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Zusammenfassung

Das Interesse an Raumfahrtszenarien, in denen zwei Satelliten auf engem Raum
kooperieren müssen, wächst. Beim sogenannten On-Orbit-Servicing, werden Satel-
liten wieder aufgetankt, repariert oder defekte Satelliten aus ihrem Orbit entfernt.
Ziel ist die Reduzierung von Weltraumschrott. Besonders im Zusammenhang mit
diesen Szenarien werden bildverarbeitende Methoden für Navigation und Automa-
tisierung der Satelliten erforscht. Auch diese Arbeit basiert auf einem On Orbit
Servicing (OOS) Szenario. Ein Satellit ist ausgestattet mit einem abnehmbaren robo-
tischen Arm. Zwei mögliche Situationen sind denkbar: entweder der Satellit selbst
oder der Roboterarm sind defekt. In beiden Fällen ist die Abnahme des Arms er-
wünscht - zum Austausch oder zur Wiederverwertung. Der robotische Arm besteht
unter anderem auch aus zylinderförmigen Teilen. Das Ziel dieser Arbeit ist es daher,
einen Algorithmus zu entwerfen, der die 3D Pose eines zylindrischen Objekts anhand
von Kameraaufnahmen schätzen kann.

Neue Algorithmen für optische Navigation wie eben Algorithmen für Positionss-
chätzung, werden zunächst auf Computern getestet, die in den meisten Fällen eine
höhere Rechenkapazität besitzen als ein Satellit. Später werden sie auf für Bildver-
arbeitung spezialisierter Hardware implementiert, z.B. einem Field Programmable
Gate Array (FPGA) oder Digital Signal Processor (DSP). Diese führen genau den
einen Zweck aus - ein Ansatz, der der üblichen Herangehensweise an den Entwurf der
Borddatenverarbeitung eines Satelliten entspricht. Eine gegensätzliche Idee wird vom
Projekt phYsical distributEd conTrol in spacE (YETE) an der Universität Würzburg
verfolgt: die Verwendung mehrerer gewöhnlicher Allzweckprozessoren, die kabellos
kommunizieren.

Um die Verwendung spezialisierter Hardware vermeiden zu können, wird der ent-
worfene Algorithmus nach Möglichkeit zur verteilten Anwendung analysiert. Die
Arbeit beginnt mit einer Einführung in häufig verwendete bildverarbeitende Algo-
rithmen in Raumfahrtmissionen. Mithilfe der freien Computer Vision Bibliothek
OpenCV wird der Algorithmus zunächst implementiert. Im Anschluss werden die
Teile des Algorithmus, die die meiste Laufzeit benötigen, als verteilte Anwendung
mithilfe des Echtzeitbetriebssystems RODOS implementiert.
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Abstract

In space applications the importance of imaging and image processing increases
steadily. Especially in the context of OOS scenarios vision-based navigation for near-
range operations is researched. This thesis is based on such an OOS scenario: a
satellite is equipped with a detachable robotic manipulator. Two possible situations
may occur: either the satellite or the manipulator break. In both cases it is desired,
to remove the manipulator - either to replace it or to reuse it. The manipulator’s
design includes cylindrical parts. The aim of this master thesis therefore is to design
and implement an algorithm, which is able to estimate the 3D pose of a cylindrical
object of known dimensions given input from a camera system.

New algorithms for vision-based navigation, such as algorithms for pose estimation
are first tested on machines with high computational power. Later they are often
implemented on specialized hardware for image processing such as FPGAs or DSPs.
Those are specifically programmed for one special purpose, namely the computer
vision task, matching the common approach of on board data handling - a special-
ized processor belonging to an individual sensor or actuator. By contrast, a recent
approach proposes the usage of a computing cluster of general purpose processors,
which are wirelessly linked. This is currently researched by project YETE of the
University of Würzburg.

In order to refrain from the use of specialized hardware, the algorithm is analysed
for possibilities of distributed execution. The thesis begins with a introduction to
frequently used image processing algorithms in space missions. A reference imple-
mentation is created using the open source computer vision library OpenCV. Parts
of the algorithm which have been identified as the algorithm’s bottlenecks are then
distributed using the RODOS real time operating system.
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Chapter 1

Introduction

1.1 Aim of this Thesis

The importance of computer vision increases in space technology. Sun sensors and
star trackers have long been used for attitude determination of spacecraft. Emerging
space applications are for example On Orbit Servicing (OOS) and active debris re-
moval, both aiming to reduce the amount of space debris, either by removing it from
space or by extending the life span of satellites. An active satellite, here referred to
as chaser, has to approach a target in orbit. The target, either a damaged or fuel-less
satellite, part of a rocket or natural debris, is mostly non-cooperative, meaning the
chaser has to succeed to the task of estimating the target’s pose. An example of an
OOS scenario, as imagined by Airbus Defence & Space, is seen in figure 1.1.

In the scenario of this thesis the relative pose of a cylindrical object has to be
estimated. This object is part of a robotic manipulator arm, which is mounted on the
target satellite (see for example the chaser in figure 1.1). To distinguish it from other
parts of the manipulator and the target satellite. The cylindrical part is coloured in
a distinct shade. The input of the pose estimation consists of a continuous stream of
images.

One possibility to classify algorithms for vision-based pose estimation, is the re-
liance on fiducial markers. A fiducial marker is a known pattern which has to be at-
tached to the target. Pattern based navigation has for example been used for docking
to the International Space Station (ISS) (see fig. 1.2), but is in general inconvenient

Fig. 1.1: An OOS scenario as given in this thesis. One of the satellites is equipped with a
robotic manipulator. (from http://www.esa.int)
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Chapter 1 Introduction

Fig. 1.2: Fiducial markers are attached to the ISS in order to support the rendesvouz
operation (from http://www.nasa.gov)

because the patterns have to be mounted on the target. Relinquishing fiducial mark-
ers however impedes the detection of the object, which pose has to be estimated.
Instead of a known pattern, a model of the object or alternatively features are used,
which have to be trained beforehand. In almost all vision-based approaches, though,
the algorithms are based on the same foundation of image processing methods. This
includes colour conversion (for example Red-Green-Blue colour space (RGB) to Hue-
Saturation-Value colour space (HSV) or greyscale) and convolution (for sharpening
or blurring) as well as more complex algorithms like blob, edge or corner detection.
Image processing methods which are performed on each pixel put themselves for-

ward to be executed in a parallel or distributed fashion. The second idea behind this
thesis is to investigate the possibilities of distributing the image processing parts of
the pose estimation. The idea concurs with the YETE project of the university of
Wüerzburg:
The design of a spacecraft’s On Board Data Handling (OBDH) subsystem cur-

rently observes the following conservative principle: sensors and actuators are each
connected to their respective preprocessors forming subsystems and only a few cen-
tral processing units connecting those subsystems. All processors have to conform to
the power requirements, meaning they have to be able to provide the power needed
during peaks, while at the same time being idle most of the time. Besides, the failure
of a processing unit implies the loss of a whole sensor or actuator.
Project YETE therefore proposes a new decentralized approach. A distributed

cluster of general purpose processors, which are wirelessly linked, is meant to replace
the standard OBDH architecture in order to achieve highly reliable operations. This
is not only relevant for single spacecraft, but also for satellite formations, where
resources from another satellite in the formation might be used.

1.2 Related Work

1.2.1 Computer Vision in Space Applications

One of the early examples of vision-based navigation are planetary rovers. The re-
search for autonomous navigation already started in the 70s, using on-board stereo
cameras and scanning laser range-finders as well as off-board computers. In the 1997

2
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Fig. 1.3: The Rover of the European ExoMars mission (from http://exploration.esa.
int)

NASA Mars Pathfinder mission, the rover Sojourner was equipped with a multi-
spectral stereo camera pair. The images produced, however, were sent to earth for
processing, as Sojourner itself only possessed an on-board computer clocked at 2
MHz. Later, the Mars Exploration Rovers (MERs) Spirit and Opportunity (2004)
were equipped with processors with 20 MHz as well as with three sets of stereo camera
pairs. Using their input for autonomous obstacle detection, the rovers could traverse
at velocities of 1cm/sec.

The lander of the MER mission also was equipped with a camera. In the landing
process it executed the Descent Image Motion Estimation System (DIMES) in order
to estimate its horizontal velocity. DIMES required three images. The algorithm con-
sisted of image binning (to reduce the image size), the determination of overlapping
fields for each pair of images, the selection and tracking of features and the flattening
and rectification of the images. The total runtime of this algorithm was 14 sec, in
which time the lander traversed more than half the distance to the ground, namely
over 1000 m. [1]

A more recent example of planetary rovers with vision based navigation is the
European ExoMars mission (see figure 1.3). The ExoMars rover is planned to land on
the surface of mars in 20201[2]. It is equipped with a Panoramic Camera (PanCam),
which consists of two stereo Wide Angle Cameras (WACs) and a High Resolution
Camera (HRC)[3].

In 2005 the interest in computer vision in space applications has led to the or-
ganization of a workshop accompanying the International Conference on Intelligent
Robots and Systems, which then took place in Alberta, Canada. [4]

The Canadians also were also responsible for the Advanced Space Vision System
(SVS), which has been designed primarily for the assembly of the International Space
Station (ISS). It is dependent on fiducial markers which had to be placed on the ISS.
The system was first tested on Spaceshuttle STS-52 (1992). Later on for docking
and rendezvous the TriDAR 3D system has been employed on Spaceshuttles STS-128
and STS-129. Instead of fiducial markers this system involves an active 3D sensor, a
thermal imager and model-based tracking software. [5]

The first usage of computer vision in a on orbit rendezvous scenario has been
demonstrated by the Orbital Express mission by the Defense Advanced Research

1The launch has been delayed several times (among others the launch was scheduled in 2013, 2018,
. . . ).
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Fig. 1.4: The spherical Sphere Satellites with the VERTIGO goggles attached (from https:
//www.nasa.gov/)

Projects Agency (DARPA). The Orbital Express mission consisted of the chaser
satellite ASTRO which was equipped with a robotic arm. The robotic arm was tasked
with grappling the target satellite NEXTsat, using the on board Orbital Express
Demonstration Manipulator System (OEDMS) vision system. This vision system
consists of a camera, a frame grabber and a pose estimation algorithm. [6]
A more recent example represents the Japanese Hayabusa mission. The Hayabusa

was tasked with approaching and touching down on a Asteroid and returning to
earth with samples. The rendezvous and touch town process was supported by an
optical navigation camera, a Light Detection and Ranging (LIDAR) sensor, laser
range finders and fan beam sensors [7].
In order to test algorithms for control of small satellite, on board of the ISS the

Spheres satellites are available. They have been extended in 2012 with the Visual
Estimation and Relative Tracking for Inspection of Generic Objects (VERTIGO)
goggles enabling scientists to test new approaches in vision based mapping and local-
ization (see figure 1.4). The goggles come with a 1.2 GHz Via Nano processor and
128 GB of flash storage, making them much more capable as the devices targetted
in this thesis. The images captured by the goggles can be received on a additional
laptop as a stream of OpenCV images [8].

1.2.2 Pose Estimation in Spacecraft Proximity Operations

A lot of recent research deals with pose estimation in space scenarios. Most of the
publications deal with the pose estimation of target spacecraft for autonomous dock-
ing operations.
Lichter and Dubowsky[9] propose the usage of a Kalman filter to estimate the pose

of an unknown space object based on range images. As surrogate measurement for
the filter the principal geometrical axes of the object are computed after the range
images of different range sensors such as laser scanners and stereo cameras have been
kinematically fused. The processing of the range images is not explained further.
To estimate the orientation expressed as the objects principal inertial axes and the
translation separate Kalman filters are utilized. The space object is assumed to be
rigid and not affected by any external torque. Synthetically created images were used

4
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for testing, no explicit studies were made regarding the computational requirements
of the algorithm.

Kelsey et al.[10] present a model-based pose refinement algorithm for vision based
relative pose estimation and tracking. Model-based means, a priori knowledge about
the object in the form of features or a CAD model is used. Their algorithm consists
of three steps. At first an estimation of the pose is obtained e.g. by active appear-
ance models, robust Principal Component Analysis (PCA) or simultaneous pose and
correspondence determination. Then the model is rendered at the estimated pose
and a iterative reweighted least squares approach is used to refine the pose by mini-
mizing the error between detected edges in the image and the edges of the rendered
model. At last an extended Kalman filter is used for pose tracking using a known
motion model. The rendering of the model is a computationally intense task and best
achieved using Graphics Processing Units (GPUs).

Du et al.[11] use knowledge about the satellite’s architecture to estimate its pose.
Their algorithm is refined for large communication satellites, which typically have
rectangular shaped antennae. As the field of view of a monocular camera is insuf-
ficient to capture the complete structure, two collaborative monocular cameras are
employed. Each of the images is filtered to reduce noise, Canny edge detection then
produces edge images where lines are extracted using Hough transform. As a next
step the sides of the rectangles are determined. As a lot of lines are contained in the
image due to its complex scene, reference points have to be chosen manually. As a
result this algorithm is not totally suited for autonomous satellites. The junctions of
the rectangle sides are extracted as the rectangle vertices. The information of both
cameras is then fused and fed to the pose estimation algorithm. The algorithm was
only tested with synthetic images, assuming different levels of noise.

