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ABSTRACT:

In recent years, 3D surveying using mobile mapping has become increasingly popular. Handheld or backpack mounted systems

resulted in new uses and applications because they enable fast data acquisition in areas that are difficult to access. Many of these

applications do not require high-precision measurement, but they often involve highly complex environments. In this paper, we

present a mobile mapping backpack based on four Microsoft Kinect RGB-D sensors and an Intel T265 tracking camera. The

data processing takes place in three steps. Starting with a first trajectory and map created using visual-inertial odometry, which is

subsequently optimized by means of a continuous-time ICP. Finally, the trajectory is further improved by a continuous-time SLAM

approach. In this work, a data set was recorded and analyzed in a bunker facility with the system carried at a walking speed of

approximately 0.7 meters per second. For the evaluation, these data are compared with a reference data set, recorded with a Riegl

VZ-400 laser scanner.

1. INTRODUCTION

Due to reduced costs and a wide range of sensors, the demand

for 3D indoor measurements has increased in recent years.

Since interiors are typically rather angled and small, mobile

systems are often better suited than static ones. The possibil-

ity to capture an object while moving saves a lot of time and

simplifies the avoidance of shadowing and incomplete data col-

lection. In addition to 3D mapping of the environment for

surveying purposes, indoor 3D maps are often used for vir-

tual tours (Nocerino et al., 2017). Therefore, the acquisition of

color data, in addition to the 3D data, is increasingly an import-

ant requirement.

A solution specifically designed for this purpose is, for ex-

ample, the NavVis 3D Mapping Trolley (NavVis, 2021). This

trolley has multiple cameras for a 360 degree image and mul-

tiple laser scanners. This can be easily pushed through rooms

and hallways. Since all sensors are firmly mounted on a trolley,

the movement of the sensors is relatively uniform and only in

one plane, this is very advantageous for the post-processing of

the data. At the same time, this becomes a problem if the area

to be detected is no longer on one level and, for example, steps

need to be traversed.

Hand-held systems, such as the Zebedee 3D sensor sys-

tem (Bosse et al., 2012), offer somewhat more flexibility. The

user carries a rotating Hokuyo 2D laser scanner and a front-

facing camera in his hand. This device allows a high flexibility

in movement. Since it is a light and small device, which can

be carried well over several levels and stairs. A disadvantage of

systems of this type is that it is exhausting to carry the device

hand-held for a long duration. In addition, care must be taken

to carry the device as smoothly as possible and not to wobble

too much back and forth while walking.

Therefore, another approach is to wear the scanner system as a

backpack. This still gives the user the flexibility to move freely,

similarly to the hand-held system. At the same time, it frees
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Figure 1. Proposed indoor mapping backpack with four

Microsoft Kinect 2 RGB-D cameras and an Intel T265 stereo

camera for visual-inertial odometry.

the user from having to hold the heavy system in his hand. In

addition, this makes it much easier to achieve a smooth, glide-

like movement of the sensor.

Examples include the Google Streetview Backpack Sys-

tem (Frederic Lardinois, TC, 2015, Hess et al., 2016) or the

Leica Pegasus Backpack (Leica Geosystems, 2021). The Pe-

gasus system uses two Velodyne VLP-16 scanners for 3D

acquisition and five color cameras. The ITC-IMMS back-

pack (Karam et al., 2019) is another example. This backpack

mapper consists of three Hokuyo UTM-30LX scanners moun-

ted on a carrying platform that extends over the user’s shoulder

and head. This is not always ideal for use in cluttered environ-

ments as care must always be taken not to hit any obstacles with

the sensor.

Moreover, spinning Lidar systems based on terrestrial

laser scanners have been proposed. The backpack of

(Lauterbach et al., 2015) consists of a continuously panning
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Figure 2. Detail view of the backpack system and its components. Left: Three forward looking Kinects capture the opposite wall and

the area directly behind the backpack. An additional downward looking Kinect ensures a reliable detection of the ground. In the center

is an Intel Realsense T265 stereo camera for visual-inertial odometry. Right: On the back of the backpack the embedded computing

boards for data capture and processing, networking and power supply components are mounted.

