
Institute for Computer Science VII
Robotics and Telematics

Master’s thesis

Registration and iterative scale estimation
of differently scaled point clouds

David Redondo

May 2020

First supervisor: Prof. Dr. Andreas Nüchter
Second supervisor: Prof. Dr. Klaus Schilling

Zusammenfassung
Die vorliegende Arbeit beschreibt einen Algorithmus zur Registrierung und gleichzeitigen

Skalierungsschätzung von Punktwolken verschiedener Quellen. Insbesondere die Registrierung
von dichten, absolut skalierten Laserscan Punktwolken und Punktwolken, die mit Hilfe des
Structure from Motion Verfahrens rekonstruiert wurden, lagen dabei im Fokus. Letzteren Punk-
twolken fehlt aufgrund des verwendeten Verfahrens ein absoluter Bezugsrahmen.

Der vorgeschlagene Algorithmus basiert auf dem 4-points-congruent-sets-Algorithmus. Dieser
verwendet Eigenschaften von Mengen von vier Punkten, die unter affinen Transformationen in-
variant sind, um diese in beiden Punktwolken zu finden. Jedoch ist er auf rigide Transformatio-
nen beschränkt. Er wurde angepasst, so dass er auch in dem oben beschriebenen Szenario von
verschieden skalierten Punktwolken verwendet werden kann. Dies wurde durch Ergänzen einer
iterativen Komponente zur Schätzung der Skalierung erreicht. Die beste Schätzung wird vorge-
halten und je nach der geschätzen Güte dieser werden gesuchte Distanzen auf einen Bereich um
diesen Skalierungsfaktor eingeschränkt. Die initiale Schätzung wird mittels einer Hauptkompo-
nentenanalyse ermittelt.

Auch verbessert der neu entwickelte Hauptteil des Algorithmus dessen Laufzeit im Vergleich
zum Original. Die Suche von Kandidaten für Punktpaare war in Tests 2-3-mal schneller. Die
Konstruktion der namensgebenden Mengen von vier Punkten war mit der originalen Methode
nach Wegfall der Beschränkungen für den rigiden Fall gar nicht mehr durchführbar.

Abstract
The present works describes an algorithm for registering and simultaneous scale estimation

of point clouds gathered by different means. The focus was in particular on laser scans that
are dense and absolutely scaled and point clouds that were reconstructed using Structure from
Motion. The latter point clouds lack an absolute reference because of the used method.

The proposed algorithm is based on the 4-points-congruent-sets-algorithm. This algorithm
uses properties of sets of four points that are invariant under affine transformations to find them
in both point clouds. However, it is restricted to finding rigid transformation. The algorithm
has been adapted for the above described scenario of differently scaled point clouds. This has
been achieved by adding an iterative component to the algorithm in order to estimate the scale.
The best scale factor is saved and depending on its quality, searched distances are restricted to a
range around this scale factor. The initial scale estimation is determined by employing principal
component analysis.

Additionally, the newly developed main part of the algorithm improves its performance
compared to the original. The search for point pair candidates was in tests 2 to 3 times faster.
The construction of the eponymous four point sets was without the restrictions for the rigid case
not able to be carried out.

Contents

Preliminaries iii
Zusammenfassung . iii
Abstract . iv
Acronyms . vii

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 3
1.3 Contribution and Outline . 4
1.4 Data sets . 5

2 Fundamentals 7
2.1 kD-tree . 7

2.1.1 Searching in a tree . 8
2.2 Transformation between two sets of points . 11

2.2.1 Affine transformations . 11
2.2.2 Calculating the transformation between two sets of points 13

2.3 Iterative Closest Points . 16
2.4 Principal Component Analysis . 18
2.5 RANSAC . 20

3 Four point congruent sets 23
3.1 Coplanar bases . 23
3.2 The algorithm . 24
3.3 Selecting a coplanar base . 25
3.4 Finding corresponding bases . 26

4 Point cloud alignment with iterative scale estimation 29
4.1 Introducing scale estimation . 29
4.2 Initial scale estimation . 31
4.3 Derivation of useful point cloud properties . 33
4.4 Finding corresponding bases . 35
4.5 Implementation Details . 38

v

5 Experimental Results 41
5.1 Runtime comparison between different methods for finding corresponding bases

and parallel versions . 41
5.1.1 Constructing the set of point pair canidates 41
5.1.2 Assembling the congruent four point sets 45

5.2 Aligning the Stanford bunny . 46
5.3 Aligning the chapel data set . 52

6 Conclusions 55

vi

Acronyms

3DTK The 3D Toolkit

4PCS 4-points congruent sets

ANN-tree approximate nearest neighbor tree

ICP Iterative Closest Points

PCA Principal Component Analysis

RANSAC Random Sample Consensus

SfM structure from motion

SVD singular value decomposition

vii

Chapter 1

Introduction

1.1 Motivation

Today, 3D data sets are used in various applications: They complement geographic information
systems, they are used for autonomous navigation, can be used in archaeology to identify heritage
sites or for recording a site before further destructive excavations. Numerous others fields have
been enriched by the employment of 3D data. They are used for example for monitoring large
agricultural and silvicultural areas or to support urban planning and surveying.

There are multiple ways to gather 3D Data that are in widespread use. Laser scanning
(also called Lidar) measures the time of flight of directed light to create high fidelity point
clouds. Most laser scanners will also measure the reflectivity of the objects that are surveyed.
However, because most laser scanners emit monochromatic light in the non-visible spectrum,
data gathered this way does not include color information about the 3D space. Reflective
surfaces like mirrors also pose a challenge for laser scanning. Light reflected from a mirror
and returning to the scanner can create a duplicated geometry in the scene with the mirror
appearing as a window into this ghost geometry. Applications of Lidar are wide ranging, they
include airborne laser scanning aboard an aircraft to create terrain models, scanning objects in
order to generate 3D models of them and usage in robotics and autonomous driving for collision
avoidance and mapping. Using cameras to capture 3D data, it is possible to also include color
information with the 3d data. The field of Photogrammetry uses multiple cameras with a
known pose difference and multiple images of scenes that contain a known reference object to
make measurements and reconstruct 3D data from images. When no such reference is available,
structure from motion (SfM) can be used to extract 3D information from a set of overlapping
images. This is done by extracting features from the images and matching them. The drawback
of this technique is that the resulting 3D model is not as dense and can be less accurate than one
captured by for example laser scanning and that no information about absolute dimensions can
be gained because of the lack of a known reference. There can also be unexpected holes when
no suitable features could be found e.g. on large areas like smooth surfaces. Another camera
based technique is using structured light. A light pattern, usually laser lines or a pattern of dots
or stripes, is projected onto a scene. A camera filming this scene can detect this pattern and
deformations in it allowing to draw conclusions about the 3D structure of the scene. However

1

2 Chapter 1. Introduction

Figure 1.1: A sensor system consisting a video camera and thermal camera mounted on of a laser
scanner. (Source: [5])

this does not allow to construct a true 3D representation of the scene, only depth information
of the points that are visible to the camera is gathered. The advantages of combining data that
was captured using multiple different measurement methods are obvious. First, some methods
can fail to produce data under specific circumstances or of objects. The resulting holes in such
data sets can be filled by combining it with data from a measurement method that does not
exhibit this weakness. It can also be imagined that one has two sensors, one is more accurate
when measuring near objects, the other is more precise when doing more distant measurements.
By combining the data from both a good quality result in near and far distance can be achieved.
Second, by combining data coming from multiple measurement methods it is possible to add an
additional dimension to a dataset. For example, point clouds acquired via laser scanning can
be combined with the images taken with a camera in order to color its points and generating
textured meshes of objects. Or information gathered via thermal imaging can be used to identify
sources of heat loss in the 3D structure of buildings. If the different measurements are taken at
the same time and place or the relative positions of the measurements are otherwise known, the
data fusion is straightforward. Figure 1.1 shows a sensor system that is able capture range data
with a laser scanner, thermal data using a thermal camera and images using a video camera at
the same time. The cameras are mounted on top of the laser scanner at fixed position. The
constant offset between the measurement devices makes the relation between the different forms
of data measured by the sensors known at all times. This makes it relatively easy to combine
the information gathered by the different sensors.