The scenario is similar in the paper of Hu et al.[12], also using two cameras which
have an overlapping field of view, though. Not a rectangular structure, but a thruster
nozzle is used as known architectural feature. However the algorithm follows the same
steps, after a Canny edge detection a circular Hough transform is performed to detect
circular features. The circular feature with the greatest radius is extracted in both
images and an ellipse is fit to the circles. The origins of the ellipses are then used to
calculate the pose of the thruster nozzle by triangulation.

Another model-based approach is presented by Liu and Hu[13], which is especially
interesting as it deals with solid-of-revolutions shaped spacecraft2. The algorithm
is one of the few, which also were tested with non-synthetic images. Their method
to extract ellipses from an edge image is described in [14]. At first they use image
processing methods to decline all edge segments which are not ellipses. Than ellipses
are fit to the remaining arc segments at first using a direct least square method
(direct LS). If the average distance of the points of the arc segment to this ellipse is
higher than a threshold the RANSAC algorithm is applied iteratively to find a better
matching ellipse. Arc segments belonging to the same ellipse are then merged. After
the ellipses are extracted a CAD model is used to find the meaningful ellipses and
match them to arcs of the model.

2A cylinder is also a solid of revolution
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1.2.3 Distributed Applications

The term distributed computing is sometimes confused with parallel computing, as
parallel computing may mean the distribution of threads to processing cores in order
to be processed in parallel (those cores then however belong to the same machine).
In a large scale distributed applications may be executed on a single machine with
multiple cores, by using a multithreading approach where each originally distributed
part of the application is succeeded by one thread respectively. In general distribution
refers to architectures, consisting of more than one processing unit, where tasks are
divided between those units.
The idea of clusters of general purpose processors in Space Technology was re-

searched during project YETE of University of Würzburg. The idea behind is to
make On Board Data Handling (OBDH) more reliable, as a failing processing unit
does not imply the loss of a sensor or actuator, as is the case in the conservative
OBDH approach [15].
This concept also conforms to the idea of networked satellite formations, as satel-

lites of one formation might share their computational capabilities [16].
In computer vision, distributed algorithms are often driven by the usage of Camera

Sensor Network (CSN), which is a set of resource-constrained camera-equipped sensor
nodes that can communicate over a wireless network [17]. They are for example
used in video surveillance tasks. One of the challenges is, that existing computer
vision algorithms assume centralized computation. CSNs do not totally conform to
the YETE idea, as each camera of the network is equipped with a processing unit
(together forming a smart cameras). Besides, those networks do usually not consist
of only a few cameras, but of hundreds to thousands to millions3.
In [18] several distributed algorithms for Computer Vision are mentioned. However,

not all of them are tightly connected to Computer Vision but more to the problems
arising with the use of many cameras, such as topology estimation where the vision
graph of the network has to be determined.4.

1.3 Approach

There are several tasks involved in this thesis. The first part is merely an algorithmic
problem. As explained previously, the pose of a cylindrical object has to be estimated.
However, a cylinder is mostly a feature-poor object, especially when its circular sides
are occluded. Therefore, feature based object detection algorithms do not succeed to
the task of recognizing a cylinder, if only the parallel lines of its body are seen. A
line itself is also a feature which can be extracted after an edge detection algorithm
was applied. Additionally, the relation between a 3D object and its 2D projection is
known and can be exploited, if certain properties are known. This problem is also
known as the inverse perspective problem and solving the problem for a cylinder with
known radius is the first task of the thesis.

3Imagine for example a traffic surveillance system.
4The vision graph describes which cameras have an overlapping field of view

6
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Before any lines can be extracted the input image has to be processed. As the colour
of the cylinder is previously known, image segmentation based on blob detection is
employable. This allows to reduce the input of the edge detection algorithm to the
rectangle around the detected blob. After the edges have been detected, they are
transformed to lines. Therefore at first connected edge pixels are resolved to chains,
which are then simplified to either match a straight line or an arc (of the cylinder
side). The image moments of the detected blob also are used to select the correct
lines corresponding to the sides of the cylinder.

Both parts, the image processing and the estimation of the cylinder, are combined.
The estimation may serve as input to a filter, allowing to refine the estimated pose
of the cylinder. The application is implemented using the freely available computer
vision library OpenCV. It is tested on different platforms, including a standard laptop
and also a UDOO QUAD single board computer. It has a quad-core ARM Cortex-A9
processor and is able to run Linux.

The application is furthermore analysed in order to determine run time bottle
necks. These application parts are going to be distributed. In order to abstract
from hardware, RODOS is used as distribution middleware. RODOS is a minimalis-
tic real-time operating system, which supports many processors. RODOS facilitates
communication between distributed devices, as it provides implementation of stan-
dard communication channels (such as UDP, USART, I2C).

1.4 Outline

Chapter 1 contained the introduction of the topic and classified the problem in the scien-
tific world.

Chapter 2 introduces the fundamental knowledge needed to know in order to understand
the main part of the thesis. It includes an explanation of the projective geometry
used to solve the inverse perspective problem of the cylinder. Additionally it
provides an overview on the vast topic of computer vision and explains some
problems to be encountered in distributed applications.

Chapter 3 then explains the pose estimation algorithm. It includes a description of the
scenario and explains the inverse perspective problem of the cylinder.

Chapter 4 gives an introduction to the software tools, which were used to implement the
application and to create the synthetic test images.

Chapter 5 describes the implementations of the algorithm and their testing. The tests are
divided into different categories: the pose estimation algorithm itself is tested
using synthetic video material, where the pose of the cylinder at each point
in time is exactly known. Also, images were recorded of a cylindrical object
(the part of the arm), using a robotic manipulator (which bears the camera).
The rate, at which the application is able to estimate the pose, is measured for
different levels of distribution.

Chapter 6 concludes this thesis and evaluates its contribution.

7





Chapter 2

Fundamentals

2.1 Projective Geometry

2.1.1 2D, 3D and homogeneous coordinates

The following subsections are a short summary of the chapter Geometric primitives
and transformation in the book of Szeliski(2011) [19].
Projective geometry is used to describe the transformation between a point in

the 3D world coordinate system ΣW into the 2D image coordinate system ΣI . In
general, a coordinate system of a n-dimensional vector space consists of n linearly
independent vectors (the axes) and a position vector giving the origin O. In 3D
the three axes are denoted as the unit vectors êx, êy and êz. A point in a three
dimensional coordinate frame is therefore either described as a combination of the
unit vector v = x · êx + y · êy + z · êy with x, y, z ∈ R or directly as a vector
v =

(
x y z

)
. The image coordinate system ΣI originates in the image center

c =
(
cx cy f

)
, where f is the focal length of the camera, the x-axis is directed

to the right, the y-axis is directed downwards. Lengths in ΣI are measured in pixel
units.

2D coordinates are also described using homogeneous coordinates x̃ =
(
x̃ ỹ z̃

)
∈

P2, where P2 = R3−
(
0 0 0

)
is the 2D projective space. Homogeneous coordinates

are only defined up to a scale. The conversion between a homogeneous vector x̃ back
into a 2D point x is done as follows:

x̃ =
(
x̃ ỹ z̃

)
= z̃

(
x y 1

)
= z̃x̄ (2.1)

The vector x̄ is called the augmented vector. The planes in P2 defined as the set of
points, which share the same third element (e.g. z = 1) are referred to as projective
or perspective planes.
Other than points, also lines can be represented as homogeneous coordinates l̃ =(
a b c

)
. The general line equation is then

x̄̃l = ax+ by + c = 0 (2.2)

.
There are more forms of line representation:

• High school students are more familiar with the line equation y = mx + b,
where m is the slope of the line and b is the intersection with the y-axis. This

9
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representation cannot describe vertical lines.

• A line is also described by the normal n̂ perpendicular to the line and its distance
d to the origin. Instead of using the vector n̂, also the angle θ between n̂ and
the x-axis can be used to represent the line as

(
θ d

)
. The relation between

both forms is given as, a = cos θ, b = sin θ and c = d.

• Another possibility is to use a position vector p =
(
c d

)T and a normalized
direction vector q =

(
g h

)T . The direction vector is related to the normal
vector by n̂ =

(
−h g

)
and c may then be calculated by inserting point p

into the general equation. This representation is further referred to as point
representation.

The intersection between two lines using homogeneous coordinates is calculated
using the crossproduct:

x̃ = l̃1 × l̃2 (2.3)

In 3D the equivalent of lines are planes. So, using homogeneous coordinates of P3 the
equation

x̄m̃ = ax+ by + cz + d = 0 (2.4)

with m̃ =
(
a b c d

)
describes a plane rather than a line. To describe 3D lines, two

points on the lines
(
p q

)
are needed. The points x on the line are then described

by
x = p + λ(q− p) (2.5)

The vector q−p is a direction vector and may be normalized. The resulting direction
vector b is therefore

b =
q− p

‖q− p‖
=

b1b2
b3

 (2.6)

where the vector elements are called the direction cosines of the lines. Lines, which
share the same direction cosines, are parallel.

2.1.2 Coordinate Transforms

The sets of two-dimensional and three-dimensional coordinate transformation are very
similar. A coordinate transformation converts coordinates of one coordinate frame
into coordinates of another coordinate frame. The coordinates frames are related to
each other by a transformation matrix. Expressed in homogeneous coordinates, the
matrix of a 3D transformation has size 4 × 4. The five coordinate transformations
as displayed in figure 2.1 can be ordered hierarchically. The transformations of lower
order preserve more properties than the transformations of higher order.
The highest order transform is the projective transformation, also known as 3D

perspective transform. The transformation matrix H̃ is an arbitrary 4 × 4 homoge-
neous matrix. The projective transform only preserves straight lines, meaning that a
straight line remains straight after the transformation.

10



2.1 Projective Geometry

Fig. 2.1: Basic set of 2D planar transformations, from [19]

The affine transformation also preserves parallelism. It is a 3× 4 arbitrary matrix
A applied to non-homogeneous coordinates. Similarity transformations additionally
preserve the angles between lines and planes. Its transformation matrix is build as a
matrix

S =
[
sR3×3 t3×1

]
(2.7)

where s is a scaling factor, R is a rotation matrix and t is a translation vector. In a
rigid or Euclidean transformation, the scaling factor is not used ( s = 1) and lengths
are preserved, the matrix therefore is

E =
[
R3×3 t3×1

]
(2.8)

The most simple transformation is a translation, where the rotation matrix is a
unit matrix E.

T =
[
E3×3 t3×1

]
(2.9)

2.1.3 Transformation between World and Image space

The transformation between coordinates of the world coordinate system and the
image coordinate system can also be described using a perspective transformation
matrix. The rotation matrix and translation vector between the coordinate system
of the camera-centred coordinate system ΣC and ΣW are the extrinsic parameters of
the camera. The so called calibration matrix K depends on the intrinsic parameter
of the used camera and maps points of ΣC to 2D pixel coordinates. By calibration,
K can be found as an upper-triangular form:

K =

fx s cx
0 fy cy
0 0 1

 (2.10)

Here, fx and fy are the independent focal lengths for the sensor x and y dimen-
sions respectively. The optical center expressed in pixel coordinates is

(
cx cy

)
and

s denotes any skew, which appears if the sensor axes are not mounted perfectly per-
pendicular to the optical axis. For many applications, it is sufficient, to assume a
common focal length f , no skew and to set the origin at the center of the image.

11
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The camera matrix P̃ is now obtained by putting together the extrinsic and intrinsic
camera parameters:

P̃ =

[
K 0
0T 1

] [
R t
0T 1

]
= K̃E (2.11)

where E is a Euclidean transformation and K̃ is the full-rank calibration matrix. A
point p̄w =

(
xw yw zw 1

)
is mapped to pixel coordinates xi =

(
xi yi 1 d

)
with

disparity d as
xi ∼ P̃p̄w (2.12)

The resulting vector has to be divided by its third element to obtain the normalized
form xi. Using this transformation model means that effects like radial distortion are
neglected. They are not included in this thesis, as it is assumed that the calibration
and undistorting of images is done before the images are fed to the algorithm.

2.1.4 Inverse projective geometry

To reconstruct 3D information from a 2D image, the problem of inverse projection
has to be solved. Usually this is not possible if only one image is available. One
possible method to reconstruct depth information is stereo vision. The same scene
is photographed with two cameras with known transformation. Then the respective
pixels or features on each image are matched to calculate a disparity. As the distance
to the camera is proportional to this disparity, a depth value for this pixel position
can be deduced.
In monocular vision, with only one camera is involved, the knowledge of the ob-

served objects can be used, to reconstruct information. Possible properties are par-
allel lines, collinear points with known inter-point distances or intersecting lines in
a known plane. A analysis of the relations between the 2D projection and the 3D
description of primitives such as points and lines, is given by Haralick(1989) [20].
The relationship between the parameters of the two-point representation of a 3D line
and the point representation of a 2D line for example is found by inserting the line
equation for the 3D point into the 2D line equation.
Assuming c =

(
cx cy

)
=
(
0 0

)
, the pixel coordinates p =

(
u v

)
are calculated

as
u = f

x

z
v = f

y

z
(2.13)

If the 3D line L is given as the set

L =


xy
z

∣∣∣for some λ,

xy
z

 =

a1a2
a3

+ λ

b1b2
b3

 (2.14)

then the following relationship between the unknown parameters a1, a2, a3, b1, b2, b3
and the observed parameters c, d, g, h of the 2D line is found:

h · f · a1 − g · f · a2 + (d · g − c · h))a3 = 0 (2.15)
h · f · b1 − g · f · b2 + (d · g − c · h))b3 = 0 (2.16)

12



2.2 Computer Vision

Using this relationship, if the projections of two parallel lines are observed, the di-
rection cosines can be calculated as:

b1b2
b3

 =

 h1f
−g1f

d1g1 − c1h1

×
 h2f

−g2f
d2g2 − c2h2


∥∥∥∥∥∥
 h1f

−g1f
d1g1 − c1h1

×
 h2f

−g2f
d2g2 − c2h2

∥∥∥∥∥∥
(2.17)

where c1, d1, g1, h1 are the parameters of the first 2D line and c2, d2, g2, h2 are the
parameters of the second line.

