (10)

• Laser scanners
– Stereographic projection

16
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

More Information per Pixel

• For representing a 3D point cloud as array it is advantageous
to store more information per (x,y)-pixel in a panorama image
(cf. panorama.h and panorama.cc)

 iReflectance.at<uchar>(y,x) = (*it)[3]*255; //reflectance

 iRange.at<float>(y,x) = range; //range

 if(mapMethod == FARTHEST){

 //adding the point with max distance

 if(iRange.at<float>(y,x) < range){

 iMap.at<cv::Vec3f>(y,x)[0] = (*it)[0]; //x

 iMap.at<cv::Vec3f>(y,x)[1] = (*it)[1]; //y

 iMap.at<cv::Vec3f>(y,x)[2] = (*it)[2]; //z

 }

 } else if(mapMethod == EXTENDED){ //adding all the points

 cv::Vec3f point;

 point[0] = (*it)[0]; //x

 point[1] = (*it)[1]; //y

 point[2] = (*it)[2]; //z

 extendedIMap[y][x].push_back(point);

 }

17
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

Other Representation of 3D Point Clouds

• Please consider the following

18
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

Other Representation of 3D Point Clouds

• Please consider the following

19
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

Other Representation of 3D Point Clouds

• Please consider the following

20
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

Other Representation of 3D Point Clouds

• Please consider the following

21
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

Other Representation of 3D Point Clouds

• Please consider the following

22
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

Other Representation of 3D Point Clouds

• Please consider the following

23
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

Other Representation of 3D Point Clouds

• Please consider the following

• Oc-trees represent a way to store 3D point cloud data

24
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

Further Readings

• Please consider the paper - “A Study of Projections for Key
Point Based Registration of Panoramic Terrestrial 3D Laser
Scans“

• Please read the paper - “Octrees for storing 3D point clouds”
of the paper “One Billion Points in the Cloud – An Octree for
Efficient Processing of 3D Laser Scans”

• Things to try
– Viewing a high resolution outdoor 3D scan with colors

bin/show –s 0 –e 0 –f riegl_txt –-reflectance bremen_city
 --loadOct

bin/show –s 0 –e 0 –f riegl_txt –-reflectance bremen_city
 --saveOct

25
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

Oc-trees (1)

• Every node has 8 children

26
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

Oc-trees (2)

• Empty nodes / voxels can be pruned
• Every node has 8 children

• Definition of an oc-tree with redundant information and eight
pointers to child nodes. The size of this node is 100 Bytes.

27
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

Oc-trees (3)

• Statistics of the Bremen City data set

• Exponential growth

28
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

Efficient Oc-Trees (1)

• Two proposed encodings of an octree node optimized for
memory efficiency.

• The child pointer as the relative pointer is the largest part of
an octree node, but varies in size to accommodate different
systems. In our implementation for 64 bit systems, it is 48 bit.
valid and leaf are 8 bit large.

• Left: The proposed encoding with separate bit fields for valid
and leaf. An entire node is thus contained in only 8 bytes of
memory.

• Right: Alternative solution resulting in a constant depth
octree.

29
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

Efficient Oc-Trees (2)

• An example of a simple oc-tree as it is stored in 3DTK.
• The node in the upper left has three valid children, one of

which is a leaf. Therefore, the child pointer only points to 3
nodes stored consecutively in memory. The leaf node in this
example is a simple pointer to an array which stores both the
number of points and the points with all their attributes.

30
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

Efficient Oc-Trees (3)

31
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

Efficient Oc-Trees (4)

• Comparison with other oc-trees

32
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

• Naive lookup implementations perform collision checks with the oc-tree
planes.

• We use integer coordinates for an efficient traversal of the oc-tree with
only a few bit operations.

• An oc-tree with depth d has integer coordinates 0 to 2d − 1 in each
dimension.

• We assume the existence of a pre-computed array childBitDepth with

childBitDepth[d] = 1 (maxDepth − d − 1).≪

Lookup in an Oc-tree (1)

Here the integer coor-
dinates are mapped to
the index of the child
that contains the given
coordinates. The algo-
rithm also shows how
parent pointers are
simulated by a simple
trace that is extended
during the traversal of
the tree.

33
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

Lookup in an Oc-tree (2)

• The function to find a neighbor node is an extended lookup.
• To find a neighbor of a given node, the node in the parent

trace is selected that is the deepest that still contains the
desired index. This can be efficiently computed by comparing
the current node index with the desired index

• Then a lookup starting at that parent is started to locate the
corresponding neighbor.

34
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

Using an Oc-tree for 3D Point Cloud Reduction

• Generate an oc-tree until you reached the desired voxel size
• Select the center point of each voxel for the reduced point

cloud.

Or

• Select n point randomly from each voxel.

• This is implemented in 3DTK (program scan_red)
bin/scan_red -s 0 -e 0 -f uos
 --reduction OCTREE --voxel 10 --octree 0 dat

bin/scan_red -s 0 -e 0 -f uos
 --reduction OCTREE --voxel 10 --octree 1 dat

bin/scan_red -s 0 -e 0 -f RIEGL_TXT
 --reduction OCTREE --voxel 10 --octree 0
 --reflectance ~/dat/bremen_city/
bin/show -s 0 -e 0 -f uosr ~/dat/bremen_city/reduced

35
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

3D Point Cloud as ...

… vector of (x,y,z)-values
… as range/intensity images
… as oc-trees

• Point Cloud reduction using Oc-trees

• Now: 3D Point Cloud reduction using range/intensity images

• How can one resize an image?

55
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

Scaling Images

• Images represent changes in intensity
• Depth images represent changes in depth
• Filters can pick out some changes and output “filtered

images”
• Scales: things that change at fine scales are changing rapidly
• Idea: Build a representation that focuses on changes

→ Fourier Transform

• standard scaling algorithms are nearest-neighbor, bilinear
and bicubic interpolation

56
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

Nearest Neighbor Interpolation

57
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

Bilinear Interpolation

• is an extension of linear interpolation for interpolating
functions of two variables (e.g., x and y) on a regular 2D grid.

• f is known at (0, 0), (0, 1), (1, 0), and (1, 1)

58
3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014

Robotics and Telematics

Applications to 3D Point Clouds

• To Reduce an image we could
(1) Create a range image
(2) Downsample the range image (and the intensity image)
(3) Convert the range image back to a 3D Point Cloud

• This implies implementing the inverse transformations of the image
generation

bin/scan_red -s 0 -e 0 -f RIEGL_TXT
 --reduction RANGE --projection EQUIRECTANGULAR
 --scale 0.5 --width 3600
 --height 1000 ~/dat/bremen_city/

bin/scan_red -s 0 -e 0 -f RIEGL_TXT
 --reduction INTERPOLATE --projection EQUIRECTANGULAR
 --scale 0.5 --width 3600
 --height 1000 ~/dat/bremen_city/

Either scale the range image and do the inverse mapping,
or put the 3D points into a pixel and use inteprolation

	Folie 1
	3D Point Clouds as ...
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Calibration – Perspective Projection
	Folie 55
	Folie 56
	Folie 57
	Folie 58