When this information is not available, merging of multiple dataset is harder because the
fusion has to be done on the basis of the data itself. It can also be in the nature of the used

Registration and iterative scale estimation of differently scaled point clouds

1.2. Related Work 3

sensors that it is not possible to make measurements at the same time. For example thermal
images should be taken at night but photo cameras need the sun as a light source to capture
images of good quality. Merging of datasets captured using the same method and sensors is an
already very good explored problem. Fusion of 3D point clouds coming from different sources
on the other hand faces a set of difficulties. Most of them stem from the different characteristics
of the sensors and methods that were used to gather the data affecting the properties of it.
Point clouds can for example vary in density, scale, extent, occluded regions and accuracy.
Most problematic of these is difference in scale between 3D data captured by different sources.
Algorithms developed for registering multiple point clouds by the same sensor cannot be applied
to this problem because they assume a rigid relationship between them. Nevertheless, there
is a high interest in aligning 3D data gathered via laser scanning and reconstructed one via
SfM which exhibits this isssue of an unknown scale factor. This can be seen by huge variety of
schemes that have been proposed to tackle the problem of registering cross-source 3D data with
different scale.

1.2 Related Work

The standard method for registering point clouds of the same scale is the Iterative Closest
Points (ICP) algorithm by Besl and McKay [4] and its variants. While originally only capable
of aligning point clouds rigidly it can be extended to also estimate a scale factor. However, as
Zinßer et al. showed it only works reliably for a small region of scale factors [42]. Du et al.
counters this by bounding the range of admissible scale factors [11]. Other authors use manually
crafted inputs to “kick-start” the algorithm. Borrmann selects pairs of known correspondences
in order to calculate an initial transformation [5]. Peng et al. manually select dense point regions
in [35] to facilitate matching [20].

Another approach is representing point clouds as Gaussian mixture models and matching
those. Bing and Vemuri [21] proposed a possible representation of points clouds and an algorithm
to match them by aligning the Gaussian mixture models that they are represented by. This
method is able to align point sets rigidly and non-rigidly. Evangelidis et al. [13] extended this
strategy and developed a scheme for matching multiple point clouds based on this idea. In 2016,
Campbell and Peterson [7] proposed a method for aligning two mixture models that is globally
optimal. This was later adapted into a framework for determining camera poses inside 3D scans.
[8].

Bülow and Birk [6] use a series of integral transform to calculate the alignment between
two point clouds. First the 3D Data is resampled from a spectrum produced by applying a
fast Fourier transform. Then in a first step the rotation is calculated using the SO(3) Fourier
transform. The rotation is applied to both point clouds and the new spectrum of the data is
calculated. The scale is determined by employing a Mellin transform on the rotated spectra.
After applying the scale to the rotated point clouds their spectra are recalculated again and are
used to determine the missing translation.

Feature recognition and matching is a very common technique in Computer Vision for ana-
lyzing images. There is also work that uses feature-based techniques on 3D data. Li and Guskov
[25] transferred the famous SIFT descriptor of Lowe [26] to the 3D space. A similar approach is

Registration and iterative scale estimation of differently scaled point clouds

4 Chapter 1. Introduction

taken by Tombari et al. [39] employing the histogram of normals as a descriptor called SHOT.
However, Theiler [38] found that “ descriptors like SIFT are of limited use for laser scans: many
studies confirm that they can handle viewpoint differences only up to ≈ 25 degrees”. Huang et
al. [20] identify clusters inside the data and assign ESF descriptors to them. Then they arrange
these clusters as nodes of a graph and proceed with a graph matching based approach.

Some authors try to reduce the problem space by reducing the degrees of freedom of the
sought after transformation. A popular technique is identification of the ground plane. Novak
and Schindler [29] generate heightmaps after identifying the ground and try to align these. A
method that is only applicable for urban scenes was shown by Moussa and Elsheimy in [28].
Here matching is done by recognizing intersections of buildings with the ground and aligning
the so created floor plans of the scene. A similar idea is used by Yoshimura et al. [41]. Here
intersection points of vertical lines with the ground plane (i.e. corners of buildings) are used as
feature points. Triangles of feature points are randomly created in one point cloud and matching
is done by trying to find similar triangles in the other one using properties of these triangles
that are invariant under transformation such as the corner angles.

The 4-points congruent sets (4PCS) algorithm has a similar idea at its basis. Point clouds are
matched using properties of sets of four points that stay constant under affine transformation.
The algorithm was proposed by Aiger et al. in 2008 [1], however they restricted it to rigid
transformations for an efficient implementation. Mellado et al. [27] published an version of the
Algorithm titled “Super 4PCS” that further improved performance. It also only applies to rigid
problems. Theiler et al. [38] adapted the 4PCS-algorithm for use with feature points similar to
those used by SIFT and align point clouds by aligning these feature points. Another method
for aligning SfM point clouds and those captured using a laser scanner was published by Corsini
et al. [10]. However, they deconstruct the data as a set of planar regions and restrict their
matching to include only one point per region.

1.3 Contribution and Outline

This thesis builds on the 4PCS-algorithm which was chosen because of the relative simple but
elegant idea behind it. It does not make any assumption about the structure of the point clouds
- in contrast to methods that for example try to detect the ground plane - and works directly on
the points constituting the data. Within this thesis, the 4PCS-algorithm has been adapted in
order to align point clouds of different scales - which fits the usage of affine invariant properties.
Besides, a more efficient method to find congruent bases in two sets of points was developed,
which constitutes the majority of the algorithm. Thereby, the adapted algorithm is able to align
differently scaled point clouds much more efficiently than a version of the original algorithm in
which the assumptions of rigid transformations have been removed.

The thesis is structured as follows: After this introduction, Chapter 2 briefly explains how
point clouds can be stored and the algorithms that are used when analyzing and working with
point clouds that are used in this thesis. The original 4PCS-algorithm is described in Chapter
3. It is followed by the modifications and adaptions to it that are the main work of this thesis
in Chapter 4. Chapter 5 presents tests comparing the runtime of the developed algorithm to
the original one and experiments using it to align different point clouds.

Registration and iterative scale estimation of differently scaled point clouds

1.4. Data sets 5

(a) The smaller pink cube inside the bigger
yellow cube.

(b) The Stanford bunny.

Figure 1.2: Two of the datasets.

1.4 Data sets
Multiple data sets were used for development and testing of this work. The first data set is
an artificial one consisting of two cubes of different sizes. It was mainly used because of its
relatively small size for quick tests during development. Figure 1.2a shows both cubes. The
larger yellow cube has edge lengths of 100× 100× 100 units and the average distance between
points is 0.5. The smaller cube has a four times shorter edge length of 25 × 25 × 25 units and
is less dense than the larger cube with the average distance between points being 1. The larger
cube consists of 960 002 points and the small cube is comprised of 15 002 points.

