3D Point Cloud Processing

The image depicts how our robot Irma3D sees itself in a mirror. The laser looking into itself creates distortions as well as changes in intensity that give the robot a single eye, complete with iris and pupil. Thus, the image is called "Self Portrait with Duckling".

Prof. Dr. Andreas Nüchter

Planes

SIFT Example (1)

• Typical 30000 features in an image of 3.6 Megapixel

• Example:

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

3D Point Cloud Processing Dr. Andreas Nüchter July 23, 2014

SIFT Example (2)

• Typical 30000 features in an image of 3.6 Megapixel

• Example:

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

3D Point Cloud Processing Dr. Andreas Nüchter July 23, 2014

Remember: Feature-Based Registration

3D Point Cloud Processing Dr. Andreas Nüchter July 23, 2014

Minimization using Least Squares

This minimization does not tolerate "outliers"

3D Point Cloud Processing Dr. Andreas Nüchter July 23, 2014

Robust Estimator for Data with Outlier

The M-estimator and Least-Median-of-Squares (LMedS) estimator cannot cope with 50% outliers

- Solution: The RANSAC (RANdom SAmple Consensus) Algorithm
 - \succ Developed by Fischler and Bolles
 - \succ One of the most importtant techniques in computer viso
 - \succ Can cope with 50% or more outlier

The RANSAC Algorithm – In General

- Generate *M* (a predefined number) of Model hypotheses, from which all a calculated by a minimal set of points
- Evaluate all hypotheses
- Calculate the remaining error using all data.
- Points with errors smaller than a threshold are classified as "Inlier"
- The hypothesis with a maximal number of "Inlier" is chosen. Aterwards the hypotheses is re-estimated, using only the inlier.

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

The RANSAC Algorithm – Formal

k := 0

Repeat until P(better solutions exists) < η

(cost function C and step counter k)

k := k + 1

- I. Hypothesis estimation
- (1) Select random set

(2) Calculate parameter $p_k = f(S_k)$

II. Verification

(3) calculate costs

$$c_k = \sum_{x \in U} \rho(p_k, x)$$

 $S_k \subset U, |S_k| = m$

(4) if $C^* < C_k$ then $C^* := C_k, p := p_k$

end

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

3D Point Cloud Processing Dr. Andreas Nüchter July 23, 2014

Example: Line Detection with RANSAC (1)

• Given the following set of points

Example: Line Detection with RANSAC (2)

• Select points @ random

Example: Line Detection with RANSAC (3)

• Estimate a line based of the chosen points

Example: Line Detection with RANSAC (4)

• Calculate the error that is made in this estimation

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

3D Point Cloud Processing Dr. Andreas Nüchter July 23, 2014

Example: Line Detection with RANSAC (5)

 Apply a threshold; estimate a new line based on the red and green points

Example: Line Detection with RANSAC (7)

• Repeat everything for different random points

RANSAC for Plane Detection

3D Point Cloud Processing Dr. Andreas Nüchter July 23, 2014

RANSAC for Plane Detection

3D Point Cloud Processing Dr. Andreas Nüchter July 23, 2014

RANSAC for Plane Detection

- 122 Scans @ more than 2 Billion points
- 4 coordinates per point, 8 bytes per coordinate => 59.6 Gb
- Compressed only 8.8 Gb @ ~100 micron precision

UNIVERSITÄT WÜRZBURG 3D Point Cloud Processing Dr. Andreas Nüchter July 23, 2014

Detecting Shapes with RANSAC

- Improve selection of sample points
 - Choose points with higher likelihood if in close proximity
 - Lower number of draws required
- Speed up validation of hypothesis

AVERAGE COMPUTING TIME IN ms OF RANSAC.