Riegl VZ-400 and a SICK LMS-100, which is used for an initial

trajectory estimation.

Some systems rely on global navigation satellite system

(GNSS), which is often not available in indoor environments,

such as the Personal Laser Scanning System proposed by

(Liang et al., 2014) using a single FARO scanner. Similarly, the

commercially available ROBIN system features a RIEGL VUX

scanner and GNSS for positioning.

However, since all these backpacks are relatively large, heavy,

and difficult to handle in confined environments, this paper

presents a new system based on four Microsoft Kinect cam-

eras. In addition to the smaller size, the backpack presen-

ted here is very cost-effective, as it avoids the use of ex-

pensive laser scanners or positioning sensors. Instead low-

cost RGB-D cameras and off-the-shelf components are em-

ployed. Although the sensors used have a considerably shorter

range than the laser scanners on the aforementioned back-

packs (Khoshelham and Elberink, 2012), this is not as relevant

for use in confined indoor spaces. The use of the Kinect cam-

eras also has the advantage that one sensor records depth data

and color data simultaneously. Thus, directly a textured 3D data

set is obtained. Fig. 1 shows the proposed backpack system in

action, mapping a bunker complex with narrow corridors and

passages. As is visible, the backpack is very compact and does

not protrude beyond the user, neither on the sides, nor upwards.

Due to the easy availability and low cost of a Microsoft Kinect,

there are several approaches in the literature to use it for indoor

mapping. In the paper by (Hsu et al., 2018) a small portable

system consisting of a 2D laser scanner, a Kinect and an IMU

is presented. For data fusion and calculation of the maps, they

developed a so-called sensor fusion SLAM and were already

able to achieve good results with it. Single handheld RGB-D

cameras have been widely used in different configurations for

indoor mapping (Newcombe et al., 2011, Dai et al., 2017).

(Chen et al., 2018) is also working on the use of Kinect cameras

for low-cost and efficient 3D indoor mapping. To achieve a

larger field of view, three Kinect cameras were used, with a

slightly overlapping field of view. In their work, they are mainly

concerned with the calibration of the three sensors against each

other. Compared to a reference data set from a terrestrial laser

scanner, a deviation of more than 0.025m was found for only

5% of the recorded points.

In the following, the structure of the system is first described in

detail. Then an overview of the methods used for data fusion

of the sensors and for calculation and correction of the traject-

ories is given. To evaluate the accuracy and quality of the ob-

tained 3D data, a ground through data set was recorded using

a terrestrial laser scanner. Finally, the results are discussed and

improvement approaches for the future are identified.

2. TECHNICAL APPROACH

The backpack presented here is a low-cost development. Due to

its small size and light weight, it is suitable for indoor spaces,

narrow passages, cave systems and bunkers. It combines the

flexibility of hand-held systems with maximum stability during

movement. The following describes the setup, calibration and

data processing in more detail.

2.1 Hardware Setup

The backpack consists of four Microsoft Kinect 2 RGB-D

sensors. As seen on the left hand in Fig. 2 one of them is looking

downward to capture the ground. The remaining three cameras

are upright mounted to capture the walls and the ceiling. Here,

the middle one is aligned straight back and captures everything

behind the backpack. The other two cameras are aligned at a

43.5 degree angle and capture the opposite walls. Due to the

upright orientation of the three cameras, the field of view is

such that parts of the floor and ceiling is also captured. The
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Figure 3. Combined point cloud created by the four RGB-D

sensors. Top: Point cloud colored by scan id. Bottom: Point

cloud with color data.

individual sensors are aligned such that there is a small overlap

of the individual sensor’s field of view. There is also an Intel

Realsense T265 stereo camera mounted in the upper part of the

backpack. This is used to additionally capture an initial traject-

ory using visual-inertial odometry (VIO), which is later used in

the post-processing of the data.