The second data set is based on the famous Stanford bunny [24]. The model consists of
35 947 points as does the original. A second version of the bunny has been scaled down and
depending on the test rotated and its point density varied. In Figure 1.2b the smaller bunny
has been rotated by 45° around each axis.

Finally the last data set consists of two models captured by two different measurements
of the same scene. It shows a chapel in village of Randersacker (located at N 49°45′49.32′′ E
9°58′52.536′′). The first measurement has been taken with Riegl VZ-400 laser scanner and is
available at [31]. The scene has been edited so that only the chapel is shown and its point density
reduced to make the original size of 5117 MiB and 86 585 411 points more manageable, resulting
in a size of 5 714 307 points and 337 MiB including normals. The second one is reconstructed
using SfM from multiple camera images and shows the same chapel. It consists of 789 248 points
which amounts to 43 MiB including their surface normals. Both models are shown in Figure 1.3,
on the left the model captured with the laser scanner can be seen, on the right is the chapel as
reconstructed from the photos. Showing an image of both is difficult because of the large size
difference between the two. The laser scanner model is approximately 345 times larger than the
SfM model (Section 4.2). An attempt can be seen in bottom picture and in Figure 2.4 but the
pink colored SfM model is almost invisible on those pictures because it is so small.

Registration and iterative scale estimation of differently scaled point clouds

https://www.openstreetmap.org/?mlat=49.76371&mlon=9.98126
https://www.openstreetmap.org/?mlat=49.76371&mlon=9.98126

6 Chapter 1. Introduction

(a) The measurement taken with a laser scanner (b) The model reconstructed from
camera images

(c) Both models in one image as seen from the top. The magenta SfM point cloud is almost
invisible.

Figure 1.3: The chapel data set.

Registration and iterative scale estimation of differently scaled point clouds

Chapter 2

Fundamentals

This chapter summarizes the principle and methods required to understand the original algo-
rithm and the adaptions. It starts with the introduction of the kD-tree which is the data struc-
ture containing the 3D data. The section afterwards introduces affine transformation which
are required to relate two sets of 3D points. Also it contains methods for calculations of
such translations. The proposed method relies on several standard algorithm which are also
explained in this chapter: ICP, Principal Component Analysis (PCA) and Random Sample
Consensus (RANSAC).

2.1 kD-tree

kD-trees are generalized binary search trees adapted to store k-dimensional data developed by
Bentley [3]. Their main advantages are storing abitrary multi-dimensional data without much
overhead and allowing for efficient searches inside the resulting structure. For this reasons, they
are a popular method for storing 3D point clouds. The same is true for this work. The developed
algorithm performs extensive searches for points inside the data. A kD-tree is a perfect fit for
this type of application and is used to store the point clouds used in this thesis.

Each node of the tree stores a k-dimensional data point. On each level the data is split
along one of the k dimensions called the discriminator. The data is divided into two parts
along the k− 1-dimensional hyperplane perpendicular to the discriminator axis: one part which
discriminator value is smaller than the point stored in the current node and one part with larger
discriminator values. Traditionally, the discriminator only depends on the current level. The
root (level 0) uses dimension 0 as it’s discriminator, the children of the root use dimension 1
as discriminator (the dimensions are labeled from 0 to k − 1 here) and so on. In general, the
discriminator for a level l can be calculated by l modulo k. To construct from N data points an
optimal kD-tree - the level of all leave nodes differs at most by one, in other words the tree has
blog2Nc levels - it is sufficient to choose at each level the median of the remaining points to be
stored in the node and use its discriminator value to partition the other points [3].

An example of an optimal kD-tree in two dimensions is shown in Figure 2.1. It is constructed
from 2D points each consisting of a x and y coordinate. The first discriminator is the x-
coordinate of the points. The point A has the median x-coordinate of all points and is stored

7

8 Chapter 2. Fundamentals

A

B

D E

H

C

F

I

G

J

A

B

D

E H C

F

G

I

J

Figure 2.1: An optimal two dimensional kD-tree. (Reproduced based on [5])

into the root node. The values of the x-coordinates of Points B, D, E and H have smaller values
than the one of A and form the left subtree of A, the ones of Points C, F, G, I and J are larger
and form the right subtree. In the next step, the subtrees are divided based on the y-coordinate
of their points. The left subtree has an even number of points, either B or H could have been
selected as the median, in the example B was chosen. Only D has a smaller y-coordinate than B
and forms the left subtree of B on its own. The right subtree of B consists of E and H. Now the
discriminator is again the x-coordinate. However, as only two points are left either one could
be chosen to be stored as the root of the subtree, here again the first one is chosen so the right
subtree of B is formed by E with its sole right child H. The same holds for the right subtree
of A. Here C has the median y-coordinate with F and I forming the left subtree and G and J
forming the right one. These two subtrees only have two points each and are partitioned the
same way as E and H before.

Creating an optimal kD-tree is expensive as all points forming a particular subtree need to
be queried in order to find their mean. Also, storing only one point per node can be inefficient
as each node needs to store pointers to its two subtrees in addition to its point. Therefore,
different implementations exist that differ in their tree creation scheme and how the data points
are stored. A comparison of some implementations is given in [12]. In this work the kD-tree
implementation included in The 3D Toolkit (3DTK) [32] is used for working with 3D points as
it has been shown to perform well. It differs from the original described kD-tree in that it stores
the points only in leaf nodes which can contain multiple points and in intermediate nodes which
dimension was used to split the points and the discriminator value used for partitioning. All
points also store the bounding volume that their subtrees encompass. During tree construction
the point set is not split along its median for performance reason but in each step the bounding
volume is split in half by choosing the mean of the longest dimension of the bounding box as
discriminator.

2.1.1 Searching in a tree

Searching for a nearest neighbor in a tree for a given point p is a classical problem and is
implemented in the chosen implementation as shown in Algorithm 1. It has an additional

Registration and iterative scale estimation of differently scaled point clouds

2.1. kD-tree 9

Algorithm 1: Searching for a nearest neighbor in a kD-tree
input : kD-tree t, point p, maximum distance d
output: Point pc that is closest to p in t

1 FindClosest(t, p, d)
2 if t is a leaf node then
3 forall Points pi in the leaf do
4 if ‖pi − p‖ < d then
5 d← ‖pi − p‖
6 pc ← pi
7 end
8 end
9 else

10 if distance of bounding box of t to p > d then
11 return
12 end
13 i← discriminator value of t - value of the corresponding dimension of p
14 if i ≥ 0 then
15 FindClosest(left child of t, p, d)
16 if |i| < d then
17 FindClosest(right child of t, p, d)
18 end
19 else
20 FindClosest(right child of t, p, d)
21 if |i| < d then
22 FindClosest(left child of t, p, d)
23 end
24 end
25 end

parameter in the maximum search distance d. Starting with the root the tree is traversed
recursively. If the node, that is currently examined, is a leaf node then all points in this leaf are
checked if they are closer to p than the maximum search distance d. If this is the case, the point
is the new candidate for the closest point pc. The maximum search distance is lowered to the
distance of p to pc in order to only consider the points that are closer than pc from now on. If
the current node is not a leaf, first a quick check is performed if the bounding box of the node is
within the maximum distance of p. If it is farther away, it does not need to be further examined.
If this is not the case the distance of p to the hyperplane that was used to split the current
node is calculated. If its value is greater than zero, that means that p is in the left subtree of
the current node and the algorithm descends down into into it. Otherwise p is in right subtree
and the method is recursively executed for it. Finally, if the absolute value of i is smaller than
d, then the bounding box of the other is closer than the current closest point and needs to be
searched, too. When the algorithm terminates, pc will be the closest point to p in the tree. If

Registration and iterative scale estimation of differently scaled point clouds

10 Chapter 2. Fundamentals

Figure 2.2: Result of searching for points on a sphere/circles. From left to right: The original sphere,
the result of searching for all points on that sphere, the result of searching for points on two different
circles.

one is interested in all points within a specified radius around a point the algorithm can easily
be adapted. Line 5 is dropped and Line 6 is changed such that the candidate is appended to a
set of points that is returned as the result.