2.2 Computer Vision

2.2.1 Image Processing or Computer Vision?

The terms Image Processing and Computer Vision are often mixed up. Computer
vision describes a field of research and applications, which aims to reconstruct the
properties of a scene and its objects depicted in one or more images. It uses methods of
image processing and image analysis, e.g. to separate background and foreground of a
scene, to identify objects based on known features or to reconstruct three dimensional
information based on two dimensional inputs. The block diagram in figure 2.2 relates
2D images to properties considering shape and appearance. The number in the boxes
refer to the chapters in the book by Szeliski [19], which is also recommended as source
for further reading.
Generally, image processing refers to the transformation of the image itself. The

output of an image processing algorithm is usually an image again, but with changed
properties. Examples of image processing are colour conversions(e.g. the transform
of a colour image into a grey scale image), geometric transformations as scaling or
rotations, and also filtering. In contrast to image processing, image analysis methods
for segmentation, feature detection or motion estimation do not output a transformed
image, but rather abstract information. If the information is afunction of each pixel,
the result might also be represented as an image. For example, a segmentation, which
separates the foreground and background of an image, might produce a binary image,
where 0 is assigned to each background pixel and 1 is assigned to each foreground
pixel.

2.2.2 Digital Images

A digital image may be represented by a pixel matrix, where the term pixel is ab-
breviated for picture element. It is defined by the space [0,W )× [0, H) ⊆ N2, where
W is the image width and H is the image height. The origin is located in the top
left corner. The coordinate xi refers to the respective column, yi refers to the row.
This means pixel p =

(
5 12

)
is placed in the sixth column and 13th row of the

13



Chapter 2 Fundamentals

Fig. 2.2: A block diagram of the relationship between images, geometry, and photometry,
(from [19])
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2.2 Computer Vision

Fig. 2.3: Hue H, Saturation S and Value V (from (3ucky(3all - CC BY-SA 3.0, https:
//commons.wikimedia.org/w/index.php?curid=943857)

image. The function I : [0,W ) × [0, H) → K where K is a set of numbers, maps
a value to each element of the image matrix. If the image encodes intensity values,
then K = [0, 1] may be chosen, where 0 refers to the darkest intensity and 1 refers to
the lightest intensity. In practice, images, which represent visual properties, mostly
contain integer values. For example, a gray scale image might contain intensity values
between 0 and 255. Images which encode other information - such as distances or
heat, may contain floating values.
Colour images are multi-channel images. This implies, that each pixel corresponds

to multiple values. K may then be defined as a vector space. In RGB images three
channels are used. The RGB colour space is often visualized as a unit cube of a
coordinate frame, where red, green and blue make up the axes. As RGB colours
are awkwardly to use by intuition, the Hue-Saturation-Value colour space (HSV) as
visualized in figure 2.3 is sometimes more useful. The colour itself is defined by the
hue, whereas saturation and brightness (value) are defined separately. In computer
vision applications, it is therefore easier to segment colours by hue.

2.2.3 Operators in Image Processing

In image processing operations, pixels are mapped to different values. Image trans-
forms that manipulate each pixel independently of its neighbours are often called
point operators. These operators affect brightness and contrast or are used to cor-
rect or convert colours. On discrete images a pixel transform is described as g(i, j) =
h(f(i, j)), where x = (i, j) is the pixel position. The function f(i, j) reveals the image
value at that position and h represents the function which is used for the transfor-
mation. A common transformation function is the multiplication and addition with
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a constant, which is expressed as:

g(x) = a · f(x) + b (2.18)

where a > 0 is called the gain and b is called the bias parameter, which both may
also be spatially variable. Increasing the gain changes the contrast of the image.
Increasing or decreasing the bias influences the brightness.
Image transforms where pixel manipulations depend on their neighbour pixels are

neighbourhood operators or local operators. Two well known local operators are
correlation and convolution which are both linear filters and very similar in their
definition. Correlation is denoted as g = f ⊗ h and defined as

g(i, j) =
∑
k,l

f(i+ k, j + l)h(k, l) (2.19)

where h(k, l) is the kernel or mask and the indices k, l depend on the kernel size. In
convolutions the sign of the offsets in f is reversed:

g(i, j) =
∑
k,l

f(i− k, j − l)h(k, l) (2.20)

It is denoted as g = f ∗ h. Filters are often used to blur (smooth) or sharpen
images, but are also preprocessing steps in order to find interesting image points such
as corners or before edge extraction. A few examples of linear filters are given below:

• Easiest to implement is the moving average or box filter, which averages the
pixel in a window of size K ×K. If K = 3 the filter kernel looks like

1

9

∣∣∣∣∣∣
1 1 1
1 1 1
1 1 1

∣∣∣∣∣∣ (2.21)

• A Gaussian filter kernel is computed as

G(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 (2.22)

• The Laplacian Operator is defined as the second derivative of a two dimensional
image

∇2f =
∂2f

∂x2
+
∂2y

∂y2
(2.23)

• The combined Laplacian of Gaussian (LoG) filter is the equivalent of first ap-
plying a Gaussian to an image and then taking its Laplacian

∇2G(x, y, σ) =

(
x2 + y2

σ4
− 2

σ2

)
G(x, y, σ) (2.24)

There are also non-linear filters, meaning their response to a sum of two signals is
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not the same as the sum of the individual responses ([19]). An example of a non-
linear filter is the median filter, which chooses the median of the neighbourhood as
new value for the pixel (i, j).

Binary images are commonly processed with non-linear morphological operations,
morphological as they change the shape of the binary objects. The conversion of
intensity images to binary images, where only two values are present, may be obtained
by a thresholding operation:

θ(f, t) =

{
1 if f ≥ t,

0 else
(2.25)

The following morphological operations using a thresholding operator, a 3 × 3
structuring element s, the integer-valued count of active pixel c = f ⊗ s and the total
number of pixels S in the considered window are commonly used. :

• dilate(f, s) = θ(c, 1)

• erode(f, s) = θ(c, S)

• majority(f, s) = θ(c, S)

• open(f, s) = dilate(erode(f, s), s)

• close(f, s) = erode(dilate(f, s), s)

Morphological operations are helpful to remove unwanted artefacts, for example
very short edge segments after edge enhancement.

2.2.4 Edge Detection

Edges in an images often correspond to contours of an object or borders between
different regions in an image. Therefore edges are usually used in order to find objects
or to segment an image. As an edge pixel represents a discontinuity in an image, it
is distinguishable from non-edge pixels. The methods, which exert this tasks, belong
to the field of edge detection or edge enhancement. The result of an edge detector
is often an intensity image, where high intensities represent sharp edges, or a binary
image, where each edge pixel is white. The edge image is sometimes also referred to
as edge map.
An edge according to the Dictionary of Computer Vision and Image Processing is ‘a

sharp variation of the gradient function. Represented by its position, the magnitude
of the intensity gradient, and the direction of the maximum intensity variation’[21].
A definition, which is less mathematical, is given by the book Algorithms for Image
Processing and Computer Vision: ‘An edge is the boundary between an object and
the background, and indicates the boundary between overlapping objects’[22]. In
the German Book Computer Vision the objects are generalized to ‘homogeneous
[meaning all pixel have similar values] regions’[23]. The book Concise Computer
Vision is referring to a step edge model, which defines edges by ‘changes in local
derivatives’[24].
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Fig. 2.4: Different forms of edges found in intensity images. On the left are synthetic input
images, on the right are the corresponding intensity profiles, from [24]

Figure 2.4 out of the same book shows, that edges appear in various forms. The
ideal step edge is a discrete border between regions of different intensities. In reality,
ideal step edges seldom occur. One reason is the discretization of the image: an edge
does not always appear at the margin of a pixel. More often, the intensity values
on the line perpendicular to the edge build a ramp function, or due to discretisation
rather a step function. Therefore edge detection methods which are based on gradient
functions lead to multiple responses by a single edge.

The gradient or first derivative of an image at pixel position x, y is defined as

∇I = gradI =

[
∂I

∂x
,
∂I

∂y

]T
(2.26)

The magnitude of the gradient is the norm of the gradient vector, the direction is
given as

Gdir = arctan 2(
∂I

∂y
,
∂I

∂x
) (2.27)

The first derivatives in x and y direction can be approximated by

Iy(x, y) =
I(x, y + 1)− I(x, y − 1)

2
(2.28)

and
Ix(x, y) =

I(x+ 1, y)− I(x− 1, y)

2
(2.29)

The corresponding filter kernels which have to be applied to the image, to obtain
the gradient in each pixel is

1

2

∣∣∣∣∣∣
0 0 0
−1 0 1
0 0 0

∣∣∣∣∣∣ (2.30)
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for the horizontal gradient (in x direction) as well as

1

9

∣∣∣∣∣∣
0 −1 0
0 0 0
0 1 0

∣∣∣∣∣∣ (2.31)

for the vertical gradient (in y direction). Another approximation of the gradient is
given by Sobel[25]. He used the filter kernels∣∣∣∣∣∣

−1 0 1
−2 0 2
−1 0 1

∣∣∣∣∣∣ (2.32)

and ∣∣∣∣∣∣
−1 −2 −1
0 0 0
1 2 1

∣∣∣∣∣∣ (2.33)

Applying either of these filters to the image yields a gradient magnitude map, where
the maxima are possible edge positions. They are therefore basic edge detectors.
However, neither of them is optimal. The criteria of an optimal edge detection was
established by Canny, who invented the Canny Edge Detector, which today is a
popular edge detection method.[26]. He summarized the criteria as:

• edges that are in the images should not be missed

• edge points should be well localized

• no multiple responses to a single edge

The Canny algorithm is applied to a (Gaussian) smoothed image. The first deriva-
tive of a Gaussian is then used to obtain a gradient image. The first derivative of
a Gaussian was chosen accordingly to the criteria formulated as mathematical con-
straints. The next step is the non maxima suppression. At each position, the gradient
magnitude is compared to the gradients of the positions given by the gradient direc-
tions. This means: if the direction is pointing downwards or upwards, the magnitude
has to be greater than the gradient magnitude of pixel above as well as the pixel
below. If the direction is to the left or right, the magnitude has to be greater than
the magnitudes of pixels left and right, otherwise the magnitude at this position is
discarded. The same applies for diagonal directions. As there are only 8 possible
directions, the calculated gradients are rounded to multiples of π/4.
Hysteresis thresholding is the last step of the Canny algorithm. Two thresholds are

chosen, a pixel counts as an edge pixel if the magnitude is higher than a threshold
Thigh. A pixel in its neighbourhood, which magnitude is lower than this threshold,
only counts as an edge pixel, if its magnitude is still higher than a second threshold
Tlow.
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2.3 Distributed Algorithms

As their name suggests, distributed algorithms are designed to be executed on a
distributed system. Such a system consists of a network of different computing nodes
which usually do not share common memory but communicate using messages [27].
Often the computing nodes have varying capabilities and therefore are responsible
for different kinds of actions.
Certain problems accompany distribution: a distributed system needs to be fault

tolerant, as messages between nodes might get erroneous or even lost. The failure of
one or more computing nodes has to be handled as well, e.g. through the introduction
of redundancies and the reasonable redistribution of tasks. Is one single computing
node responsible for an important task, its availability has to be monitored: does
it provide enough computing power, does the communication impose a severe bottle
neck? Another problem is load division, which describes the decision of how to
distribute loads to possibly heterogeneous nodes.
At the same time each problem turns into an advantage, if handled well. Dis-

tributed systems are more scalable, fault tolerant and offer greater concurrency than
a centralized system.
There are multiple motivations to design or use a distributed system and therefore

also distributed algorithms. With the rise of the world wide web as a giant distributed
system, client-server applications have become more common. A internet user may
access a service through a web interface, which communicates with a server, which
may then again communicate with another server, which may have access to a neces-
sary database or offer enough computational power to perform complex calculations
(e.g. cloud computing). The motivation in this thesis, though, is to exploit a dis-
tributed system in order to parallel the task of an algorithm in order to improve its
execution rate.
Of the distributed system to be used, only the available computing nodes are

known. The architecture and communication method has to be chosen carefully and
requires an introduction into the available possibilities. This introduction is given in
the next sections.

