The image depicts how our robot Irma3D sees itself in a mirror. The laser looking into itself creates distortions as well as changes in intensity that give the robot a single eye, complete with iris and pupil. Thus, the image is called "Self Portrait with Duckling".
The ICP Algorithm (1)

Scan registration Put two independent scans into one frame of reference

Iterative Closest Point algorithm [Besl/McKay 1992]

For prior point set \(M \) (“model set”) and data set \(D \)

1. Select point correspondences \(w_{i,j} \) in \(\{0,1\} \)
2. Minimize for rotation \(R \), translation \(t \)

\[
E(R, t) = \sum_{i=1}^{N_m} \sum_{j=1}^{N_d} w_{i,j} \| m_i - (R d_j + t) \|^2
\]

3. Iterate 1. and 2.

SVD-based calculation of rotation
• works in 3 translation plus 3 rotation dimensions
 \(\Rightarrow \) 6D SLAM with closed loop detection and global relaxation.
The ICP Algorithm (2)

Closed form (one-step) solution for minimizing of the error function

1. Cancel the double sum:

\[
E(R, t) = \sum_{i=1}^{N} \sum_{j=1}^{N} w_{i,j} \| m_i - (R d_j + t) \|^2
\]

\[
= \frac{1}{N} \sum_{i=1}^{N} \| m_i - (R d_i + t) \|^2,
\]

2. Compute centroids of the matching points

\[
c_m = \frac{1}{N} \sum_{i=1}^{N} m_i,
\]

\[
c_d = \frac{1}{N} \sum_{i=1}^{N} d_j
\]

\[
M' = \{ m'_i = m_i - c_m \}_{1,\ldots,N},
\]

\[
D' = \{ d'_i = d_i - c_d \}_{1,\ldots,N}.
\]

3. Rewrite the error function

\[
E(R, t) = \frac{1}{N} \sum_{i=1}^{N} \| m'_i - R d'_i - (t - c_m + R c_d) \|^2
\]

\[
= \frac{1}{N} \sum_{i=1}^{N} \| m'_i - R d'_i - \bar{t} \|^2,
\]
3. Rewrite the error function

\[E(R, t) = \frac{1}{N} \sum_{i=1}^{N} \left\| m'_i - Rd'_i - \left(t - c_m + Rc_d \right) \right\|^2 \]

\[= \frac{1}{N} \sum_{i=1}^{N} \left\| m'_i - Rd'_i \right\|^2 - \frac{2}{N} \tilde{t} \cdot \sum_{i=1}^{N} (m'_i - Rd'_i) + \frac{1}{N} \sum_{i=1}^{N} \left\| \tilde{t} \right\|^2. \]

Minimize only the first term! (The second is zero and the third has a minimum for \(\tilde{t} = 0 \)).

\[E(R, t) = \sum_{i=1}^{N} \left\| m'_i - Rd'_i \right\|^2. \]

Arun, Huang und Blostein suggest a solution based on the singular value decomposition.

The ICP Algorithm (4)

Theorem: Given a 3×3 correlation matrix

$$H = \sum_{i=1}^{N} m_i^T d_i' = \begin{pmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{pmatrix}$$

with $S_{xx} = \sum_{i=1}^{N} m_i' d_i' x$, $S_{xy} = \sum_{i=1}^{N} m_i' d_i' y$, \ldots, then the optimal solution for $E(R, t) = \sum_{i=1}^{N} \|m_i' - Rd_i'\|^2$ is $R = UV^T$ with $H = U\Lambda V^T$ from the SVD.

Proof:

$$E(R, t) = \sum_{i=1}^{N} \|m_i' - Rd_i'\|^2.$$

Rewrite

$$E(R, t) = \sum_{i=1}^{N} \|m_i'\|^2 - 2 \sum_{i=1}^{N} m_i' \cdot Rd_i' + \sum_{i=1}^{N} \|d_i'\|^2.$$

Rotation is length preserving, i.e., maximize the term

$$\sum_{i=1}^{N} m_i' \cdot Rd_i' = \sum_{i=1}^{N} m_i'^T Rd_i'$$
The ICP Algorithm (5)

Theorem: Given a 3 x 3 correlation matrix

\[
H = \sum_{i=1}^{N} m_i^T d'_i = \begin{pmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{pmatrix}
\]

with \(S_{xx} = \sum_{i=1}^{N} m_{ix}^' d_{ix}^', \ S_{xy} = \sum_{i=1}^{N} m_{ix}^' d_{iy}^', \ \ldots\), then the optimal solution for \(E(R, t) = \sum_{i=1}^{N} ||m_i^' - Rd_i^'||^2\) is \(R = VU^T\) with \(H = U\Lambda V^T\) from the SVD.