This work is also interested in the points lying exactly on the shell of a sphere or on the
rim of a circle around a selected point. Algorithms for these two problems can be easily derived
from Algorithm 1 and have been implemented as presented in Algorithm 2. The parts of the
algorithm specific for finding points on a sphere are colored in red, the parts specific to the circle
case are in blue. The inputs in addition to the center point p are the radius of the sphere or
circle r and an allowed error distance d that points can have to the sphere or circle. For the
circle, a normal n to the circle plane is required to fully define it. The first check is again if the
current node is a leaf and if the contained points lie on the circle or the sphere. For a point to
lie on the sphere, its distance to p has to be in the range [r−d, r+d]. To check that a point lies
on the border on a circle it additionally has to fulfill the requirement to be in the same plane as
the circle, so |n ·(pi−p)| ≤ d. If the current node is not a leaf node a quick check is performed if
the bounding box of it fully lies inside or outside of the sphere of radius r as it does not need to
be evaluated further if this is the case. In the recursive case, if the indicator value i is smaller or
larger than the minimum or the maximum allowed radius respectively, the sphere that needs top
be searched is fully contained in the subtree that p is in in the discriminator dimension and only
that subtree needs to be examined. Otherwise the sphere intersects the plane that partitions
t and both subtrees have to be explored. Figure 2.2 shows the results of searching for points
on a sphere or on different circles. The leftmost image shows the original sphere of points that
the kD-treeconsists of. The middle one is the result of searching for points on that exact sphere
which looks identical as expected. The right image shows the points that were found to be on
two different specified circles. The found points are colored in blue and magenta and again the
expected result is displayed.

Registration and iterative scale estimation of differently scaled point clouds

2.2. Transformation between two sets of points 11

Algorithm 2: Searching points on a sphere or on the border of a circle
input : kD-tree t, point p radius r, tolerance d, normal n
output: Points P in t that are on the sphere circle

1 FindPointsOnSphere/FindPointsOnCircle(t, p, r, d, n)
2 if t is a leaf node then
3 forall Points pi in the leaf do
4 if pi is on the sphere is on the circle with radius r around p and lies in the

plane with normal n with a tolerance up to d then
5 P ← P ∪ pi
6 end
7 end
8 else
9 if bounding box of t does not overlap with the sphere with radius r around p then

10 return
11 end
12 i← discriminator value of t - value of the corresponding dimension of p
13 if i ≥ r + d then
14 FindPointsOnSphere/FindPointsOnCircle(left child of t, p, r, d, n)
15 else if i ≤ −(r + d) then
16 FindPointsOnSphere/FindPointsOnCircle(right child of t, p, r, d, n)
17 else
18 FindPointsOnSphere/FindPointsOnCircle(left child of t, p, r, d, n)
19 FindPointsOnSphere/FindPointsOnCircle(right child of t, p, r, d, n)
20 end
21 end

2.2 Transformation between two sets of points
3D points are defined by three coordinates. The reference of these coordinates is different for
each point set. For example in a laser scan the origin is typically the laser scanner. In order to
merge two different sets of 3D data the transformation between the coordinate systems in which
the coordinates of the points are expressed needs to be found. If this transformation consists
only of a translation and rotation, it is called rigid. If an additional scaling between the point
clouds is required, the transformation will be in the class of affine transformations.

2.2.1 Affine transformations

Affine transformations are a class of transformations and can be understood as generalized linear
transformations. Affine transformations map between two vector spaces and are characterized
by the properties that they preserve affine combinations. That is if T : V → W is an affine
transformation, v1...n vectors in A and a1...n some scalars such that ∑n

i=1 ai = 1, the following
holds [40]:

T (a1v1 + · · ·+ anvn) = a1T (v1) + · · ·+ anT (vn). (2.1)

Registration and iterative scale estimation of differently scaled point clouds

12 Chapter 2. Fundamentals

Important properties of affine transformations are preservation of collinearity and relative pro-
portions [40]. Given two points a and b that form a line and a third point

c = (1− s)a + sb (2.2)

that lies at the s distance of the full distance between a and b, the relative distances between
these three points will not have changed after applying an affine transformation T :

T ((1− s)a + sb) = (1− s)T (a) + sT (b). (2.3)

Affine transformations can be written as a combination of a linear transformation and a trans-
lation:

T (v) = Rv + t. (2.4)

If T maps from A to B, v ∈ A is anm-dimensional vector and t is a suitable n-dimensional vector
in B, then R will be a n×m-matrix. However it is much more convenient to use so called ho-
mogeneous coordinates that add one extra dimension when dealing with affine transformations.
Equation (2.4) can be written in homogeneous coordinates as(

R t
0 1

)(
v
1

)
=
(

Rv + t
1

)
. (2.5)

This work is mostly interested in affine transformations mapping from R3 to R3. In particu-
lar this includes the rigid transformations translation and rotation and the deforming scaling
operation.

Translation shifts the points in the target space B by t ∈ B compared to the source space.
Because all points in the domain A are shifted by the same amount, translating preserves lengths
between points and angles between vectors. The transformation matrix for a translation t is
given by

Ttrans(t) =
(

I t
0 1

)
. (2.6)

Rotation is performed by moving points around a static rotation axis by some angle without
changing distances. If R is a rotation matrix the equivalent homogeneous transformation matrix
is

Trot(R) =
(

R 0
0 1

)
. (2.7)

Rotation is a rigid transformation as well and preserves distances and angles. In contrast to the
two former transformations, scaling is not a rigid transformation and is called a deformation.
Given the scale factors s1, . . . , sn for each dimension, scaling can be written in matrix form as

Tscale(s1, . . . , sn) =
(
diag(s1, . . . , sn) 0

0 1

)
(2.8)

In general, scaling does not preserve angles and distances but if the same scale factor is used
in each dimension, angles between vectors are unchanged. Performing each transformation one

Registration and iterative scale estimation of differently scaled point clouds

2.2. Transformation between two sets of points 13

(a) Original figure (b) Rotation (c) Translation

(d) Scaling (e) Combined transformations (f) Combined transformation using
equal scale factors

Figure 2.3: Affine transformations, dashed the original figure, in blue the figure after the transformation.

after another, first rotation, followed by scaling and finally translation creates a new combined
affine transformation for which an explicit form can be found:

T (R, s1, . . . , sn, t) = Ttrans(t)Tscale(s1, . . . , sn)Trot(R)

=
(

I t
0 1

)(
diag(s1, . . . , sn) 0

0 1

)(
R 0
0 1

)

=
(
diag(s1, . . . , sn)R t

0 1

) (2.9)

Figure 2.3 shows an example for each of the above mentioned special affine transformations.
Figures 2.3e and 2.3f show the result of applying different affine transformations consisting of a
rotation, scaling and transformation component each. In Figure 2.3e the deforming nature of the
scaling operation can be observed, distances and angles are changed compared to the original
figure. However, Figure 2.3f shows that when using the same scale factor in each dimension the
angles are preserved.