On the right side of Fig. 2 you can see the back side of the back-

pack. To record the data from the four RGB-D cameras, four

embedded computers are used: three Intel Atom based embed-

ded PCs and a NVIDIA Jetson Nano. This is necessary due

to the high USB-3 bandwith and CPU load necessary for cap-

turing Microsoft Kinect 2 data. Each embedded computer is

dedicated to processing the data of a single Kinect 2. The Jet-

son Nano board additionally captures the data of the Intel T265

tracking camera, which requires low computing resources since

the processing is done directly on the vision processor of the

T265 camera.

The embedded computers use the Robot Operating System

(ROS) for sensor drivers and data recording. We employ NTP

for time synchronization and accurate time stamping of the in-

dividual scans. Via network the point cloud data is available us-

ing ROS transports. This also enables a first live visualization

during the mapping process. To do this, the user can connect

to the system via a wifi access point and see a subsampled ini-

tial map on their device. This allows an initial assessment and

overview of the data obtained while still recording.

Kinect Backpack

3D data

VIO data

synchronization &

motion compensation
Continuous-time ICP

3D data Continuous-time SLAM

first map

final map

trajectory

trajectory

Figure 4. Data processing chain: An initial result created using

visual-inertial odometry is further optimized with

continuous-time ICP and continuous-time SLAM.

2.2 Calibration and Synchronization

We use the ROS driver of (Wiedemeyer, 2015) for capturing

and color mapping of the Kinect 2 data. Calibration of the in-

trinsics and extrinsics of the individual RGB-D sensors is per-

formed using stereo calibration based on a chessboard pattern.

We calibrate the IR- and RGB-sensors of the individual Kinect

2 as well as perform a calibration between the RGB-D sensors

and the T265 stereo camera to find the relative poses. This

way we reference all sensors to a common coordinate system.

For this work we do not re-calibrate the depth data of the Kin-

ect 2 sensor and rely on the factory data. A compensation of

systematic depth errors further optimizes the 3D point meas-

urement quality as shown in the literature (Lachat et al., 2015,

Lindner et al., 2010).

Since the four Kinect 2 sensors have little overlap we create a

combined point cloud of all sensors based on time synchroniz-

ation using the time stamps of the sensor data. We ensure that

a combined point cloud has the data of exactly the four Kinect

2 and the time difference between the sensor images is small.

However, the Kinect 2 cannot be triggered using a global trig-

ger to ensure RGB and depth data of all sensors is captured at

the exact same time. Therefore, we apply motion compensation

using the odometry data of the T265 tracking camera in order

to create consistent point clouds during fast movements of the

backpack. The data is captured with 10Hz. Each joint point

cloud has depending on the environment roughly 500.000 to 1

million points.

2.3 Data Processing

The data processing pipeline, as seen in Fig. 4 is mainly split

in two steps. The first step initializes the trajectory using the

visual-inertial odometry data and applies continuous-time ICP

to compensate drift. This creates a preliminary map. The

second step the 3D data, together with the initial trajectory from

the first processing step, are processed to the final map. We use

3DTK - The 3D Toolkit (Nüchter et al., 2022) for point cloud

processing.

Let’s have a closer look into these steps of processing. For the

first processing step, the poses of the individual scans are ini-

tialized by interpolating the VIO data captured using the In-

tel T265 tracking camera and Intel’s proprietary visual-inertial

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-1-2022-121-2022 | © Author(s) 2022. CC BY 4.0 License.

 
123



odometry solution. Alternatively, an initial trajectory is cre-

ated using the iterative closest point algorithm (ICP). For this a

metascan created from a sliding window of registered preceding

scans is used to provide more structure during ICP registration.

The result is a first preliminary point cloud map and trajectory.

Over time, larger parts of the map are merged into sub-maps and

the trajectory is improved using a continuous-time ICP. Loops

that have already been found are also closed.

Thus, the preliminary map displayed at runtime is also con-

stantly improved. In second processing step, the recorded 3D

data is optimized with a continuous-time SLAM in several it-

erations. For this purpose, the trajectory calculated at the first

step by the continuous-time ICP is used as the initial trajectory.