2.3.1 Common Architectures for Distributed Systems

A distributed architecture describes how tasks are distributed to the computational
nodes and which nodes control this distribution. In web applications the client-server
model is widely used. A simple client-server architecture consists of a single server
and multiple clients. The server offers a service, which can be requested by the clients.
The number of clients is not fixed and the server does not need to know the client.
Only the address of the server has to be public or known to the clients. A client-server
model may be extended, for example if the server itself requests functionality from
another server.
In systems, where the number of servers and their services are not known or the

system is about to be extended in the future, a broker architecture may be used. In
this architectural style, server and clients do not communicate directly, but through
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Fig. 2.5: Client-Server versus Peer-to-Peer Architecture, from [27]

a kind of middle man, the broker. Its task is to coordinate communication and
to forward the requests, sent by clients, to the correct service. An international
standard for a broker implementation is given by Common Object Request Broker
Architecture (CORBA).

The third architecture to be presented here, is the peer-to-peer architecture. In
contrast to both of the other architecture, the roles of peers are not hierarchically
fixed. Every peer may use a service by or offer a service to the other peers in the
network. This may involve more complex communication channels, as peers com-
municate with each other, as shown in figure 2.5. In order to find other peers in
the system, indexes provided by a central node may be used or flooded-requests al-
gorithms, which distribute service requests by broadcast to their neighbours until a
matching peer is found.

2.3.2 Communication Methods

Two similar communication methods are Remote Procedure Call (RPC) andmessage-
based communication. RPC is a basic mechanism for the client-server model. The
term was introduced by Bruce Jay Nelson in 1981. The process is explained in a
paper by Nelson [28] as follows:

When a remote procedure is invoked, the calling environment is sus-
pended, the parameters are passed across the network to the environ-
ment where the procedure is to execute (which we will refer to as the
callee), and the desired procedure is executed there. When the procedure
finishes and produces its results, the results are passed backed to the call-
ing environment, where execution resumes as if returning from a simple
single-machine call.

Advancements of RPC, called asynchronous RPC, exist which do not block the
calling environment, while the method is executed but only as long until the request
is accepted by the callee. A problem occurring with RPC is that the sender and
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receiver may have different data representations.The process to correctly pack the
request and parameters for the callee and vice versa is called marshaling.
RPC assumes that the callee is always able to respond to a request immediately.

In contrast, in message-based communication queues are used, where messages are
collected and the receiver decides when to answer to them. The publish-subscribe
pattern is a message-based pattern. The messages are not directed towards a sender,
but rather interested receivers subscribe to available messages.
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Chapter 3

Pose Estimation of a Cylindrical
Object in an OOS Scenario

3.1 Scenario

In an in-orbit manipulation or OOS scenario two spacecraft participate. The target
of the manipulation is likely to be non-cooperative, meaning there is no possibility
to control the spacecraft’s attitude. Additionally no communication with the target
is possible, e.g. to receive its self-determined pose. The servicer or chaser spacecraft
approaches the target and servicing may start, if target and chaser are close enough.
In the following scenario, the chaser has approached its target up to a close distance
(less than 5 m). Both spacecraft are equipped with robotic manipulators. These
often include cylindrical parts as seen in figure 3.1.

The chaser arm has to grasp a cylindrically shaped arm of the manipulator mounted
on the target satellite, therefore the relative pose of this object has to be determined.
It is assumed, that the dimensions of the cylindrical part are known.

The relative pose of the part is defined as its 3D pose consisting of an orientation
vector corresponding to the cylinder’s main axis and a point on this axis corresponding
to the center of the cylinder with respect to the chaser’s body frame coordinate
system. At first, the relative pose with respect to the camera frame is determined.
Knowing the transformation matrix between camera and chaser frame, the relative
pose w.r.t. the chaser frame may then be computed. As a cylinder is a rotational
symmetric shape, the pose estimation only indicates a possible point, which is suitable

Fig. 3.1: A typical robotic manipulator arm with cylindrical parts(outlined in red) (image
from http://www.robotics-research.com/)
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to grasp. If the manipulator includes more than one cylinder, the estimation of all
their poses may be used, to decide on the manipulators current configuration.
In order to regard the constraints of this master thesis, the scenario is simplified.

The following assumptions are made:

• the colour of the cylindrical part is known and is unambiguous in the scenario

• no noise is created due to data transmission

• the illumination is balanced without bright spots or widespread shadowing

• the relative linear and angular velocities between target and chaser are relatively
small with negligible acceleration

• the target is non-cooperative, but does at most tumbling motions

These assumptions lead to several advantages. The known colour allows a hue-
based segmentation of the image and determination of a Region Of Interest (ROI)
around the cylinder. Severe noise and illumination issues exacerbates the complexity
of the given task as they introduce disturbances to any computer vision algorithm
lowering their robustness. However, this is actually not given in space contexts and
a severe simplification of the environment. The small changes in velocity prevents
motion blur.

3.2 Perspective Projections of Cylinders

A cylinder is a closed solid that has two parallel circular bases connected by a curved
surface1. The main axis of the cylinder is the line joining the center of each base.
A cylinder is defined by its height h (the perpendicular distance between the bases),
and the radius r of its bases. In the following sections a right cylinder is assumed,
meaning the main axis is at a right angle to the base.
A reference frame w.r.t. the cylinder may be defined as follows: the origin is at

the center of one base. The z-axis is collinear with the main axis, pointing from the
origin to the center of the other base. As a cylinder is symmetrically around its main
axis, the x- and y- axis may be chosen arbitrarily, perpendicular to the z-axis forming
a right handed coordinate system as seen in figure 3.2. The points w.r.t. the cylinder
reference frame belonging to the cylinder, are then described as:

C(r, h) = {x, y, z ∈ R|x2 + y2 ≤ r, 0 ≤ z ≤ h} (3.1)

The contour of the cylinder surface on a perspective plane (such as the image plane)
appears as two straight lines, except in the case where one of the bases is showing
directly parallel to the image plane. The straight lines are either parallel or intersect
in the vanishing point which may lie outside of the image borders. Only one of the
bases is visible at most, appearing as a conic.

1http://www.mathopenref.com/cylinder.html
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Fig. 3.2: A Cylinder parametrized by radius and height

Fig. 3.3: Possible appearances of a cylinder after perspective projections

Conics are the curves obtained by intersecting a plane and a cone. These may be
circles, ellipses, parabolas or hyperbolas. In the perspective plane a general conic
with homogeneous coordinates is described as

aTx = ax2 + bxy + cy2 + dxz + eyz + fz2 = 0 (3.2)

with a = (a, b, c, d, e, f)T and x = (x2, xy, y2, xz, yz, z2)T , or in matrix notation as

(
x y z

)a b
2

d
2

b
2

c e
2

d
2

e
2

f

xy
z

 = 0 (3.3)

In case of an ellipse b2 − 4ac < 0 holds. Ellipses are defined by their semi-major
axis a, their semi-minor axis b, their center point (xc, yc) as well as the angle between
the positive horizontal axis to the ellipse’s major axis ρ.
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3.3 Pose Estimation Algorithm for Cylindrical
Object

3.3.1 Short Description

The pose estimation algorithm given a coloured input image consists of three parts.
The sub goal is to determine either the both lines of the cylinder surface or the ellipse
of one of its bases in the 2D image space. They are then converted into the 3D camera
space using the known parameters radius r and height h of the cylinder. The last
step is to calculate the main axis and the point on the main axis in between both
cylinder bases. The line determination is supported by knowledge of the colour of
the cylindrical segment as well as a a priori - estimation based on the center of mass
and orientation of the coloured image parts. The process of estimating an ellipse is
explained in a following section. However, it emerged quickly, that it is impractical
due to its computational inaccuracy and the fact that the cylinder bases are often
occluded as well.
As the colour of the cylinder is known, at first a ROI is defined with respect to its

HSV colour values. HSV colour values allow for easier colour based segmentation,
as colours may be determined by the hue value only independent of brightness or
saturation. It is assumed, that the cylinder is the only object with the given colour,
so the ROI is determined as the minimum rectangle which encloses the coloured
object. In the worst case the ROI does not reduce the problem space, e.g. when the
cylinder’s projection is with the main axis parallel to the image plane and rotated
around 45◦. However, the colour segmentation may be used to mask the image, so
that only pixels which are part of the cylinder are non-black.
The extracted ROI is afterwards converted to an image containing only the contour

of the cylinder. For this purpose the Canny edge detector may be used. As a next
step the connected line segments are extracted. Line segments which are shorter than
a threshold are disregarded.
In order to disconnect straight lines and arcs, a recursive line segment cutting

algorithm is used. It is one of the oldest methods of line simplification and has
already been proposed by Ramer in 1972[29]. The line segment is recursively divided
at the point which is furthest away from the line joining both end points of the
segment. Two thresholds may be given: one threshold to decide the minimum line
length in pixels, and one threshold to decide the minimum distance to the line of the
point to be cut. Again, too short segments after the cut are neglected.
Into each remaining line segment a straight line has to be fitted. On that account

a linear regression algorithm is chosen, which was extended in order to be applicable
for vertical lines. The algorithm is described in the next section. The line estimates,
which have a high pixel support (e.g. the squared error of distances is less than 2
pixels) are then compared to the principal orientation of the coloured part. Every
line with an angular displacement towards the orientation greater than a threshold
(e.g. 35◦) is disregarded. Such lines might belong to objects occluding part of the
cylinder. Another possibility to determine the straight lines given in the picture is
the application of a Hough transform. This was decided against because of its need of
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an accumulator array, whose size is dependent on the accuracy of the line estimates.
The most reasonable pair of lines is chosen as candidates. Using a point parametriza-

tion of the 2D lines, the direction cosines of the cylinder’s z-axis are calculated ac-
cording to equation 2.17. Knowing, that corresponding points on both sides of the
cylinder lie on a circle with given radius in the plane given by the normals to the
z-axis, an anchor point for the z-axis is determined.

3.3.2 Fitting Straight Lines

A linear regression is used to estimate a straight line into each segment. Usually,
a Hough transform might be used to find straight lines. In a Hough transform for
each edge pixel, line estimates parametrized using the normal representation with
ρ and d are accumulated in an array. The maxima then correspond to found lines.
This approach is robust against occlusion, as the line segments do not have to be
connected. However, the accumulator array has high memory requirements. In the
existing case the line segments are connected, though, and due to the previously
performed line simplification are thought to be either straight lines or arcs.

In general, a simple linear regression is a least squares method and performed as
follows[30]: At first the means x̄ = 1

n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi are determined,

where n is the number of elements used for estimation of the line. The slope m is
then calculated as:

m =

∑n
i=1 yixi − nx̄ȳ∑n
i=1 x

2
i − nx̄2

(3.4)

The offset b is easily determined as b = ȳ − mx̄. In the case of a vertical line,
which is described as x = c, where c is a constant, linear regression does not lead to
a reasonable result. In that case the constant c is estimated as c = x̄. The relation
between ρ and b is given as b = sin ρ

cos ρ
= tan ρ. Then d is determined with the normal

line equation.

3.3.3 Fitting Ellipses

A popular method of fitting ellipses is direct least square fitting introduced by Fitzgib-
bon et al.[31]. In comparison to other methods, their proposal is ellipse specific and
may be solved analytically. The problem to be solved is constrained by the equation
4ac − b2 = 1 which is a scaled version of the constraint for an ellipse as given in
section 3.2. In matrix form aTCa = 1 it may be expressed as

aT


0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 a = 1 (3.5)
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The ellipse fitting problem is then:

Minimize E = ‖Da‖2, subject to the constraint aTa = 1 (3.6)

The matrix D is called design matrix and defined as the n× 6 matrix [x1x2 . . .xn].
The problem is solved by building the scatter matrix S = DTD and finding the
eigenvalues to the matrix S−1C.
A version of the direct least square algorithm was implemented using the C++

library OpenCV. The results were compared to the Matlab implementation provided
by [31], showing that the OpenCV implementation of finding eigenvalues yields dif-
ferent outcomes, which did not correspond to useful results. Therefore, the idea of
using ellipse fitting in the algorithm was discarded.