2.2.2 Calculating the transformation between two sets of points

Two measurements from different sets of points are called a point correspondence if they refer
to the same point. If the point correspondences for two sets of point measurements P = {q}

Registration and iterative scale estimation of differently scaled point clouds

14 Chapter 2. Fundamentals

and Q = {q} (for example two 3D scans taken from two different locations) are known it is
possible to obtain a closed form solution for the transformation between the two set of points.
A method for this was first devised by Horn in 1987 [18] using unit quaternions to obtain
the optimal rotation which is described briefly below for obtaining the optimal translation and
scale. There are also multiple other methods to obtain this transformation, for example one
using orthonormal matrices instead of quaternions by the same author [17] or using the singular
value decomposition (SVD) of a cross-correlation matrix of the measurements by Arun et al. [2]
which is described briefly below. Nüchter et al. evaluate some of these methods for obtaining
the transformation between two or more sets of measurements for the rigid case in [30]. An
application including scaling can be found in [15]. Let pi ∈ P and qi ∈ Q be measurements
that refer to the same point. The goal is to find a transformation T such that for every pair as
above the following holds:

pi = T (qi) ∀i : 1 ≤ i ≤ n. (2.10)

In other words T maps coordinates from L to R. T can also be decomposed into tree components:
A translation t, a rotation R and a scaling s which can be calculated independently from one
another. With the above the equation can be written as

pi = sRqi + t ∀i : 1 ≤ i ≤ n (2.11)

These elements represent seven degrees of freedom in 3d space, three each of translation and
rotation and one of scaling. That means that three points are needed to determine the wanted
transformation, two points would only provide six constraints.

Translation

Suppose that P and Q contain n measurements. If both are perfect then the T will map each
point from Q perfectly to the corresponding point in P . However, in a real world scenario this
is often not the case and small differences will remain between each pi and transformed qi:

ei = pi − sRqi − t. (2.12)

To achieve a least squares solutions the following error function has to be minimized

E =
n∑

i=1
‖ei‖2 =

n∑
i=1
‖pi − sRqi − t‖2. (2.13)

By shifting each measurement such that their centroids are the origin of their coordinate systems:

p′i = pi − p̄ q′i =qi − q̄, (2.14)

where p̄ and q̄ are the centroids of the measurements in P and Q

p̄ = 1
n

n∑
i=1

pi q̄ = 1
n

n∑
j=1

qi, (2.15)

Registration and iterative scale estimation of differently scaled point clouds

2.2. Transformation between two sets of points 15

the error function can be rewritten as

E′ =
n∑

i=1
‖p′i − sRq′i − t + p̄− sRq̄‖2.

=
n∑

i=1
‖p′i − sRq′i‖2 − 2 (t− p̄ + sRq̄)

n∑
i=1

p′i − sRq′i +
n∑

i=1
‖t− p̄ + sRq̄‖2.

(2.16)

Equation (2.16) is a sum whose three summands can be minimized independently. The middle
sum always evaluates to zero because the new centroids of the p′i and q′i being the origin by
design. The last term also can be set to zero by choosing t:

t = p̄− sRq̄. (2.17)

The searched translation is the difference of the centroids after rotating and scaling q̄ to the
coordinate system of R.

Scale

Now to determine s and R the remaining first term of the error function needs to minimized.
Its expanded form is

n∑
i=1
‖p′i − sRq′i‖2 =

n∑
i=1
‖p′i‖2 − 2s

n∑
i=1

p′Ti Rq′i + s2
n∑

i=1
‖Rq′i‖2. (2.18)

Because rotation matrices are length preserving (Section 2.2.1) this is equivalent to
n∑

i=1
‖p′i‖2 − 2s

n∑
i=1

p′Ti Rq′i + s2
n∑

i=1
‖q′i‖2. (2.19)

Regarding the above as a quadratic in the variable s the minimum can be found at

s =
∑n

i=1 p′Ti Rq′i∑n
i=1 q′i

(2.20)

It has to be noted that when calculating the inverse transformation from P toQ, i.e. qi = s̃R̃pi+t̃,
one arrives at

s̃ =
∑n

i=1 q′Ti R̃p′i∑n
i=1 p′i

. (2.21)

It might be desirable that the two solutions are the inverses of one another. However, as Horn
notes in [18] in the general case this is not the case and so s̃ 6= 1

s . A symmetric solution can be
obtained by considering a symmetric error term and the resulting expanded remaining error (cf.
(2.19))

ei = 1√
s
pi −

√
sRqi − t∀i : 1 ≤ i ≤ n

1
s

n∑
i=1
‖p′i‖2 − 2

n∑
i=1

p′Ti Rq′i + s
n∑

i=1
‖q′i‖2.

(2.22)

Registration and iterative scale estimation of differently scaled point clouds

16 Chapter 2. Fundamentals

Differentiating with regards to s results in

− 1
s2

n∑
i=1
‖p′i‖2 +

n∑
i=1
‖q′i‖2. (2.23)

Setting equation (2.23) to zero and solving for s yields

s =
√∑n

i=1‖p′i‖2∑n
i=1‖q′i‖2

. (2.24)

This expression for the scale not only solves the problem of inverse transformations as described
above but also has the advantage that it can be calculated without the rotation R in contrast
to equation (2.20).

Rotation

Independent of the formula selected to calculate the scale (Equation (2.24) or Equation (2.20)),
the error in Equations (2.16) or (2.22) is minimized in regards to R by maximizing

n∑
i=1

p′Ti Rq′i. (2.25)

All three methods that were mentioned above, do this by first constructing a cross-correlation
matrix H

H =
n∑

i=1
p′iq′Ti =

Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

 (2.26)

where the matrix entries can be calculated as

Sxx =
n∑

i=1
r′i,x · l′i,x Sxy =

n∑
i=1

r′i,x · l′i,y (2.27)

The singular value decomposition V H = UΣVT of S can be used to obtain the rotation matrix

R = VUT (2.28)

as shown by Arun et al. in [2]. Algorithm 3 on Page 17 summarizes the above equations into
an efficient method for calculating the transformation between two sets of points.

2.3 Iterative Closest Points
The prerequisite to applying Algorithm 3 to two sets of points is that the point correspondences
between them have to be known in order to calculate the rotation (see Equation (2.26)). In most
cases this relation is unknown, may be hard to obtain and the unknowingness is one of the reason
why a transformation between the two sets is sought after. One of the most well-known and

Registration and iterative scale estimation of differently scaled point clouds

2.3. Iterative Closest Points 17

Algorithm 3: Calculating the least squares solution to the transformation between
two sets of points

input : Two sets of points P and Q
output: A rotation matrix R, a translation t and a scale s

1 Construct the cross-correlation Matrix H as described in equation (2.26)
2 Calculate the SVD of H as H = UΣVT

3 Calculate the rotation matrix R = VUT

4 Calculate s either according to equation (2.20) or equation (2.24)
5 Find the centroids p̄ and q̄ of P and Q
6 Calculate the translation t = p̄− sRq̄

widely used algorithms that solve this problem is the Iterative Closest Points (ICP) algorithm.
First proposed in 1992 [4] it is now state of the art for aligning multiple point clouds. It requires
no prior knowledge about the point clouds that should be registered but can be enhanced by it.