2.3.1 Continuous-time ICP Since the remaining residual

errors accumulate and the existing drift of visual-inertial odo-

metry or metascan ICP registration is not completely elimin-

ated, a registration with a continuous-time ICP method is per-

formed in the next step. The basic idea is that the error of the

trajectory in temporal proximity of a considered pose is neg-

ligible. The trajectory is then split into subsections and sev-

eral successive 3D scans around a chosen reference scan are

combined to form a submap. The partial maps are again re-

gistered against their predecessors. The change in pose of a

reference scan is then distributed to the poses between two ref-

erence scans to maintain the continuity of the trajectory.

Since an ICP is prone to angular errors and these add up to sig-

nificant drifts over longer distances, this step also attempts to

find loops and close this. The corrections of a trajectory cal-

culated in this way are then distributed among the poses of the

individual scans of a submap. For small changes a linear distri-

bution (translation) or SLERP (rotation) is sufficient. This step

provides a good initial trajectory, which is used in the next pro-

cessing step as a starting point for the continuous-time SLAM.

2.3.2 Continuous-time SLAM Given a sufficiently estim-

ated trajectory, the entire point cloud can be improved by

optimizing the entire trajectory. We use the approach from

(Elseberg et al., 2013) that is based on the ICP concept known

for rigid registration algorithms. The initial point cloud is

a set of individual scans, each of which is assigned a time

stamped pose during the trajectory estimation. We first split

the trajectory into overlapping sections and match these us-

ing the automatic high-precision registration of terrestrial 3D

scans, i.e., the graph-based SLAM approach presented in

(Borrmann et al., 2008). The graph is estimated using a heur-

istic that measures the overlap of sections based on the number

of closest point pairs. After applying globally consistent scan

matching on the sections the actual continuous-time or semi-

rigid matching, as described in (Elseberg et al., 2013), is ap-

plied, using the results of the rigid optimization as starting val-

ues to compute the numerical minimum of the underlying least

square problem. The choice of the subdivision is important for

the results. Local trajectory errors within a sub-scan cannot be

directly improved. Here, we build junks of roughly 10 scans,

which corresponds to 1 s of trajectory.

For long trajectories in unstructured environments this global

approach is problematic. If the trajectory error is larger than the

features in the scene, wrong point correspondences are likely to

occur and to move the point cloud into local minima. Addi-

tionally, memory requirements and runtime increase. Thus, a

sequential method is developed to minimize local errors before

the global optimization.

Figure 5. The floor plan of the bunker. The areas marked in blue

are included in the dataset examined here.

3. EXPERIMENTAL RESULTS

3.1 Dataset

An old bunker facility was chosen as the test environment. This

nuclear bomb-proof bunker was build on the Dillberg in Leng-

furt in the 1960s through the German Federal Armed Forces. It

is 50m long and 30m wide, the bunker is six meters deep in

the ground and covered by 80 cm of soil. The building complex

conceals 58 rooms, a power generator, tanks for 26000 liters of

diesel, an air filtration system and a 112-meter-deep well with

a diameter of three meters. The bunker could house up to 65

people for about four months. In the event of a nuclear attack,

it was intended to provide protection. In the event of war, it was

intended to serve as a bug-proof communications center.

As a reference, the entire plant was scanned with a Riegl VZ-

400 laser scanner. The data set consists of 32 individual scans

that were recorded statically with the help of a tripod. These

were first roughly registered by hand and then refined with

global ICP scan matching (Borrmann et al., 2008). The Riegl

VZ-400 achieves an accuracy of 5mm and a precision of 3mm.

This provides a point cloud with very high accuracy and allows

a direct comparison of the mobile recorded data with the stat-

ically generated data in order to validate the accuracy of the

mobile backpack system.

The data set of the mobile system considered here covers a

length of approx. 180m and was recorded over a period of

260 s. This results in an average movement speed of 0.7 meters

per second. The staircase and the two main corridors, which

are connected by an intermediate corridor, were recorded. This

can be seen in blue marked in the Fig. 5. In order to keep the

complexity in the first attempts within a manageable range, the

adjacent rooms were not recorded in this data set.

3.2 Results

In the first step, we consider the improvement of the data ac-

cording to the different trajectory optimization steps. After this

we compare the optimized data with the reference scans of the

bunker created using a Riegl VZ-400.