3.3.4 Estimating the pose given two line candidates

After line candidates are determined, which are assumed to be the perspective projec-
tions of the cylinder’s sides , the image processing part of the algorithm is completed.
The next step is the determination of the straight line corresponding to the z-axis of
the cylinder. Knowing that both line candidates are the projections of parallel lines,
the direction cosines b =

(
b1 b2 b3

)T corresponding to the cylinder’s main axis are
calculated as described by Haralick[20]. One of the line candidates is parametrized
as

l1 = {x
∣∣x =

(
c1
d1

)
+ λ

(
g1
h1

)
} = {

(
x
y

) ∣∣ cos ρ1x+ sin ρ1y = δ1} (3.7)

and the other line as

l2 = {x
∣∣x =

(
c2
d2

)
+ λ

(
g2
h2

)
} = {

(
x
y

) ∣∣ cos ρ2x+ sin ρ2y = δ2} (3.8)

Then the direction cosines is calculated using equation 2.17. To find an anchor point
on the line through the z-axis, two opposing points on the projected line candidates.
At first an arbitrary point on the first line is chosen.

p =

(
up
vp

)
=

(
l1 cos ρ1
l1 sin ρ1

)
(3.9)

In order to determine the corresponding point on the second line, the straight line
which has the same angular distance to each of the other lines has to be found. It is
parametrized as:

l0 = {x
∣∣x =

(
c0
d0

)
+ λ

(
g0
h0

)
} = {

(
x
y

) ∣∣ cos ρ0x+ sin ρ0y = δ0} (3.10)

The normal angle ρ0 may be determined as:

ρ0 = atan2(sin ρ2 − sin ρ1, cos ρ1 − cos ρ2) (3.11)

The direction cosines of the line are then chosen as g0 = − sin ρ0 and h0 = cos ρ0.
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The corresponding point lies on the second line.

q =

(
c2
d2

)
+ j ·

(
g2
h2

)
(3.12)

The angle between the mid line and the line connecting the corresponding points is
a right angle. Using the vector representation of the lines, it yields that(

up
vp

)
+ i ·

(
−g0
h0

)
=

(
c2
d2

)
+ j ·

(
g2
h2

)
(3.13)

The two equations are then rearranged to determine either i or j, in order to find the
corresponding point q.

j =
g0(up − c2) + h0(vp − d2)

g0g2 + h0h2
(3.14)

The point, of which p is the projection, shall be denounced as P and analogous point
Q to the projected point q. Each of the three dimensional points is on a circle with
radius r and center M. The three dimensional circle equation is:

X = r cosφê1 + r sinφê2 + M (3.15)

The vectors ê1 and ê2 are unit vectors in the plane perpendicular two the direction
cosine vector b and perpendicular to each other. The vector between Q and P is
computed using the circle equations.

P−Q = (r cosφpê1 + r sinφpê2 + M)− (r cosφqê1 + r sinφqê2 + M)

= r(cosφp − cosφq)ê1 + r(sinφp − sinφq)ê2 (3.16)

Using identities for sine and cosine differences

α− sin β = 2 cos

(
α + β

2

)
sin

(
α− β

2

)
(3.17)

and
α− cos β = 2 sin

(
α + β

2

)
sin

(
α− β

2

)
(3.18)

and denoting the variable φ′ = φp+φq
2

the equation simplifies to:

P−Q = 2r(cosφ′ê2 − sinφ′ê1) (3.19)

Now the projection equations are used. They yield: 1
f

(Zpup − Zqup + h0Zqi)
1
f

(Zpvp − Zqvp − g0Zqi)
Zp − Zq

 = 2r(cosφ′ê2 − sinφ′ê1) (3.20)
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The angle φ′ is calculated as:

a = (h0 (ê2,zvp − f ê2,y) + g0 (ê2,zup − f ê2,x)) (3.21)
b = (h0 (f ê1,y − ê1,zvp) + g0 (f ê1,x − ê1,zup)) (3.22)
φ′ = atan2(−a, b) (3.23)

Solving for Zq yields two possible equations, which have to be used depending on
h0 or g0 unequal to zero.

Zq =
2r

h0i
(cosφ′ (ê2,zup − f ê2,x) + sinφ′ (f ê1,x − ê1,zup)) (3.24)

Zq =
2r

g0i
(cosφ′ (ê2,zvp − f ê2,y) + sinφ′ (f ê1,y − ê1,zvp)) (3.25)

(3.26)

Zp is then calculated easily and a point on the line is given by 0.5(P + Q). As an
estimation for the cylinder position, the point on the line with closest distance to its
mean, may be chosen.
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Chapter 4

Tools

This chapter presents the tools used in this master thesis. The term tool here refers to
software tools as well as programming libraries. They are introduced in the order of
how they appeared in the working process. The robotic simulator V-REP for example
was used to create synthetic test data as input of the algorithm. The open source
computer vision library OpenCV by contrast was used to implement a prototype of
the application, which simultaneously serves as a reference for tests. Eventually, the
real time operating system RODOS provided the necessary functionality to design a
distributed version of the application.

4.1 V-REP

The Virtual Robot Experimentation Platform V-REP is a robot simulation framework,
which is freely available for download, if used for educational purposes1. It was
chosen, as it is possible to simulate a camera and its input, while being able to freely
manipulate the scene to be recorded.

In V-REP a scene is similar to a project in a development environment. A V-REP
scene consists of several scene objects. These are hierarchically ordered in a tree-like
structure called scene hierarchy and every object may be extended by a script, which
defines its behaviour[32]. Next to embedded scripts written in the Lua script language
there are various other ways to program control algorithms for V-REP simulations,
for example using plug-ins, a remote Application Programming Interface (API)-client
or even a ROS node.

The standard user interface of V-REP as seen in figure 4.1 consists of several parts.
The figure was extended visually with a red overlay and numbers which are used to
explain the functionality. The 3D rendered scene (number 1) is displayed in the
right half of the screen. Additionally, it may be split into different pages showing
other views (e.g. top view, side view, a coordinate system, . . . ) by using the page
selector (number 2). The next important part is the scene hierarchy (number 3). It
allows changing an object’s name, manipulating the hierarchy by drag and drop and
to access the scripts. Complex objects are added to the scene by using the model
browser (number 4). The models are sorted into folders. The ant hexapod robot
seen in the rendering for example was chosen from the model browser. The panel on
the left side (number 5) gives access to several dialogues. The first button opens the

1http://www.coppeliarobotics.com/downloads.html
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Chapter 4 Tools

Fig. 4.1: The standard UI of V-REP

simulation settings, where among others the simulation time step may be changed.
Some of the functions are also accessible by a button in the top panel. The second
button opens the scene object properties of the selected object (see figure 4.2(a)).
This dialogue may also be opened by double clicking on the object in the scene
hierarchy. In the object properties dialogue the geometry (see figure 4.2(b)) and the
dynamic responses of the object (see figure 4.2(c)) can be changed. The calculations
modules are opened by clicking the third button in the side panel. Here for example
the gravity setting is adjusted. The button after that allows to form collections of
scene objects. The fifth button opens a overview of existing scripts. Button 6 and
7 are only available, when an object or path is selected and allow editing of them.
The eighth buttons opens the OpenGl-based custom UIs view. Selection of multiple
paths by type is available after clicking button 9. The next two buttons hide the
model browser and scene hierarchy. Button 12 allows choosing the visible layers. A
video recorder is available through the next button and the last buttons opens the
user settings
A scene object like a simple shape or a model is by default subject to dynamics.

If that is not desired, it may be deactivated in the body dynamics properties. In
order to extend the functionality of an object a child script may be added in the right
click menu. A non-threaded Lua child script is segmented in several parts. Those are
depicted in listing 4.1. The initialization part is only executed once, when the scene
object is inserted into the simulation scene (which might be at the the beginning of
the simulation).
The vision sensor 2 is the scene object, which is needed to record synthetic test

data. It has a built-in filtering function which among other things allows to add
noise to the scene. In order to be detected by a vision sensor, the object needs to be
renderable. There are two different types of vision sensors, orthographic projection-
type sensors have a rectangular field of view, while perspective projection-type sensors

2http://www.coppeliarobotics.com/helpFiles/index.html
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(a) The scene object proper-
ties dialogue

(b) The geometry properties
dialogue

(c) The dynamic properties di-
alogue

Fig. 4.2: Some of the Property dialogues of V-REP

Listing 4.1: The standard V-REP child script content�
1 if (sim_call_type == sim_childscriptcall_initialization) then
2 -- here any objects needed by the script
3 --should be initialized , e.g. parameters
4 end
5

6 if (sim_call_type == sim_childscriptcall_actuation) then
7 -- here any actuation work should be added
8 end
9

10 if (sim_call_type == sim_childscriptcall_sensing) then
11 -- here any sensing object is doing its work
12 end
13

14 if (sim_call_type == sim_childscriptcall_cleanup) then
15 -- Put some restoration code here
16 end
� �

have a trapezoidal field of view. The last type of sensor is more suited for a camera-
like sensor. Four properties may be set in perspective mode as shown in figure 4.3.
The near and far clipping plane define the range in which objects are detected by the
sensor. The perspective angle defines the maximum opening angle of the detection
volume. If the horizontal resolution is greater than the vertical resolution, then it is
the horizontal angle and vice versa. As the vision sensor is not a real camera, the
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Fig. 4.3: The properties of a V-REP vision sensor in perspective projection mode, from
the V-REP manual

focal length is not a property of the vision sensor.

4.2 OpenCV

OpenCV is an open source computer vision library. It has been introduced by Intel
in June, 2000. Currently, OpenCV is maintained by Itseez, official releases occur
every six month. A lot of contemporary computer vision algorithms are added yearly
through Google Summer of Code projects. OpenCV is an optimized library and
supports GPU acceleration and parallelism. In order to turn off optimization and
enforce sequential execution, at the beginning of an OpenCV program the functions
cv::setNumThreads(0) and cv::setUseOptimized(false) have to be called.
In this thesis, OpenCV was used in version 3.1 and may be downloaded on its

website3. The documentation is also available online4. The library is divided into
several modules. By far not all of them are needed to understand the reference
implementation. However, extracts of the four basic modules core, imgproc, imgcodecs
and highgui are explained in this section.
The easiest way to compile an OpenCV application is to use CMake and a C++

compiler. The CMakeLists.txt file should look similar to listing 4.2.

4.2.1 The Core Module

The core module provides a data structure for images and other utility classes. An
image is interpreted as a dense n-dimensional array and stored in an object of the

3http://opencv.org/downloads.html
4http://docs.opencv.org/3.1.0/
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Listing 4.2: CMakeLists.txt�
1 cmake_minimum_required(VERSION 2.8)
2 project( DisplayImage )
3 find_package( OpenCV REQUIRED )
4 include_directories( ${OpenCV_INCLUDE_DIRS} )
5 add_executable( DisplayImage DisplayImage.cpp )
6 target_link_libraries( DisplayImage ${OpenCV_LIBS} )
� �

Mat class5. Image data is laid out in an one-dimensional array, where the image is
stored row-by-row. A multi-channel image, for example a colour image, is stored
plane-by-plane.

The data to be stored in a Mat is defined by its type. The type is given as constant,
CV_8UC1 for example describes an 8 bit single channel image, an image of type CV_32FC2
has two channels and contains 32-bit floating point numbers. Copying a matrix or
extracting a ROI is executed in O(1) time, as only the matrix headers are copied and
the data is accessed by reference. In order to perform a deep copy, Mat cv::clone()
has to be called.

Data in a matrix is accessed either element-by-element or through row pointers.
The second way is more efficient, if whole rows of the matrix need to be processed. A
rectangular submatrix is extracted using the bracket operator. The argument given
is of type Rect which is also a class of the core module. A Rect is defined by its top
left corner, height and width.

Different type of point classes are available. The simple Point class represents a
two dimensional vector of integers and is conveniently used e.g. for pixel coordinates.
Points in a 3D environment are represented by the Point3f or Point3d classes, which
hold 3D vectors of floats or doubles.

4.2.2 The Image Processing Module

The Image Processing Module (imgproc) includes classes and functions for image
filtering, image transformation, feature and object detection and more.

The morphological operations blur and dilate are implemented in this module.
Both functions require a kernel, which defines the shape of the pixel neighbourhood
of which the minimum, respectively maximum is taken. To create the kernel, for
example the function getStructuringElement(...) may be used. For dilation the
formula is:

dst(x, y) = max
(x′,y′):kernel(x′,y′)6=0

src(x+ x′, y + y′)

Blurring is also a filtering operation. OpenCV offers among others, Gaussian and
median blur functions. Besides input and output image the function GaussianBlur
(...) requires the Gaussian kernel standard deviation in both x- and y-direction. If
both are set to zero, they are computed using the given size.

5see http://docs.opencv.org/3.1.0/d3/d63/classcv_1_1Mat.html
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In order to convert an image to another colour space the function cvtColor(...)
is used. The code argument is an element of the enum ColorConversionCodes. In
order to convert between colour RGB and grayscale image for example, the code
COLOR_BRG2GRAY is used, COLOR_BGR2HSV converts a RGB image to the HSV colour
space.
The thresholding function threshold(...) does exactly what its name indicates.

There are several threshold types which are depicted in figure 4.4.

Fig. 4.4: The different thresholding types implemented in OpenCV. From sec-
ond top to bottom: THRESH_BINARY, THRESH_BINARY_INV, THRESH_TRUNC,
THRESH_TOZERO_INV, THRESH_TOZERO, (image source: OpenCV documentation)

As edges are image features, the implementation of the Canny(...) function in the
documentation is found under the label of feature detection. The function requires
an 8-bit input image. The edges are returned as a 8-bit image as well, which has
the same size as the input image. The implementation uses the standard algorithm
explained in the chapter before. Instead of a default L1 norm the more accurate L2

norm may be used by setting a flag.
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In order to detect line segments the output of the Canny algorithm may then be
fed to a line detector. OpenCV supplies a factory function to create a custom line
detector(listing 4.3).

Listing 4.3: The OpenCV factory function to create a line segment detector�
1 Ptr <LineSegmentDetector > cv:: createLineSegmentDetector (
2 int _refine = LSD_REFINE_STD ,
3 double _scale = 0.8,
4 double _sigma_scale = 0.6,
5 double _quant = 2.0,
6 double _ang_th = 22.5,
7 double _log_eps = 0,
8 double _density_th = 0.7,
9 int _n_bins = 1024

10 )
� �
The refinement argument determines the level of line refinement and is either none,

standard or advanced. Standard refinement breaks arcs into smaller line approxima-
tions, advanced refinements increases precision, etc.