Proof:

\[
\sum_{i=1}^{N} m_i^' \cdot Rd_i' = \sum_{i=1}^{N} m_i'^T R d_i'
\]

Rewrite using the trace of a matrix

\[
\text{Trace} \left(\sum_{i=1}^{N} R d_i' m_i'^T \right) = \text{Trace} \left(RH \right)
\]

Lemma: For all positive definite matrices \(A^TA\) and all orthonormal matrices \(B\) the following equation holds:

\[
\text{Trace} \left(A^TA \right) \geq \text{Trace} \left(BAA^T \right)
\]
The ICP Algorithm (6)

Theorem: Given a 3 x 3 correlation matrix

\[H = \sum_{i=1}^{N} m_i'^T d_i' = \begin{pmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{pmatrix} \]

with \(S_{xx} = \sum_{i=1}^{N} m_i'^x d_i'^x, \ S_{xy} = \sum_{i=1}^{N} m_i'^x d_i'^y, \ldots \), then the optimal solution for \(E(R, t) = \sum_{i=1}^{N} \| m_i' - Rd_i' \|^2 \) is \(R = VU^T \) with \(H = U\Lambda V^T \) from the SVD.

Proof: Suppose the singular value decomposition of \(H \) is \(H = U\Lambda V^T \). \(U \) and \(V \) are orthonormal 3 x 3 and \(\Lambda \) a diagonal matrix without negative entries.

\[R = VU^T. \]

\(R \) is orthonormal and

\[RH = VU^TU\Lambda V^T = V\Lambda V^T. \]

And using the lemma it is \(\text{Trace}(RH) \geq \text{Trace}(BRH) \).

Therefore \(R \) maximizes \(\sum_{i=1}^{N} m_i'^T Rd_i' \).
The ICP Algorithm (7)

- Estimating the transformation can be accomplished very fast $O(n)$

- Closest point search
 - Naïve $O(n^2)$, i.e., brute force
 - K-d trees for searching in logarithmic time

Recommendation: Start with
ANN: A Library for Approximate Nearest Neighbor Searching by David M. Mount and Sunil Arya (University of Maryland)

- Easy to use
- Many different methods are available
- Quite fast

http://www.cs.umd.edu/~mount/ANN/
One has to search all buckets according to the ball-within-bounds-test. ⇒ Backtracking
NNS Search – the Critical Issue

Properties for all tested NNS libraries.

<table>
<thead>
<tr>
<th>Library</th>
<th>revision</th>
<th>Data structure</th>
<th>k-NN search</th>
<th>fixed radius</th>
<th>ranged search</th>
<th>optimized for</th>
</tr>
</thead>
<tbody>
<tr>
<td>3DTK [2]</td>
<td>rev. 470</td>
<td>k-d tree</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>shape registration</td>
</tr>
<tr>
<td>3DTK</td>
<td>rev. 470</td>
<td>octree</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>shape registration & efficient storage</td>
</tr>
<tr>
<td>ANN [3]</td>
<td>Ver. 1.1.1</td>
<td>k-d tree</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>high dimensions</td>
</tr>
<tr>
<td>CGAL [4]</td>
<td>Ver. 3.5.1-1</td>
<td>k-d tree</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>multithreading</td>
</tr>
<tr>
<td>FLANN [5]</td>
<td>bcf3a56e5f6ed2d4dc3a340725fa341fa36ef79a4</td>
<td>k-d tree</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>libnabo [6]</td>
<td>Ver. 1.0.0</td>
<td>k-d tree</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>SpatialIndex [7]</td>
<td>Ver. 1.4.0-1.1</td>
<td>R-tree</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>STANN [8]</td>
<td>Ver. 0.71 beta</td>
<td>SFC</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>