	Data set	no octree	octree	speedup		
	Kurt3D	1666.57	176.69	9.43		
Julius-Ma	Kinect	6905.94	429.32	16.08		
RZBI	city	388551.55	11084.81	35.05		

R. Schnabel, R. Wahl, and R. Klein. Efficient RANSAC for Point-Cloud Shape Detection. *Computer Graphics Forum*, 2007.

Hough Transformation: Detection of Lines (1)

• Example: Accumulator with point pairs

Representation using the Hessian normal form:

We need a discrete accumulator $H[\rho][l]$: Both ρ and l are represented with finite

$$\rho = 0, \Delta \rho, 2\Delta \rho, \ldots$$

 $l = 0, \Delta l, 2\Delta l, \ldots$

Julius-Maximilians-UNIVERSITÄT WÜRZBURG 3D Point Cloud Processing Dr. Andreas Nüchter July 23, 2014

Hough Transformation: Detection of Lines (2)

Hough Transformation of a line (based on edge point pairs)

- Input: edge points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$
- Output: lines that go through these edge points

```
Set all elements of the accumulator H[p][l] to zero;
for (all pairs of edge points in k(r, c)) {
      calculate the corresponding p and l;
      H[p][l] ++; /* Consider discretization of p and l */
}
Detect peaks in H[p][l];
```

- One can expect that there will be peaks in the accumulator array H[p][l]. All peaks correspond to a line in the image.
- Huge number of edge point pairs: O(n^2)

Julius-Maximilians-NIVERSITÄT /ÜRZBURG

Hough Transformation: Detection of Lines (3)

• Accumulator with single edge points:

Reduction of the work load: Construct the Accumulator $H[\rho][l]$ with "hints" to possible lines based on single edge points. Unfortunately, every edge point (x_i, y_i) implies not one edge, but a set of edges (ρ, l) :

$$l = x_i \cos \rho + y_i \sin \rho$$

i.e., a sinusoidal curve in the pl space.

Solution: All possible parameters (ρ, l), that fulfill the above constraint (I.e. they represent a line with the current edge point (x_i, y_i)) are considered and the corresponding counter in the array is incremented.

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Hough Transformation: Detection of Lines (4)

- Input: Edge points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$
- Output: Lines, that go though these edge points
- 1. Transform all adge points (x_i, y_i) according to

```
1 = x_i \cos \rho + y_i \sin \rho from the xy-space to the \rho1-space.
   for (\rho = 0; \rho < 2\pi; \rho + = d\rho)
    for (1 = 0; 1 < 1max; 1 + = d1)
        H[\rho][1] = 0;
   for (i = 1; i \le n; i++)
    for (\rho = 0; \rho < 2\pi; \rho + = d\rho) {
        l = xi \cos \rho + yi \sin \rho;
        H[ρ][1] ++; /* Regard the discretisation of 1 */
                        /* Increment according to edge width s(xi, yi) poss. */
     }
2. Search for cluster points in \rhol-space, i.e. in H[\rho][1].
3. All cluster points (\rho_0, l_0) define a line
   l_0 = x \cos \rho_0 + y \sin \rho_0 in xy-space.
```

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Hough Transformation: Detection of Lines (5)

• Example:

3D Point Cloud Processing Dr. Andreas Nüchter July 23, 2014

Hough Transformation: Iterations (1)

250 0

250 0

00

Hough Transformation: Iterations (2)

Iteration: 16 +

Hough Transformation: Results

Hough Transformation: Example

Detection of Lines:

Julius-Maximilians-

July 23, 2014

UNIVERSITÄT

WÜRZBURG

From 2D to 3D – From Lines to Planes

 $\rho = \mathbf{p} \cdot \mathbf{n} = p_x n_x + p_y n_y + p_z n_z = \rho$

3D Point Cloud Processing Dr. Andreas Nüchter July 23, 2014

Polar Coordinates

3D Point Cloud Processing Dr. Andreas Nüchter July 23, 2014

Hough Transform (HT)

 $\mathbf{x} \cdot \cos{\mathbf{\theta}} \cdot \sin{\mathbf{\theta}} + \mathbf{y} \cdot \sin{\mathbf{\theta}} \cdot \sin{\mathbf{\varphi}} + \mathbf{z} \cdot \cos{\mathbf{\varphi}} = \mathbf{\rho}$

• Hough Space: (φ, θ, ρ) Space

$$- 0 < \varphi < \pi$$
$$- 0 < \theta < 2\pi$$

$$-\infty < x, y, z < \infty$$

Hough Transform

((

()

- Cartesian Space \rightarrow Hough Space
- For a point (x,y,z) HT yields all planes (x,y,z)

that go through

(arphi, heta,
ho)