4.2.3 Image reading and High GUI

Images of various formats are read to image matrices using the imread(...) method.
By default they are read as colour images with channels stored in Blue, Green, Red or-
der. In order to look at results, it is possible to display images using the graphical user
interface options of OpenCV. A window is created using namedWindow(...), the image
then is sent to the window by imshow(...). The function waitKey(int delay = 0)
has to be called afterwards as it is the only function that processes GUI events, oth-
erwise the image will not show. If called with argument zero, the function will wait
infinitely, until a Key is pressed. A short example of this is given in listing 4.4.

Listing 4.4: Loading and displaying an image�
1 ...
2 namedWindow("EXAMPLE");
3 Mat img = imread("example.png";
4 imshow("EXAMPLE",img);
5 waitKey ();
6 ...
� �

4.3 RODOS

RODOS is a real-time operating system developed by the German space agency DLR
which is grounded on the principle of simplicity. The framework is available online6.

6http://www.montenegros.de/sergio/rodos/rodos-de.html
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RODOS runs on different embedded platforms and on top of Linux, allowing fast
development. The RODOS core is implemented in object oriented C++ and the API
is easy to understand.
In order to compile an application a bash shell is used. At first the RODOS envi-

ronment variables have to be set by calling $ source make/rodosenvs in the RODOS
core directory. At the first time, the library has to be compiled for the given tar-
get system. In case of Linux one has to call $ linux-lib in an arbitrary folder.
The command $ linux-executable <filename> [<filename> <filename> compiles a
Linux binary. The executable is named tst by default.
Only a few basic elements are needed to create complex applications. The RODOS

middleware takes care of the communication between tasks within an application. A
task is implemented by creating a class inheriting from the RODOS::Thread class and
instantiating static objects of it. Every thread brings its own context and stack. A
scheduler is responsible for thread execution control and context switch.
Threads may execute their task periodically or react to events. A periodic thread

suspends itself after execution and is resumed by the scheduler at the desired point
in time. The system time is counted with nanosecond precision and starts at boot
time. To simplify the access of time related functions the following macros exist:

• NOW() returns the current time in nanoseconds

• SECONDS_NOW() returns the current time in seconds

• AT(time) suspends the caller until the time point is reached

• TIME_LOOP(firstExecution,period){...} is used to control periodic execution

Time units are also given as macros: NANOSECONDS , MICROSECONDS , MILLISECONDS
, SECONDS , MINUTES, HOURS , DAYS , WEEKS , END_OF_TIME. The last constant is
the highest time possible and lies about 293 years in the future which should be
sufficient for most applications.
The example in listing 4.5 shows an example of a simple thread, which increments

a counter every 2 seconds. The thread execution starts one second after boot. The
thread main task is implemented in its run() method. The time loop macro suspends
the thread automatically after each loop.

Listing 4.5: A simple RODOS thread�
1 static int cnt = 0;
2

3 class SimpleThread : Thread{
4 public:
5 SimpleThread () : Thread("SimpleThread"){}
6 void run(){
7 TIME_LOOP (1* SECONDS ,2* SECONDS){
8 cnt++;
9 }

10

11 }
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12

13 } simplethread;
� �
Important threads are given a priority, which ensures that they are not interrupted

by less important tasks. If a task needs to be executed without interruption, for
example when accessing a variable, a Semaphore may be used. A semaphore is a data
structure used to control the access to limited resources. If a semaphore is occupied,
the process is blocked until the occupying process releases the semaphore.

The RODOS middleware implements the publisher-subscriber protocol and relies
on topics. A topic is a pair of a data-type and an integer identifier and may be
understood as a single communication channel. Messages are published to the topic
and the middleware distributes them locally and, using gateways, also to other com-
puting nodes in the network. In order to receive the message, a subscriber has to
be instantiated. Each subscriber is connected to exactly one topic. Simple sub-
scribers may forward the received message to a Fifo7 or CommBuffer8, which is then
accessed by a thread. More complex subscribers are implemented by inheriting from
the RODOS::Subscriber class.

Listing 4.6 is an example for the different kinds of subscribers. All topics are of
integer type. The first subscriber enqueues received messages to a Fifo. The second
subscriber prints the message directly.

Listing 4.6: Different kinds of subscribers�
1 Fifo <int , 10> fifo;
2 static Subscriber fifoSubscriber(counter1 , fifo , "

fifoSubscriber");
3

4 class Printer : public Subscriber{
5 public:
6 Printer () : Subscriber(counter2 , "printer") { }
7 long put(const long topicId , const long len , const void*

data , const NetMsgInfo& netMsgInfo) {
8 PRINTF( "Received:␣%d", *(int*)data);
9 return 1;

10 }
11 } printer;
� �

In order to distribute messages beyond the boundaries of the computing node, a
RODOS::Gateway is used. The gateway requires an interface to the desired network
over which the messages are to be distributed. Interfaces are implemented for several
hardware/software protocols. Listing 4.7 is an example of creating a gateway which
uses UDP.

Listing 4.7: Creating a gateway using a UDP connection�
1 static UDPInOut udp ( -5001); // negative number for broadcast
2 static LinkinterfaceUDP linkinterfaceUDP (&udp);

7Also called a queue, a FiFo is a First in First out data structure.
8In contrast to a queue, the buffer only holds the latest received message.
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3 static Gateway gateway1 (& linkinterfaceUDP);
� �
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Chapter 5

Implementations of the Pose
Estimation Algorithm

5.1 Reference Implementation using OpenCV

5.1.1 Implementation

At first the pose estimation algorithm explained in the previous chapter has been
implemented using the OpenCV library, which has been given an introduction to in
chapter 4. There are several advantages to this approach:

• There is no need to re-implement the basic image processing procedures, instead
the focus lies on the estimation algorithm itself

• It simplifies the access to a video stream of a USB web cam or to read images
from hard disk

• OpenCV is widely used, in commercial products as well as in research, and
therefore a reasonable and well tested point of reference

The three parts of the algorithm were implemented in three functions to allow
individual testing. The first function converts the input image into a contour image
of the cylinder. The image is afterwards cropped to the cylinder’s bounding rectangle,
further called the ROI. The ROI of the previous iteration may be used to reduce the
input image size.

The second function implements the line extraction. The contour image produced
by the first function has binary content. Connected non-zero pixels are extracted
as edges. Edges are actually vectors of pixel coordinates. However, an Edge class
wrapping those vectors simplifies splitting of edges. Also a Line class has been imple-
mented in order to keep track of found lines. A line is created with either two points
or its polar parameters. Additionally, also an edge may be used to estimate the line
based on linear regression. The two line candidates are chosen considering the lines’
length, straightness and orientation towards each other.

Both candidates are finally fed to the third function and used to compute an
estimated position and orientation. The formulas used are explained in the previous
chapter. The accuracy of the orientation estimation depends only on the correct
identification of the cylinder sides. The estimation of the position is largely depending
on two additional factors: the orientation of the cylinder and its occlusion.
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5.1.1.1 The Utility Classes and Functions

Utility classes and functions have been implemented under the namespace uwi1. This
includes a class for lines and for edges, but also functions connected to perspective
computations. To implement simple classes for points etc. has been refrained from,
as the OpenCV core modules include templated classes for points of all dimensions
and types of numbers.
Pixel coordinates are represented as objects of the cv::Point class. Computations

in two- and three-dimensional space are performed with double points (cv::Point2d
and cv::Point3d). The edge and line classes also use OpenCV objects for their
attributes.
An uwi::Edge is a wrapper object. It holds a pointer to a vector of cv::Point

objects, which is managed outside of the class. The edge is initialized with the
pointer and a start- and end-index. The advantage of using a dedicated edge class
lies in the easier splitting into segments. Instead of copying the vector, segments may
be created by instantiating multiple edge objects with varying indices.

Algorithm 5.1: The Edge Extraction Algorithm
input : An edge image Im, where edge pixels have value 1, and a minimal edge

size minSize
output: A set edges of connected edge segments

V ←− ∅;
for Pixel p ∈ Im do

if p 6∈ V and value(p) = 1 then
E ←− {p};
tmpP ←− p;
while tmpP has neighbours do

tmpP ←− nextNeighbour(tmpP );
V ←− V ∪ {tmpP};
E ←− E ∪ {tmpP};

end
if size(E) ≥ minSize then

edges←− edges ∪ E;
end

end
end

In order to turn a edge map into a collection of edge objects, at first the pixel
vectors are extracted. The algorithm in listing 5.1 walks through the image row by
row until it finds an edge pixel. It then follows the neighbours of the pixel and adds
them to a temporal edge until a pixel does not have further neighbours. If the size of
the temporal edge is greater than a threshold, the edge is added to the set of edges to
be returned. Then the search for the next edge pixel begins, ignoring all pixels which

1Uwi is meant to be an abbreviation for Uni Würzburg Image and has been chosen arbitrarily
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are already part of an edge. The edge segments are then fed to the Ramer-Douglas
algorithm as given in algorithm 5.2:

Algorithm 5.2: The Edge Simplification Algorithm based on Ramer-Douglas-
Peucker
input : A connected edge segment e, the minimal cutting size minCut and

maximal distance maxDistance
output: A set E of connected edge segments, at the beginning E ←− ∅
find the line l through the first and last edge element; find the edge element
elem with greatest distance to l; if distance(elem,l) ≥ maxDistance then

if size(e(1, elem)) ≥ minCut then
call algorithm recursively for e(1, elem);

end
if size(e(elem, end)) ≥ minCut then

call algorithm recursively for e(elem, end);
end

else
E ←− E ∪ {e};

end

A uwi::Line represents a two-dimensional line. Internally, it is represented through
its polar coordinates. A line’s support is given by the amount of pixels which is used
to create a line. Lines may be compared using bool compareLines(Line&, Line&)
or tested for equality using bool equalLines(Line&,Line&). Comparing considers
not only the line parameters, but also their support. The second function is a dirty
function, as it adjusts the lines’ support. If two lines are equal, their parameters are
re-computed using the original parameters weighted by support. In order to account
for discretization errors, the parameters only have to be equal up to a small difference.

5.1.1.2 The Function createEdgeImage

The algorithm 5.3 summarizes the function. The main input is the RGB colour image
and the ROI of the last pose estimation.

If no ROI is given the complete input image is used for the subsequent operations,
otherwise the ROI is increased by a fourth of its original size. The factor was chosen
to account for a enlargement of the region due to movement of the cylinder. A fourth
seemed large enough to include the complete cylinder. The value may be adjusted
if the maximal movement of the cylinder is known. In order to find the cylinder,
only pixels with a hue value in the given range are considered. Two morphological
operations are executed. The erosion removes all pixels, that have inactive neighbours
(these pixels are considered noise). The dilation then adds wrongly removed pixels
at the cylinder border.

Remaining in the image is now a set of pixels in the given hue range, which should
be the projection of the cylinder, we were looking for. The bounding rectangle of the
blob serves as new ROI. To obtain the mean, orientation and eccentricity, the image
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Algorithm 5.3: Creating and Analysing an Edge Image given a Colour Image
input : A coloured image input,

the minimal and maximal hue values to be considered hueRange,
the ROI roi of the previous iteration

output: the binary image containing edges edgeImg (in this algorithm treated
as set of active pixels),
the mean of the active pixels,
their orientation as angle θ and eccentricity ecc

edgeImg ←− ∅;
if roi smaller than size(input) then

enlarge roi by a fourth of its size;
end
for Pixel p ∈ input(roi) do

if hue(p) ∈ hueRange then
edgeImg ←− edgeImg ∪ {hue(p)};

end
end
erode(edgeImg);
dilate(edgeImg);
mean←− mean(edgeImg);
ecc←− eccentricity(edgeImg);
theta←− orientation(edgeImg);
roi←− boundingBox(edgeImg);
edgeImg ←− Canny(edgeImg);

moments up to the second order are computed. The moment Mij is calculated as

Mij =
∑
x

∑
y

xiyjI(x, y) (5.1)

.

The mean corresponds to the moments of first order, while the orientation angle θ
is computed as

θ =
atan2 (2 ·M11, (M20 −M02))

2
(5.2)
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(a) Original Image (b) Image after Thresholding with Remaining
Noise

(c) The Image ROI (d) The Resulting Edge Image

Fig. 5.1: The intermediate steps of createEdgeImage

and the eccentricity as

tmp =

√
4 ·M2

11 + (M20 −M2
02

2

λ1 =
M20 +M02

2
+ tmp

λ2 =
M20 +M02

2
− tmp

ecc =
minλ1, λ2
maxλ1, λ2

(5.3)
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5.1.1.3 The Function findLineCandidates

Algorithm 5.4 summarizes the function. Input is the edge image, returned by the
previous function. The edge segments in the edge image are extracted as explained
in algorithm 5.1. The minimum size of connected pixels to be considered as an edge
was set to 30.