The main idea of the algorithm shown in Algorithm 4 is that instead of selecting the correct
point correspondences in line 3, corresponding point pairs are formed by taking a point p ∈ P
and the point q that is the closest point in Q to p. Using these approximate correspondences
a transformation is calculated by minimizing the error function as outlined as in Section 2.2.2.
The assumption is that by using the closest points pairs to calculate the transformation one
finds a transformation that is close enough to the real one and moves the two point clouds closer
together. By iterating this process the computed transformation converges towards the correct
one. The procedure is repeated until the mean square error does not change anymore or stays in
a τ -region. Besl and McKay proved that the algorithm reaches a local minimum [4]. Therefore,
it is important to have an initial estimate of the transformation or point clouds that are close
together.

Algorithm 4: The ICP algorithm
input : two sets of points P and Q

desired precision τ
output: Rotation R and translation t

1 Initialize R and t
2 repeat
3 Find point correspondences (pi,qi) ∈ P ×Q
4 Minimize Ej = ∑ ‖pi −Rjqi − tj‖
5 Apply Rj and tj to Q
6 R ← RjR
7 t← t + tj

8 until Ej−1 − Ej < τ ;

The algorithm spends the most time searching for the point pairs. Using a kd-tree for point
storage and lookup can offer tremendous speedup. Over time, many different variants of the
original algorithm and methods to increase speed and quality of the result have been developed.

Registration and iterative scale estimation of differently scaled point clouds

18 Chapter 2. Fundamentals

Figure 2.4: A large scale difference in point clouds that should be registered. On the right the second
one zommed in.

These include only using a sampled subset of points, caching of points or rejecting pairs with a
distance greater than some threshold. Criteria for forming the point pairs include searching along
the normal of a point, searching in the view direction or enhancing the search with additional
criteria for example normals. A weighting of the pairs in the error function can also be performed
based on the distance between the two points or on some other information like color or normals
if available. Finally the error function and therefore the way the transformation is calculated
can be changed. As before if additional information is available, it can be included into the
error term. Instead of using the point to point distance using a point to the local plane of the
destination point is also common. Rusinkiewicz and Levoy give an overview and comparison of
these methods and their properties [36].

It is also possible to include a scale term in the error function (cf. Equation (2.13)). However,
when exposed to large scale differences they are prone to failure. An integrated method is
described in [42] and it shows only a small range of scale factors where it can be used successfully.
When exposed to the situation in Figure 2.4, namely huge scale differences (notice the little
purple dot) combined with relatively large displacement, a tested implementation was not able
to calculate a meaningful translation. Some authors bound the range of the scale because of
this [11] or manually select point pairs to calculate an initial transformation as an input to the
algorithm [5].

2.4 Principal Component Analysis

PCA is a statistical method used to reduce the dimensions of a multi dimensional data set while
still retaining as much information as possible. It is used in this work for estimating the scale
factor between two point clouds. PCA works by transforming the data set to the eigenspace
spanned by the eigenvectors of the covariance matrix of the data points. The eigenvalues cor-
respond to the variance observing that the larger the eigenvalue the larger the variance in that
direction. If only k dimensions are to be retained, the first k eigenvectors with the greatest

Registration and iterative scale estimation of differently scaled point clouds

2.4. Principal Component Analysis 19

Figure 2.5: On the left some points, in green and magenta the eigenvectors of the points. On the right
the points after PCA.

eigenvalues are used [22].
An algorithm for carrying out PCA can be found in [16]. Given the d-dimensional data

points x1...n the covariance matrix C needs to be calculated first

C =
n∑

i=1
(xi − x̄) (xi − x̄)T (2.29)

with x̄ being the mean of all data points

x̄ = 1
n

n∑
i=1

xi. (2.30)

The next step is calculating the eigenvalues λ1..d and eigenvectors v1..d of of the covariance
matrix C. There are many methods to do this and the exact details of such a computation are
left out here. Now the K eigenvector corresponding to the k largest eigenvalues are selected
and arranged in a d× k matrix Ṽ. The data points can be transformed into the new principal
components space by applying this matrix

ξi = Ṽxi. (2.31)

Reconstruction of the original points if it is desired can be achieved in the following way:

xi = ṼT ξi + x̄ (2.32)

An example for a PCA of set of two dimensional points can be seen in in Figure 2.5. While
not for reducing dimensionality, PCA can also be used when dealing with 3D point clouds. One
application is for example fitting of planes to a set of points [34]. As the input is 3D points,
the covariance matrix is a 3 × 3-matrix. If the points lie in a plane then there is relatively
few variance of the position of the points in the direction of the normal vector of the plane.
Applying PCA this fact can be exploited to get an estimation for the normal of the plane as
the eigenvector corresponding to the smallest eigenvalue. The other two eigenvectors span the
plane at the mean of the set of points.

Registration and iterative scale estimation of differently scaled point clouds

20 Chapter 2. Fundamentals

2.5 RANSAC

Figure 2.6: Fitting a line into set of Points. The two red points form the set Si for this iteration with
the red model line fitted to them. The points inside the green tolerance lines from the consensus set S∗i .
The figure does not show the end result but rather an intermediate step with a bad model.

RANSAC is the name of a method introduced by Fischer and Bolles in 1981 [14] for fitting
a model to data. The 4PCS algorithm is a RANSAC style algorithm. The algorithm developed
in this work is a hybrid approach of the RANSAC idea and iterative features. The RANSAC
method can be described in general as follows:

1. Given the set of data points P , select a subset Si of n points randomly where n is the
number of points needed to compute a model.

2. Create a model Mi using the points in Si.

3. Determine the set of points S∗i that agree with the model. S∗i is called the consensus set
of Mi.

4. If S∗i is larger than some threshold accept it or repeat steps 1 to 3.

5. Create a new final model M∗ using the accepted consensus set. If no set was accepted
after the maximum number of iterations l, use the largest consensus set or fail.

Applied to the example of fitting a line into a set of points, each iteration 2 points Si are
randomly drawn from the entirety of all points P as 2 points are sufficient to determine a line.

Registration and iterative scale estimation of differently scaled point clouds

2.5. RANSAC 21

Then the line Mi is fitted to the two points and all points are checked if they are within a
predefined small tolerance distance to the line. These points form the consensus set S∗i . The
situation is visualized in Figure 2.6. If the consensus set is large enough the best fitting line is
calculated M∗ according to it and returned as the final result. Otherwise the process is iterated
by randomly selecting two new points.

The RANSAC technique can be applied to a wide variety of problems as it is very general.
Examples include the fitting of lines or planes as described above, shape detection in point
clouds [37] or even feature-based registration of point clouds [19]. Depending on the application
is also the choice of the parameters not given by the description of the algorithm. For the
required number of iterations l an estimation is given dependent on the wanted probability that
an error-free subset of n points is chosen once ps and the probability that a data point is within
the specified tolerance to a model pe:

l = log(1− ps)
log(1− pn

e) (2.33)

For the other two parameters it is harder to reach general criteria. Most importantly, no general
recommendation can be given for the error tolerance for which a data point is thought to agree
with a model as it is highly dependent on the data itself and wanted accuracy. The second
parameter is the number of data points required to accept a model. It is also hard to determine
for the arbitrary case and should be generally chosen as a higher value or if so desired this early
stop criterium can be dropped completely.

Registration and iterative scale estimation of differently scaled point clouds

Chapter 3

Four point congruent sets

The original 4-points congruent sets (4PCS)-algorithm is based on the RANSAC method. It
exploits the fact that affine transformations preserve the ratios of distances between points lying
on a straight line (Section 2.2.1) in order to calculate the transformation between two point
clouds. It was first described by Aiger et al. in 2008 [1]. Here, only the rigid application is
described as was done originally. Section 3.1 describes the set of points that the algorithm
operates on and some properties of these that can be calculated easily. An overview of the
algorithm is given in Section 3.2. Sections 3.3 and 3.4 describe specific steps of the algorithm in
more detail.