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

3D Point Cloud Processing Dr. Andreas Nüchter July 23, 2014

Hough Transform – Example

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

3D Point Cloud Processing Dr. Andreas Nüchter July 23, 2014

Discretization – Accumulator Array

Discretization – Related Work

Accumulator Ball

Comparing Accumulators (1)

3D Point Cloud Processing Dr. Andreas Nüchter July 23, 2014

Algorithm 1 Standard Hough Transform (SHT)

- 1: for all points \mathbf{p}_i in point set P do
- 2: for all cells (ρ, φ, θ) in accumulator A do
- 3: **if** point \mathbf{p}_i lies on the plane defined by (ρ, φ, θ) **then**
- 4: accumulate cell $A(\rho, \varphi, \theta)$
- 5: end if
- 6: end for
- 7: end for
- 8: Search for the most prominent cells in the accumulator, that define the detected planes in ${\cal P}$

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Hough Variants

- Probablistic Hough Transform (PHT)
 - Use p% of the input points only
- Progressive Probabilistic Hough Transform (PPHT)
 - Pick points randomly and perform HT
 - Quit when one cell has been voted by p% of the points
- Adaptive Probabilistic Hough Transform (APHT)
 - Pick points randomly and perform HT
 - Obtain a list of maxima
 - Quit when list of maxima remains stable
- Randomized Hough Transform (RHT)
 - Pick three points randomly
 - Accumulate the cell corresponding to the plane spanned by these points

– Delete points of plane when threshold is reached 3D Point Cloud Processing

Dr. Andreas Nüchter July 23, 2014

Comparing Accumulators (2)

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

3D Point Cloud Processing Dr. Andreas Nüchter July 23, 2014

Comparing Hough Variants (1)

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Comparing Hough Variants (2)

3D Point Cloud Processing Dr. Andreas Nüchter July 23, 2014

Comparison with Related Work (1)

- Randomized Hough Transform (RHT)
- Region Growing (RG) [Poppinga, 2008]
- Hierarchical Fitting Primitives (HFP) [Attene, 2006]

Comparision with Related Work (2)

Comparision with Related Work (3)

Comparision with Related Work (4)

	# points	RHT	Ν	RHT C	Ν	RG	N	HFP
empty room	325, 171	$ \begin{array}{r} 0.072 \\ +0.599 \\ \hline = 0.671 \end{array} $	5	$ \begin{array}{r} 0.088 \\ +0.730 \\ = 0.818 \end{array} $	5	$ \begin{array}{r} 5.31 \\ +2.33 \\ = 7.64 \end{array} $	$\gg 5$	78.4
empty room	81,631	$ \begin{array}{r} 0.096 \\ +0.195 \\ \hline = 0.291 \end{array} $	5	$ \begin{array}{r} 0.092 \\ +0.200 \\ = 0.292 \end{array} $	5	$ \begin{array}{r} 1.22 \\ +0.5 \\ \hline = 1.72 \end{array} $	9	14.2
simu- lated	81,360	$ \begin{array}{r} 0.049 \\ +0.182 \\ \hline = 0.231 \end{array} $	5	$ \begin{array}{r} 0.055 \\ +0.199 \\ = 0.254 \end{array} $	5	$ \begin{array}{r} 1.33 \\ +0.49 \\ \hline = 1.82 \end{array} $	8	18.7
hall	81,360	$ \begin{array}{r} 2.813 \\ +0.234 \\ = 3.047 \end{array} $	16	$ \begin{array}{r} 1.818 \\ +0.277 \\ = 2.095 \end{array} $	17	$ \begin{array}{r} 1.35 \\ +0.4 \\ \overline{= 1.75} \end{array} $	13	36.0
arena	144,922	$ \begin{array}{r} 13.960 \\ +0.477 \\ \overline{} = 13.960 \end{array} $	18	$ \begin{array}{r} 6.930 \\ +0.662 \\ = 7.592 \end{array} $	18	$ \begin{array}{r} 2.13 \\ +0.57 \\ \hline = 2.70 \end{array} $	11	16.0
Julius-Maximilians- UNIVERSITÄT 3D Point Cloud Processing								

UNIVERSITÄT WÜRZBURG July 2