Algorithm 5.4: Finding Line Candidates in a Edge Image
input : the binary image containing edges edgeImg,

the minimum length of a line to be considered λmin,
the maximal error of a line to be considered straight εmax

output: the two line candidates l1 and l2
L←− ∅;
E ←− extractEdges(edgeImg,λmin);
for e ∈ E do

E ←− E − {e};
E ←− E∪ simplifyEdge(e,λmin);

end
for e ∈ E do

l←− createLineFrom(e);
ε←− squaredError(l,e);
if ε < εmax or ( line is vertical/horizontal and ε < 2 · εmax then

L←− L ∪ {l};
end

end
combine ambiguous lines in L;
l1 ←− line in L with highest support;
l2 ←− line with least angular difference to l1;

Each segment is fed to the line simplifcation algorithm 5.2. Into every resulting edge
segment a line is fitted into. For each line, the mean squared error to all edge pixels
is calculated. The line is only considered a candidate, if the error is small enough
(less than one pixel). An exception is given by the case of vertical or horizontal
lines. Pixels of such lines tend to jitter leading to a greater error. Ambiguous lines
are combined. In the end the line candidates are sorted by support. If only two line
candidates are left or the support of the second candidate is significantly greater than
the third line’s support, the first and second candidate are returned. Else the line
candidates are taken, which have less difference in orientation.

5.1.1.4 The Function estimateCylinder

The last function uses the line candidates to compute the cylinder’s estimated ori-
entation and position. It is described in algorithm 5.5. The algorithm requires the
following inputs:

• Lines l1 and l2, the line candidates returned by the previous function
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Algorithm 5.5: Pose Estimation of the Cylinder using the given Line Candidates
input : the two line candidates l1 and l2,

the mean of the cylinder projection,
the focal length f of the camera, which has been used,
the radius r of the cylinder

output: the cosines b corresponding to the cylinder’s main axis,
a point M on the axis

l0 ←− lineBetween(l1,l2);
p←− point on line l1;
b←− cosines3DfromParallelLines(l1,l2,f);
Calculate q as corresponding point to p;
Use equations 3.21 to 3.25 to determine point M ;
Move M towards the mean of the cylinder;

• the computed mean used as indication for the cylinders midpoint

• radius r of the cylinder

Both, the line candidates as well as the mean, have to be shifted as they have orig-
inally been determined with respect to the ROI. The function follows the algorithm
explained in section 3.3.4. As a first step, the line in between the line candidates is
calculated. This line is the projection of the cylinder’s main axis in the image. All
lines are required in their point representation, in order to use equation 2.17. An
arbitrary point on one of the cylinder’s sides is chosen as basis for the next steps. To
estimate the cylinder’s midpoint, the point on the cylinder axis is chosen, which is
closest to the mean. This point may differ greatly from the real midpoint in case of
occlusions or be shifted in direction of the base of the cylinder, which is closer to the
camera.

5.1.2 On Synthetic Images

The test of the OpenCV implementation had to yield two different results: at first
the accuracy of the algorithm had to be evaluated, secondly its runtime had to be
measured. To perform the tests, several scenarios were created with the V-REP
robotic simulator. For the camera, a pixel resolution of 1280x720 px was assumed,
which complies with the resolution of the Odroid webcam which was used to record
the experimental data.

Before a consecutive series of images is fed to the algorithm, some single cases are
examined in detail:

• a cylinder with main axis parallel to the image plane and oriented vertically

• the same cylinder as above, but rotated around the z-axis of the camera coor-
dinate system

• the same cylinder in two arbitrary orientations,
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• a manipulator model with coloured cylindrical part

• an example of an occluded cylinder, where the algorithm does not work

• a real cylindrically shaped object

The results are shown in the following figures. For each example, the original
image is displayed first. The red rectangle in the middle figure corresponds to the
ROI. Each detected segment is coloured in a different colour. If the pose estimation
was successful, a final image is seen, where the estimation is projected into the original
image.
Figures 5.2 and 5.3 show the cylinders parallel to the image plane. In both cases, the

estimation appears correct. The benefit of using a ROI is greater in the first example,
where the cylinder almost completely fills in the bounding rectangle. However, also
in the second example the problem space is obviously reduced.
Figure 5.4 is an example of how the estimated center is shifted towards the closer

end of the cylinder. In general, a compensation might be added. Figure 5.5 in contrast
shows how occlusion additionally influences the estimated center. The occlusion is
just enough to shift the projected cylinder’s mean towards the original cylinder’s
center. Therefore compensation has been discarded, instead it is recommended to
feed the estimation to a pose filter, which is able to account for sudden changes.
Figure 5.6 proves, that the algorithm may not only be executed on simple cylinders,

but shows part of a manipulator. The chosen manipulator model is part of V-REPs
model browser. Only its colour has been changed to a blue shade.
A case of failure is displayed in figure 5.7. The cylinder is far away and furthermore

partially occluded. The algorithm is therefore not able to identify the line candidates.
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(a) Original Image

(b) Detected Lines, Segments and ROI (red)

(c) The estimated Cylinder (blue stars) and its Centre (yel-
low dot)

Fig. 5.2: Test Results for Example 1: Vertical Cylinder parallel to the Image Plane
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(a) Original Image

(b) Detected Lines, Segments and ROI (red)

(c) The estimated Cylinder (blue stars) and its Centre (yel-
low dot)

Fig. 5.3: Test Results for Example 2: Cylinder parallel to the Image Plane rotated around
the z-Axis
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(a) Original Image

(b) Detected Lines, Segments and ROI (red)

(c) The estimated Cylinder (blue stars) and its Centre (yel-
low dot)

Fig. 5.4: Test Results for Example 3a: Cylinder with arbitrary Pose
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(a) Original Image (b) Detected Lines, Segments and ROI (red)

(c) The estimated Cylinder (blue stars) and its Centre (yel-
low dot)

Fig. 5.5: Test Results for Example 3b: Cylinder with arbitrary Pose
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(a) Original Image

(b) Detected Lines, Segments and ROI
(red)

(c) The estimated Cylinder (blue stars) and its Centre (yel-
low dot)

Fig. 5.6: Test Results for Example 4: Manipulator Arm
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(a) Original Image (b) Detected Segments and ROI (red)

Fig. 5.7: Test Results for Example 5: Occluded Cylinder with no Detection

The next test cases were executed on a consecutive series of images each. They are
supposed to reveal the algorithm’s accuracy. The result is presented in two groups of
three diagrams each. The first group shows the components of the three dimensional
position vector. The second group shows the components of the estimated main axis
orientation. Both groups include a mean squared error. In case of the position, it
has been computed as:

E =

∑n
i

√∑2
j=0(Pi,j − Pref,i,j)2

n
(5.4)

where n is the number of points and Pi,j is the j-th component of point Pi. Note,
that a more negative z-component of the position means the cylinder is further away.

In the first scenario, the cylinder approaches with constant velocity of 0.01 m s−1

along the z-axis and fixed orientation, starting at a point of 5 m distance. In figure
5.8(a) it becomes apparent, that the distance (z-component) resembles a stair func-
tion. However, it is supposed increase linearly as the red line (ground truth) implies.
The errors are a result of the limited image resolution. If the cylinder’s main axis
complies with the vertical or horizontal image axis, these errors are the highest.

The second scenario (figure 5.9), where the cylinder still approaches with constant
velocity but its main axis is tilted by 45◦, yields smoother results. The mean squared
error amounts to 0.004 403 m. The orientation estimation is unsteady. It improves
visibly, if the cylinder has approached to less than 2 m.

In the next scenario displayed in figure 5.10, the cylinders stays at a fixed position,
but is rotated around the z-axis with fixed angular velocity of 0.01 ◦ s−1. In this case,
position as well as orientation estimation are very accurate with errors in the range
of millimeters. The influence of the shifted mean as seen in figure 5.4(c) becomes
apparent during a combined rotation and translation motion in a distance of less
than 1 meter. (figure 5.11). The positioning error is increased and now in the range
of a centimeter. The difference between estimated position and reference increases
with the ongoing change in orientation.
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(a) Estimated Position and Reference

(b) Estimated Orientation and Reference

Fig. 5.8: Test Series 1: Vertical Cylinder with Constant Velocity
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(a) Estimated Position and Reference

(b) Estimated Orientation and Reference

Fig. 5.9: Test Series 2: Tilted Cylinder with Constant Velocity
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(a) Estimated Position and Reference

(b) Estimated Orientation and Reference

Fig. 5.10: Test Series 3: Rotation around Z-Axis
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(a) Estimated Position and Reference

(b) Estimated Orientation and Reference

Fig. 5.11: Test Series 4: Combined Rotation and Translation
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5.1.3 On Camera Images

As soon as the algorithm was tested on real world images, it became clear, that the
algorithm with the parameters chosen so far would not work. In the real images (for
example as in figure 5.12(a)) two situations changed: not only the segmentation by
hue did not prove to be perfectly successful (see figure 5.12(b)), but also the influence
of lighting effects affected the Canny algorithm. The detected segments were a lot
noisier than before (see figure 5.12(c)). Therefore the following parameter had to be
adjusted: the minimal length of line segments to be considered was set to 40 pixels
in order to eradicate false segments due to noise. The maximal error of lines also was
increased to 3 pixels.

The equalLines function had to be adjusted as well. Two lines are now considered
equal, if they differ not more than 0.1 rad in orientation, and 15 pixel in normal
length. As seen in figure 5.12(d) the pre-estimated orientation cannot further be
used to decide on line candidates. As a result, the algorithm is not working properly
anymore in situations, where the cylinder sides are very short. Additionally, the
lighting situation and scenery does not correspond to an OOS scenario. Still, the test
shows how a variation of parameters allows to use the algorithm in different scenarios.

A series of images was recorded, using a robotic manipulator, which a camera was
attached to. The cylindrically shaped object, which is a candle of 0.0395 m radius
and 0.27 m length (excluding the pointy wick end), was placed on top of a metal
table. However, the table colour resulted in similar hue values as the candle itself, for
what reason a wooden plate was placed beneath the candle. In a lot of the recorded
images, parts of the metallic table still interfere with the algorithm. The test results
therefore were not optimal. Further tests with a cylindrical object of a different colour
are proposed, but were not possible due to time constraints. The experiments were
already delayed, as they originally were to be performed using a 3D printed cylinder,
however the cylinder was not ready in time.

Three scenarios were considered. In the first and second scenario the manipulator
starts above the candle. The distance between camera and metallic table was esti-
mated by calibration with a checker board to account for 1.15 m. The focal length
of the web cam, which was used, is 1215 pixel units. The first scenario is a pure
translation, where the camera approaches the candle. The distance between start
and end point accounts for 0.685 m. The manipulator movements were programmed
to be linear movements. Figure 5.13 does not contain a reference, as it was not pos-
sible, to extract reference points and orientation. Due to the influence of the metallic
table, the x- and y- values of the position estimation are prone to errors. Obviously,
the values in general are fluctuating. In order to compare the results, the mean of
the first fifty images and the mean of the last twenty images was calculated, omitting
outliers(values which differed more than 0.1 m from the median). The z-value in the
beginning is 1.09 m, differing by 0.02 m of reference distance (including the candle
radius). In the end of the experiment, the z-value equals to 0.408 m. The difference
between both values corresponds to 0.684 m and therefore to the known reference
distance.
Figure 5.14 shows two examples of faulty line candidates. Both are the results of

a failure in the edge detection. One of the cylinder sides is too fragmented to assign
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(a) Original Image (b) Thresholded Image

(c) Edge Map (d) Detected Segments and ROI (red)

Fig. 5.12: Test Results for Example 6: A cylindrically shaped object in an arbitrary
environment
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(a) Estimated Position

(b) Estimated Orientation

Fig. 5.13: Test Series 5: Real Scenario (Translation)
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(a) Failures of this kind result in z-value out-
liers

(b) Failures of this kind result in orientation
outliers

Fig. 5.14: Possible faulty line candidates

a line. In the first case, instead two line candidates are chosen which belong to the
same cylinder side due to erroneous line fitting. The resulting position estimation is
too far away. In the diagram these outliers are not depicted, as they would distort
the actual diagram. In the second case, the orientation was wrongly measured. As
seen in figure 5.13(b), this happens quite often (bz equal to 1 or −1).
Figure 5.15 shows the results of the second scenario, a rotation in the x-y-plane.