3.1 Coplanar bases
The algorithm selects coplanar bases in one point cloud and searches for corresponding candi-
dates in a second point cloud. A coplanar base is a set of four points a, b, c and d, which
are contained in one geometric plane. An example of such a base can be seen in Figure 3.1,
showing the intersection point e and the angle α between the line segments connecting a and
b and c and d. The intersection point e always exists because the diagonals of a quadrilateral
always intersect. If the four points a, b, c and d do not form a valid quadrilateral, they can
be reordered such that they form a quadrilateral. The ratios r1 and r2 of the lengths along the
diagonals to the intersection point to their total length (Equation 3.1) are the main features
used to identify a coplanar base in conjunction with the angle α = ∠a − b, c− d between a − b
and c− d.

r1 = ‖a − e‖
‖a − b‖ r2 = ‖c− e‖

‖c− d‖ (3.1)

The intersection point can be calculated from the four points of a base and the ratios as follows:

e = a + r1(b− a) e = c + r2(d− c) (3.2)

The ratios r1, r2 can be calculated directly from the four base points by equating both right-hand
terms of Equation (3.1):

a + r1(b− a) = c + r2(d− c) (3.3)

23

24 Chapter 3. Four point congruent sets

a

b

c

d

e α

Figure 3.1: A coplanar base formed by the points a, b, c and d

Equation (3.3) represents a system of three linear equations of which any two equations are
sufficient to determine r1 and r2 by solving for r1 and r2 by eliminating one of them (here r2).
For example, using the first two vector components and with ab being the vector from b to a
(likewise for cd):

r1 · abi − r2 · cdi = (ci − ai) ∀1 ≤ i ≤ 3

r1

(
ab1 −

cd1
cd2

ab2

)
+ r2

(
−cd1 + cd1

cd2
cd2

)
= (c1 − a1)− cd1

cd2
(c2 − a2)

r1 =
c1 − a1 − cd1

cd2
(c2 − a2)

ab1 − cd1
cd2
ab2

r2 = c2 − a2 − r1 · ab1
−cd2

(3.4)

The unused equation of the third components can be used to verify the results and to assess the
planarity of the four points. If they all are contained in a plane, the line segments will intersect.
However if they are only coplanar with regards to some tolerance value, the line segments will
not intersect but come into a small distance of eachother. The third equation will not hold
anymore and there will be a small of difference in the values of both sides of it.

3.2 The algorithm
A high level overview of of the 4PCS-algorithm is shown in Algorithm 5. Given four points from
point cloud P that form a coplanar base B, the main idea behind the algorithm is to find four
points in Q that are congruent to B. The identifying features of such coplanar bases are the
ratios r1 and r2 which are unaffected by affine transformations. Therefore, they can be used to
find candidates for the corresponding points forming B in Q. Selecting the best matching set
of points is done by calculating the transform that would align the candidate to B optimally
in least-squares sense (see Section 2.2.2). Then each of these transforms is judged by how well
it aligns the whole point clouds. This is done by simply comparing the number of points in Q
for which at least one point in a small region around it can be found in P (in a kD-tree this
can be done by using Algorithm 1). This procedure is done in a RANSAC-style loop where in
each iteration multiple models are created (the transformations obtained from the candidates).
In difference to the original RANSAC formulation, the models are not created randomly but

Registration and iterative scale estimation of differently scaled point clouds

3.3. Selecting a coplanar base 25

Algorithm 5: The 4PCS algorithm
input : Two point clouds P and Q
output: Transformation tbest to register Q with P

1 tbest ← null
2 for 1 ≤ i ≤ l do
3 Select a coplanar base B in P
4 C ← 4 point sets in Q that are congruent to B
5 T ← {Transformation that aligns c to B|c ∈ C}
6 for t ∈ T do
7 Apply T to Q and calculate point correspondences of P and Q if t aligns Q and

P better than tbest then
8 tbest ← t
9 end

10 end
11 end
12 return tbest

selected according to the chosen coplanar base in P using the algorithm described in Section
3.4. The consensus sets consist of the point pairs ∈ P ×Q that agree with a transformation, the
number of pairs is used to judge the quality of each transformation. These pairs can be found
by applying the transformation and then searching for each point in Q for an equivalent point
in P in a small δ region. The number of required iterations L can be calculated according to
Equation (2.33) as

L >
log 1− ps

log 1− pN
g

, (3.5)

where ps is the desired success probability and pg is the probability that a randomly chosen
point from P can also be found in Q. This probability either has to be available by knowledge
of the data set or can be estimated. If this is not possible, the number of iterations can also be
set manually.

3.3 Selecting a coplanar base
Extracting a coplanar base from a point cloud is straightforward, any three randomly selected
points will form a plane. A forth point can be found by iterating through the points or randomly
selecting one until the selected point is coplanar with the previously selected set of three points.
However, the selection of the target base has a major influence on the quality of the resulting
calculated transformation. At least one of the diagonals has to be sufficiently long to reduce
the influence of noise and other errors as can be seen in Figure 3.2. This also has advantages
when matching to a lower density point cloud, where the impact of the lower sampling rate of
3D geometry decreases with higher lengths. On the other hand it has to be ensured that the
matching points can be found in the other point cloud that is going to be matched. Selecting
the maximum length between two points can fail because it is susceptible to outliers. Arriving

Registration and iterative scale estimation of differently scaled point clouds

26 Chapter 3. Four point congruent sets

Figure 3.2: Long distances are more robust against noise. (Source: [1])

p1

p2

p3

p4
e

q1

q2

p3

p4
e1 e2

Figure 3.3: The four points on the right are not congruent to the ones in Figure 3.1, the four points on
the left are

at a suitable length can be either done through prior knowledge of the two point clouds being
registered or through a iterative process. First, a relatively long goal length l is chosen. If the
selected length results in no matching case being found, it could be reduced in the following
steps to for example 1

2 l,
1
4 l,

1
8 l and so on.

3.4 Finding corresponding bases

For finding a 4-point set in a scan Q congruent to a coplanar base B in scan P Aiger et. al
describe a straightforward but naive method (see Algorithm 6). They start by finding candidates
for the point pairs (a,b) and (c,d) by looping over all possible point pairs in Q. Because they
restrict the searched transformations to rigid ones the pairs can be filtered by comparing their
distance to the distance d1 = ‖a − b‖ or d2 = ‖c − d‖. For each of these pairs a potential
intersection point is calculated according to the ratios r1 and r2 of B as in Equation (3.2) - e1
when the pairs corresponds to (a,b), e2 when it corresponds to (c,d). To facilitate fast lookup
the points e1 are inserted into a range tree structure E1t like a kd-tree.
To form candidates for matching from these virtual intersection points, the tree E1t is searched
for nearby points E1m around the points E2. In order to be congruent to B, two points pairs that
both have the correct distance, also have to share their virtual intersection points (cf. Figure
3.3). The set of candidates is formed by combining the two points that were used to calculate
e1m and the two points that were used to calculate e2i. Finally, additional criteria such as the
angle α between the two connecting vectors and the planarity of the four points are enforced.