Fig. 6 shows the dataset after the different trajectory optimiza-

tion steps. The trajectory is shown in red. The top row shows

the data right after the visual-inertial odometry without any fur-

ther correction. In this step, very large errors are visible. The
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Visual-inertial odometry

Continuous-time ICP

Continuous-time SLAM

Figure 6. Point cloud result after the different trajectory optimization steps. The trajectory of the backpack is overlayed in red color.

Top row: Visual-inertial odometry result. Middle row: Result after continuous-time ICP registration. Bottom row: Final result created

using continuous-time SLAM.
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Figure 7. Comparison of the backpack point cloud with

reference scans of the bunker created using a Riegl VZ-400 laser

scanner. Co-registration of the mobile mapping point cloud

(green) and the reference scans (blue).

walls of the corridors in the left figure do not lie on top of each

other. In the right figure, it can also be seen that even the floor

is drifting apart over time. The drift of the visual-inertial odo-

metry is mainly in the height axis.

The result of the second optimization step is displayed in the

middle row of Fig. 6. This is the result after continuous-time

ICP registration. As is visible, this is able to pull the walls and

floor on each other. The major errors from the first step have

thus been corrected. This is also visible in the path of the tra-

jectory in the right image. Since the sensor is a backpack, it is

assumed that it was carried at approximately the same height

both on the way there and on the way back. While the height

of the two lines differed significantly in the first step, they are

now almost on top of each other. The floor and ceiling now also

create a uniform image and are visibly well placed on top of

each other. In the right picture, we see that the walls are now

also well aligned. In addition, in comparison to the right pic-

ture from the first row, the two corridors now no longer have a

large curvature. However, the continuous-time ICP registration

yields some residual angular errors. The two long corridors are

no longer parallel to each other, but are visibly twisted.

The final optimization step is the continuous-time SLAM and

the result is shown in the bottom row of Fig. 6. This method

is able to correct the angular errors from the previous step. As

you can see in the picture on the left, the two corridors are now

parallel to each other. The angles to the connecting corridor

are now also right-angled. In addition, as shown in the picture

on the right, the angular errors of the floor have also been cor-

rected. The floors of the lower corridors now also lie in one

plane, without being twisted against each other as the result in

the previous steps.

Between the first and the last step, a clear improvement can be

seen. While the errors are immediately obvious in the first step,

after the last optimization step no gross errors are visible. In the

next section, these results are compared with the reference data.

Fig. 7 and Fig. 8 show the comparison of the mobile back-

pack point cloud and the reference point cloud of the bunker

created using a Riegl VZ-400 laser scanner. Fig. 7 shows the

co-registration between the backpack point cloud and the laser

scans. The mobile backpack point cloud is shown in green and

the reference scans are colored in blue. At first glance, the two

data sets lie well on top of each other. The distance of the cor-

ridors and the angles have been corrected properly.

In order to view the deviation of the two data sets in more detail,

Fig. 8 shows the registration error and error histogram. The

error is calculated in centimeter and the point cloud is colored

from blue to red according to the registration error. The errors

over approx. 30 cm are in areas that are only contained in one

data set. Therefore, all errors above 50 cm are assumed to be

errors from non-overlapping parts and were removed from the

calculation. If we now look at the remaining errors, we notice

that most of the errors are in the range smaller than 15 cm.

4. CONCLUSIONS

In this paper we demonstrated the feasibility of a low-cost back-

pack mapping system build from off-the-shelf RGB-D sensor

for mobile indoor mapping. The scanning trajectory is boot-

strapped using visual-inertial odometry and is further optimized

by applying continuous registration to minimize errors.

This enables rapid 3D acquisition of indoor spaces. The er-

rors accumulated over a 180m trajectory are in the magnitude

of 1 dm compared to laser scanning. The residual errors are

mostly introduced by the lower accuracy of the point cloud cre-

ated using RGB-D sensors. This could be further improved by

applying geometric re-calibration of the time-of-flight measure-

ments using a spline fitting approach as suggested, for example,

by (Lindner et al., 2010).
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