Here, also the fluctuating values of the orientation z-value are apparent. Even more
in the results of the third scenario - a combined rotation and translation with results
shown in figure 5.16. The amount of faulty estimation is so high, that it is not possible
to decide, if an estimation is valid. Choosing instead single estimations in between,
the resulting detected cylinders as seen in figure 5.17 look promising.
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(a) Estimated Position

(b) Estimated Orientation

Fig. 5.15: Test Series 6: Real Scenario (Rotation)
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(a) Estimated Position

(b) Estimated Orientation

Fig. 5.16: Test Series 7: Real Scenario (Rotation and Translation)

64



5.1 Reference Implementation using OpenCV

Fig. 5.17: Single Detected Cylinders of Test Series 7
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5.1.4 Run Time Tests

The algorithm run time is the next property to be considered. All test scenarios have
been benchmarked in order to determine, which part of the algorithm consumes the
most time.
OpenCV is optimized, to work in parallel if possible. Figure 5.18 shows, how

disabling optimization and parallelization influences the total runtime. The blue
bars show the average runtime for the processing of a single frame using the default
OpenCV optimization. The red bars behind show the average runtime when opti-
mization is turned off. In the worst case, disabling optimization may almost double
the average run time. The run time differences between scenarios are a result of the
possible ROIs. The smallest average run time therefore corresponds to the translation
scenario of the vertical cylinder, where the ROI is ideal.
The application was then executed on two different processors: at first a standard

laptop was used, which includes an Intel CoreTM i5 processor with 4 cores running
at 1.7 GHz each. The second machine is a UDOO single board computer with a
ARM Cortex-A9 CPU, also having 4 cores but running at 1.0 GHz each. Figure 5.20
shows the increase of run-time running the non-optimized OpenCV application on
the UDOO board. In both cases, the runs on the laptop needed only about 17◦/◦ of
the run-time on the UDOO board. In both runs it becomes apparent that the image
processing is the highest run-time consumer. Figure 5.19 shows the result of the Intel
core. The createEdgeImage function takes the major part. On the contrary, the final

Fig. 5.18: A Run Time comparison showing the influence of OpenCV optimization and par-
allelization. The labels on the x-Axis denote the synthetic test scenario, which
was used to gather the results. Arm stands for the manipulator scenario, Rz for
the rotation around the z-axis, RT for the combined rotation and translation,
and T for a translation. The small t denotes the tilted translation scenario.
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Fig. 5.19: A run time comparison showing which part of the algorithm accounts for what
proportion of average run time. The bar sections are absolute. The blue part
corresponds to createEdgeImage, the turquoise part to findLineCandidates
. The run time of estimateCylinder is too small in relation in order to be
displayed properly.

pose estimation using the determined line candidates is so fast in comparison, that
it is not visible in the bar diagram.

5.1.5 Performance Analysis

The algorithm was tested using the OpenCV reference implementation . The first
two tests cases examined properties of the algorithm itself, the third test case investi-
gated the implementation specific runtime. On synthetic images the pose estimation
is working correctly up to some flaws for which in the context of this thesis no so-
lution has been sought for. The discretization error might be overcome by using a
swivel-mounted camera as sensor. In case of a steady vertical or horizontal orien-
tation, the camera may then be moved to a less error-prone position. To account
for the shifted sensor and deviations in general, the usage of a filter (e.g. a Kalman
filter) is recommended. Predictions of the filter also suggest the possibility to bypass
estimation failures due to occlusion.

The test scenarios with camera images were suboptimally chosen: the scenario did
not fully correspond to the chosen prerequisites and the experimental environment
imposed further problems. The additional image regions with similar hue also pre-
vented image reduction to a region of interest, severely increasing the run time (e.g.
in test scenario 6 to almost 100 ms).

Considering the runtime requirements, as assumed the image processing part con-
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Fig. 5.20: A run time comparison showing the slow down when using the UDOO board.
The blue part corresponds to the average runtime per frame on the laptop, the
red on the UDOO.

stitutes the most time-consuming activity and is therefore the first indication to look
for optimization opportunities. Both, the colour conversion as well as the segmen-
tation, are point operators and may therefore also be executed in a parallel or in a
distributed way. The edge detection could also be distributed. However, the Canny
operator is complex and it is assumed, that an implementation, which does not ex-
ploit all processor capabilities, becomes much slower than the optimized OpenCV
implementation of the Canny algorithm. The slow-down using the UDOO board,
which still has a capable processor, show how distribution may be needed, to be
able to execute the algorithm in real time. However, the effect of using the OpenCV
optimization shows that distribution is likely to improve the run-time.

5.2 Distributed Implementation with RODOS

5.2.1 Architecture

The distributed implementation follows one interest. The lack of single processor
computing power shall be compensated by distributing parts of the algorithm to
available general purpose processors, in order to speed up the pose estimation. As
the distribution of huge amounts of image data also consumes time, a trade-off has
to be found, where the distributed execution is faster than the execution on a single
core processor.
Exemplary, only the parts identified in the previous section are outsourced and

executed in a distributed way. The remaining application is adopted as is. The goal
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of this section is therefore to design a program architecture, which fulfils the following
requirements:

• Identification of available computing nodes

• Slicing and reassembling of the image

• Distribution to the identified computing nodes

• Correct execution of the task itself

To some of these requirements the solution is not obvious and influenced by the
given circumstances and desired result. It was tried to find a good understanding
between a realistic scenario and a sufficiently comprehensible implementation. In
the scenario described in the introduction of this thesis, the thought of a distributed
system in space goes as far as to include not only the computing nodes of a single
system but also of nearby, maybe idle spacecraft. As a result the network of nodes is
versatile and not all nodes are known. Additionally, nodes may become unavailable
if they leave the network or are occupied with other tasks.

A useful slicing of the image data may also depend on the capabilities of the
nodes. Nodes with higher computational power process more data than small micro
controllers. Some may not even have the resources to store the data needed. Either
the distributing node or the recipient of a request has to decide, if it is qualified
enough to adopt the proposed task. The assumption, that all data returns in the
same order as sent out, is also invalid due to differing capabilities of available nodes.
The distributor is therefore in charge to manage the reassembly of the image, before
it is processed further.

In order to consider the versatile availability of nodes, the distributed application
is implemented based on a broker architecture. Theoretically the role of the broker
may be filled in by any free node running RODOS. Subsequently the broker task
is adopted by only one node, though. The broker does not have to keep track of
available nodes in the network. Instead a lose request-answer-protocol is employed:
the broker sends requests to the network and distributes data to any node, which is
answering that request.

The decision of in what size and to whom the image data is distributed, may be
arbitrarily complicated. One possibility is to wait, until the entire image has been
received by the broker. The broker then sends a single request, awaits the answers and
slices the image data according to those. The broker has to decide, how much data
each of the potential worker receives. A simpler concept with more communication
overhead is to break down the image to messages of a fixed size and send a request
for each message. The message may then be sent to the node whichever answers
first. The advantage of the latter concept is, that faster nodes automatically get
more messages than slow nodes. In order to keep the implementation simple, the
second concept is used in the design.

The messages have an identifier, so the distributor is able to keep track of the
messages it has sent and received. In case one of the messages gets lost, the distributor
may resent the request. Summarized, the application consists of a distributor node
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and an arbitrarily number of workers. For the distributor, it does not matter where a
worker node resides. The distributor node receives the image byte-wise and slices it
into messages of fixed-size. Requests are sent for every message. An available worker
answers to the request. The distributor sends the message to the sender of the first
answer, it receives. The worker is now responsible for performing its required task
and sending back the processed bytes. The distributor collects the messages and
sends the image data back in the correct order.
The subsequent sections explain the implementation of the nodes in detail and

present the test results. The goal of this chapter is to determine how the processing
rate changes in comparison to the OpenCV implementation. Also, the speed-up of
using multiple computing nodes is measured. The distributed application is first run
on a multi-core processor where every core has the same capabilities. Then also nodes
with lower computing power, which in general were not able to execute the algorithm
alone, are included into the network.

5.2.2 Implementation

The implementation of the distributed application consists of several parts. The
distributor and the worker nodes are implemented as RODOS applications. In order
to compare the runtime, an OpenCV application is used which first computes the
hue and thresholding locally and then sends the image to the distributor. The time
until the complete image is returned is measured. Sockets are used to communicate
between distributor and the OpenCV application through UDP. In general, using
TCP instead is recommended, as the latter is a streaming protocol which takes care
of correct order and lost messages, while UDP is a datagram protocol.
Workers and distributor share a common header file, which defines the topics for

messages and requests. Gateways are used to distribute the topics between computing
nodes. Nodes receive their messages using UDP. The following constants are defined
in the header file:

• MESSAGE_SIZE is the size of UDP messages received by the OpenCV application

• MAX_DATA is the maximum data size, to be distributed between RODOS nodes

• OFFSET is the number of bytes reserved at the beginning of UDP messages

• MIN_THRESH and MAX_THRESH are the thresholds used by the worker nodes

Messages to worker nodes are distributed over the messages topic, using a Message
datatype. It consists of a header and a data array of size MAX_DATA. The header
contains a stamp, the IDs of sender and receiver as well as the actual length of data,
sent with this message. The messages are returned using the returnedMessages topic.
Requests are distributed over the requests topic. A Request is similar to a Message
but without the length and data attribute. A broadcast request has sender id 0.
The OpenCV application copies the image data into byte arrays of fixed length.

The first two bytes are reserved for an identifier in order to provide an internal order.
The next two bytes are reserved for the actual data length. The image data has to
be aligned in packets of three bytes to account for the B G R components of a pixel.
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The distributor application includes four active objects. The subscriber UdpReceiver
is responsible for the communication with the OpenCV application. It slices the re-
ceived data packets into chunks of maximum data size and adds the message header.
The messages are then enqueued to a fifo. The RequestSender thread regularly checks
the fifo and sends a Request for each message. The request is stamped using the cur-
rent time in nanoseconds. The subscriber RequestHandler processes the answers of
the worker nodes. If an answer is received, it dequeues a message and forwards it to
the sender of the answer. In order to make sure that requests are only answered once,
the handler keeps track of the time stamp of the latest answered request. Only re-
quest answers are considered, which time stamp is greater than that. The subscriber
DataSub to the message topic awaits the return messages. The message references
are inserted into a vector. If as many messages have been received as had been sent,
the references are sorted and sent back to the OpenCV application. This strategy
ensures, that no message is skipped in between.

The worker applications only consist of two active objects. The RequestHandler
subscribes to the requests and returns them in case the worker is idle. The MessageHandler
listens for messages having the same id as the worker application. It then creates
a message and converts the sent bytes into thresholded hue values. The optimized
code to calculate the hue is shown in listing 5.1. It was deliberately decided to print
its C++ implementation here as it was chosen due to its optimizations for the C++
language.

Listing 5.1: An optimized algorithm to compute hue�
1 // returns H/2 to fit into uchar [0 ,179]
2 uchar convertToHue(uchar r, uchar g, uchar b){
3 float K = 0.f;
4 float max (255.0f);
5 if (g < b)
6 {
7 std::swap(g, b);
8 K = -1.f;
9 }

10

11 if (r < g)
12 {
13 std::swap(r, g);
14 K = -2.f / 6.f - K;
15 }
16

17 float chroma = float(r - std::min(g, b))/max;
18 return uchar (180* fabs(K + (float(g - b)/max) / (6.f *

chroma + 1e-20f)));
19 }
� �
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5.2.3 Tests

The distributed application has only been tested using single images. An example
image of 640 columns and 400 rows however, had an execution time of almost three
seconds with no other application running. As the application was only executed on
the laptop, where only four processing cores are available and one of them is already
blocked by the OpenCV process, only up to three workers could be added. They did
however not improve the run-time severely.
Measuring the time between sending out a message to a worker and receiving

its answer by comparing their stamp with the current system time, showed that in
general a message of maximum message size was processed in approximately 200
microseconds. A total amount of about 600 messages had to be sent and processed,
in order to have the complete image covered, accumulating to a time of about 120
milliseconds.
It is possible, that the usage of a single topic severely slowed down processing, as

each message had to be distributed over the network to all workers, not only to the
actual recipient of the message. For future tests, it is recommended to rethink the
usage of RODOS topics for distribution of messages and also to refrain from UDP,
as sometimes a bundle of messages got lost.
Execution of the distributed application on the UDOO board was not possible so

far, as there were problems of building the project for the UDOO processor. It is
assumed, that a customization of existing build scripts will allow building for the
UDOO board. The next step would be the usage of a even less capable processor,
e.g. a microcontroller.
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Chapter 6

Results and Conclusion

In the present thesis, an algorithm has been designed to estimate the pose of a
cylindrical object. Motivation behind this algorithm has been the usage in an OOS
scenario, where the cylindrical object is part of a robotic manipulator. The design
and especially the tests of this algorithm have shown the difficulties with the given
problem: at first it quickly emerged, that a cylinder is a rather feature-less object,
especially considering occlusion, and that it is difficult, to identify a cylinder in arbi-
trary images without knowledge of any further objects.

The algorithm relies on identification of the two lines, which correspond to the
cylinder’s sides. The knowledge of their parallelism and orthogonal distance is used to
solve the inverse perspective problem. The pose of the cylindrical object is estimated
as the direction vector of its main axis and a point on this axis. The accuracy tests on
synthetic images yielded correct results, up to expected errors due to limited image
resolution.

When the test sequences of the real test were recorded, it became clear, that in
the given surroundings it is not possible to simulate a realistic space environment.
The tests running with the recorded images therefore produced results worse than
expected based on the synthetic test scenarios. Still, the results reveal that the as-
sumptions made in the beginning did not hold in reality. As the pose estimation
algorithms introduced in the first chapter were partially tailored to a special case
(communication satellites with rectangular sides, cylindrically shaped satellite), fur-
ther knowledge about the satellite, where the manipulator is attached to, might also
be helpful to remove or exclude objects which disturb the detection of the cylinder,
but will also reduce the algorithm to a single use case.

The distribution aspect of this thesis has fallen short. Although a distributed im-
plementation has been created, the true distribution was not fully manageable due
to issues with the used tool-chain. The actual tests using the distributed imple-
mentation therefore are pending. In general, this thesis has shown, what has been
already known: image processing, especially point operators, consume a lot of time.
Distribution might offer a way out, which has to be investigated further on.
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