Matching Time in s

- actuated SICK LMS200
- Microsoft Kinect
- Riegl VZ-400

3D Point Cloud Processing
Dr. Andreas Nüchter
July 23, 2014
NNS Search – the Critical Issue
The ICP Algorithm (8)

• Point reduction – another key for fast ICP algorithms
 – Start with cube surrounding the 3D point cloud
The ICP Algorithm (9)

- Point reduction – another key for fast ICP algorithms
 - Start with cube surrounding the 3D point cloud
 - Divide

- Another key issue: maximal point-to-point distance.
Registering Surfaces (1)

• Given

The main idea:
– Pairwise matching technique
– We want to minimize the distance between the two parts
– We set up a variational problem
– Minimize distance “energy” by rigid motion of one part
Registering Surfaces (2)

Problem:
- How to compute the distance
- This is simple if we know the corresponding points.
- Of course, we have in general no idea of what corresponds...

• ICP-idea: set closest point as corresponding point

• Full algorithm:
 - Compute closest point points
 - Minimize distance to these closest points by a rigid motion
 - Recompute new closest points and iterate
Registering Surfaces (3)

- Distances

Part B
(moves, rotation & translation)

Part A
(stays fixed)

- Closest Point Distances

Part B
(moves, rotation & translation)

Part A
(stays fixed)
Registering Surfaces (4) – ICP iterations

Part A

Part B

final result

Part A

Part B

Part A

Part B
Generalizations (1)

- “point-to-plane” ICP
- First order approximation
 - Match points to tangential planes rather than points
 - Converges much faster
Generalizations (2)

Implementation:

– We need normals for each point (unoriented/oriented)
– Compute closes point along normal direction

or

– Compute closest point as usual, project it to surface defined by query point and normal
– Desirable: reduced points with normals
Comparisons

- In literature it is claimed, that point-to-plane is faster and more accurate.
More Tricks and Tweaks

- **ICP Problems:**
 - Partial matching might lead to distortions / bias
 - Remove outliers
 - M-estimator
 - delete “far away points”, e.g. 20% percentile in point-to-point distance
 - hard point-to-point distance threshold (for environments 20cm)
 - Remove normal outliers (if connection direction deviates from normal direction)

- **Sampling problems**
 - Problem: for example flat surface with engraved letters
 - No convergence in that case
 - Improvement: Sample correspondence points with distribution to cover unit sphere of normal directions as uniformly as possible
More Tricks and Tweaks

- **ICP Problems:**
 - Partial matching might lead to distortions / bias
 - Remove outliers
 - M-estimator
 - delete “far away points”, e.g. 20% percentile in point-to-point distance or
 - hard point-to-point distance threshold (for environments 20cm)
 - Remove normal outliers (if connection direction deviates from normal direction)

- **Sampling problems**
 - Problem: for example flat surface with engraved letters
 - No convergence in that case
 - Improvement: Sample correspondence points with distribution to cover unit sphere of normal directions as uniformly as possible
Things to try...

bin/slam6D dat
bin/show dat

bin/slam6D -r 10 dat
bin/show dat
We see: small matching errors accumulate

```bash
bin/slam6D -s 1 -e 65 -r 10 -i 100 -d 75
   --epsICP=0.00001 ~/dat/hannover/
```
6D SLAM – Global Relaxation (1)

- In SLAM loop closing is the key to build consistent maps
- Notice: Consistent vs. correct or accurate

- GraphSLAM
 - Graph Estimation
 - Graph Optimization

- Graph Estimation
 - Simple strategy: Connect poses with graph edges that are close enough
 - Simple strategy: Connect poses, they have enough point pairs (closest points)
The global algorithm

Scan registration Put two independent scans into one frame of reference

Iterative Closest Point algorithm [Besl/McKay 1992]¹

For prior point set M ("model set") and data set D

1. Select point correspondences $w_{i,j}$ in \{0,1\}
2. Minimize for rotation R, translation t

$$E(R, t) = \sum_{i=1}^{N_m} \sum_{j=1}^{N_d} w_{i,j} \| m_i - (Rd_j + t) \|^2$$

3. Iterate 1. and 2.

Four closed form solution for the minimization

For globally consistent scan matching use the following error function plus 3 rotation dimensions

$$E = \sum_{j \rightarrow k} \sum_{i} \| R_j m_i + t_j - (R_k d_i + t_k) \|^2$$

Minimize for all rotations R and translations t at the same time
Parametrizations for the Rigid Body Transformations

\[E = \sum_{j \rightarrow k} \sum_{i} \left| R_j m_i + t_j - (R_k d_i + t_k) \right|^2 \]

- Helix transformation

\[v(p) = \bar{x} + x \times p \]

\[E = \sum_{j \rightarrow k} \sum_{i} (m_i - d_i + (\bar{x}_j + x_j \times m_i) - (\bar{x}_k + x_k \times m_i))^2 \]

... solving a system of linear equations
Parametrizations for the Rigid Body Transformations

\[E = \sum_{j \rightarrow k} \sum_{i} \left| R_{j} m_{i} + t_{j} - (R_{k} d_{i} + t_{k}) \right|^2 \]

- Small angle approximation

\[\sin \theta \approx \theta - \frac{\theta^3}{3} + \frac{\theta^5}{5} - \ldots \]
\[\cos \theta \approx 1 - \frac{\theta^2}{2} + \frac{\theta^4}{4} - \ldots \]

\[
R \approx \begin{pmatrix}
1 & -\theta_z & \theta_y \\
\theta_x \theta_y + \theta_z & 1 - \theta_x \theta_y \theta_z & -\theta_x \\
\theta_x \theta_z - \theta_y & \theta_x + \theta_y \theta_z & 1
\end{pmatrix}
\]

\[
R \approx \begin{pmatrix}
1 & -\theta_z & \theta_y \\
\theta_z & 1 & -\theta_x \\
-\theta_y & \theta_x & 1
\end{pmatrix}
\]

... solving a system of linear equations
Parametrizations for the Rigid Body Transformations

\[
E = \sum_{j \to k} \sum_{i} |R_{j} m_{i} + t_{j} - (R_{k} d_{i} + t_{k})|^{2}
\]

- Explicit modeling of uncertainties
- Assumptions: The unknown error is normally distributed

\[
W = \sum_{j \to k} (\bar{E}_{j,k} - E'_{j,k})^T C_{j,k}^{-1} (\bar{E'}_{j,k} - E'_{j,k})
\]

\[
= \sum_{j \to k} (\bar{E}_{j,k} - (X'_{j} - X'_{k})) C_{j,k}^{-1} (\bar{E'}_{j,k} - (X'_{j} - X'_{k})).
\]

\[
E_{j,k} = \sum_{i=1}^{m} \|X_{j} \oplus d_{i} - X_{k} \oplus m_{i}\|^{2} = \sum_{i=1}^{m} \|Z_{i}(X_{j}, X_{k})\|^{2}
\]

... solving a system of linear equations
Comparisons of the Parametrizations

<table>
<thead>
<tr>
<th>Global ICP</th>
<th>Classical Pose GraphSLAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Gaussian noise in the „3D Point Cloud“ space</td>
<td>• Gaussian noise in the space of poses</td>
</tr>
<tr>
<td>• Locally optimal</td>
<td>• Gradient descent needed</td>
</tr>
<tr>
<td>• ICP-like iterations using new point correspondences</td>
<td>• ICP-like iterations using new point correspondences needed as well</td>
</tr>
</tbody>
</table>

- Riegl Laser Measurement GmbH
 (video) (video) (video)
Closed Loop Detection and Global Relaxation

3D data acquisition

3D scan matching

Compute new pose

$\Delta p > \varepsilon$

Loop detection

$\Delta p < \varepsilon$

no loop

graph calculation

3D scan matching

Linearization

Solve linear Eqs.

$\Delta p > \varepsilon$

$\Delta p < \varepsilon$
Processing Large Data Sets (2)

We see: small matching errors accumulate

```
bin/slam6D -s 1 -e 65 -r 10 -i 100 -d 75
   --epsICP=0.00001 ~/dat/hannover/
```

```
bin/slam6D -s 1 -e 65 -r 10 -i 100 -d 75
   --epsICP=0.00001
   -D 250 -l 50 --cldist=750 -L 0 -G 1 ~/dat_hannover

bin/show -s 1 -e 65 ~/dat/dat_hannover
```