The described algorithm has some obvious inefficiencies. For example the last described step

Registration and iterative scale estimation of differently scaled point clouds

3.4. Finding corresponding bases 27

Algorithm 6: FindCongurent as described by Aiger et al. in [1]
input : Coplanar base B ≡ {a,b, c,d} and its ratios r1 and r2, Set of 3D points Q,

uncertainty δ
output: Set of congruent coplanar bases C congruent to B

1 d1 ← ‖a − b‖
2 d2 ← ‖c− d‖
3 R1 ←

{(
pi,pj ∈ Q×Q

) | ∣∣‖pi − pj‖ − d1
∣∣ ≤ δ}

4 R2 ←
{(

pi,pj ∈ Q×Q
) | ∣∣‖pi − pj‖ − d2

∣∣ ≤ δ}
5 E1t ← ∅ ; /* A range tree, for example a kd-tree */
6 foreach (pi, pj) ∈ R1 do
7 e1 = pi +B.r1

(
pj − pi

)
8 E1t ← E1t ∪ {e1}
9 end

10 E2 ← ∅
11 foreach (pi, pj) ∈ R2 do
12 e2 ← pi +B.r2

(
pj − pi

)
13 E2 ← E2 ∪ {e2}
14 end
15 C ← ∅
16 foreach e2i ∈ E2 do
17 E1m ← all points in a δ-region around e2 in E1t

18 foreach e1m ∈ E1m do
19 C ← C ∪ {4-point set with the points that e2i and e1m were calculated from}
20 end
21 end
22 C ← {c ∈ C|c is congruent to B}
23 return C

enforcing of constraints is done after the sets were constructed which means they were saved
into memory only to be discarded. The algorithm developed in this work improves upon these
inefficiencies it and its improvements are described in the next chapter.

Registration and iterative scale estimation of differently scaled point clouds

Chapter 4

Point cloud alignment with iterative
scale estimation

4.1 Introducing scale estimation

The motivation behind this thesis is to find the transformation between point clouds acquired
from different sources and captured at different times so no prior knowledge about the relation
between them is known. The algorithm in Chapter 3 while relying on the fact that ratios of
distances are preserved across affine transformation, achieves its main performance improvement
over the naive approach of checking all quadruples from the fact that when studying rigid
transformations it is possible to filter point pairs by their distance. The described approach
is not applicable in a cross-source scenario as the scale of point clouds acquired with different
methods is not necessarily consistent. For example, point clouds produced by SfM lack any
absolute reference and can only provide information about relations inside the point cloud. The
end result can be arbitrarily scaled and oriented with respect to the real world. In contrast, Laser
scanning produces absolute distance measurements because the constant speed of light serves
as a reference to tie the measurements to the space. Figures 4.1 and 2.4 show this difference
between both measurement methods, in yellow a point cloud obtained via laser scanning is
displayed with absolute dimensions and in magenta a point cloud of the same object is shown
that was reconstructed via SfM. The difference in dimension is apparent, the magenta SfM point
cloud is tiny compared to the yellow one - almost invisible at the chosen zoom level. Therefore,
an algorithm for aligning point clouds of different scales cannot enjoy the performance benefit
achieved by comparing point distances across point clouds. With this thesis, an algorithm is
proposed, which is able to estimate the unknown scale between two point clouds while alignment
is in progress. However, in order to shrink the search space an initial guess is used to start
the process, which is improved iteratively through application of a transformation. A hybrid
approach has been implemented randomly creating transformations and seeing which fits best
in a RANSAC fashion and using the previous iterations results to improve the current guess and
speed it up by narrowing the search space. In addition, individual point properties can be used
to improve the result. The first that comes to mind are surface normals which can be calculated
from the underlying 3D data in a straightforward fashion when not readily available by applying

29

30 Chapter 4. Point cloud alignment with iterative scale estimation

Figure 4.1: The same scene as in Figure 2.4 from a bird’s eye view. The magenta point cloud is almost
invisible when compared to the yellow one.

PCA (cf. Section 2.4). Hereby, the normals of two or more points are used to identify structures
consisting of multiple points. The absolute direction of normals is not usable in comparisons due
to the unknown orientation between both datasets. Other data that could be compared directly
if it is available could be color information or the reflectance value of points for example.

Algorithm 7 shows an overview of the proposed algorithm. At first glance, it follows the same
basic structure as the 4PCS algorithm discussed in the previous chapter. The main difference is
created by the unknown scale between the two input point clouds. At the beginning an initial
scale factor s is estimated as a starting point for the algorithm. The first iteration is restricted to
finding matching sets of points using only this scale factor. After each iteration, s is assigned the
scale component of the current best transformation. Depending on how many points are aligned
correctly by this transformation, the quality of the scale factor included in the transformation is
estimated, which is used to determine an acceptable range for distance comparisons in the next
iteration. Creating the hybrid approach mentioned above, each iteration improves the following
one. If a transformation aligns more than 90 % of points it is deemed good enough and the
iteration is terminated. This early termination condition corresponds to step 4 as described
in the original RANSAC algorithm (Section 2.5). In a last step, the ICP algorithm is applied
to both point clouds as a refinement by the identified transformation. It is restricted to rigid
transformations and is used for improving the rotation and translation. The scale should have
been identified by the algorithm beforehand.

Section 4.2 describes the estimation of an initial scale value comparing four different meth-
ods. Several steps of the original algorithm had to be adapted to support an unknown scale
factor including the search for points having congruent bases. Simultaneously, performance
improvements have been introduced such as replacing tree-based pair matching with direct con-
struction of candidate sets. Finding congruent bases is the main task within the algorithm and
is performed entirely different than in Algorithm 6. The proposed changes are described in

Registration and iterative scale estimation of differently scaled point clouds

4.2. Initial scale estimation 31

Algorithm 7: Algorithm to align two point clouds of different scales
input : Two point clouds P and Q
output: Transformation tbest to register Q with P

1 tbest ← null
2 s← initial scale estimation
3 for 1 ≤ i ≤ l do
4 Select a coplanar base B in P
5 C ← 4 point sets in Q that are congruent to B using current best scale s
6 T ← {Transformation that aligns and scales c to B|c ∈ C}
7 for t ∈ T do
8 if t aligns Q and P better than tbest then
9 tbest ← t

10 s← scale component of t
11 end
12 end
13 if tbest aligns 90% of points then
14 break
15 end
16 end
17 return result of ICP-algorithm of P and Q with tbest as starting transformation

Section 4.4. In Section 4.3 properties of two point clouds of varying scale and density such as
the maximum deviation of the distance between a pair of two points and their corresponding
pair in a second dataset are derived which are required later on.

4.2 Initial scale estimation

The initial scale estimation impacts the quality of the first estimated transformation which
is able to align many points, reducing the range that needs to be considered in subsequent
transformation and enabling a faster convergence. A good initial estimation therefore reduces
the required iterations and has a positive influence on the algorithm’s execution time. In this
section, four different methods have been evaluated. The resulting scale factors are either
compared against the true scaling value if available or - in the case of true cross source data
sets - against a manually estimated value. These values were obtained by careful extraction
of coordinates of prominent points like the tip of a tower and calculation of the resulting scale
according to equation (2.24). Table 4.1 lists the results of applying the different heuristics to
four different pairs of data sets. The “Bunny” and “Bunny rotated” pairs are based on the
same point clouds. However, in the second pair the data sets are rotated by 45° about each
axis against each other. The simplest heuristics is taking the axis-aligned bounding box of a
point cloud and comparing the dimensions of it to the bounding box of another point cloud.
This approach is dependent on point cloud orientations and therefore not applicable to arbitrary
oriented data sets. A variant of the heuristics relies on the third root of bounding box volume

Registration and iterative scale estimation of differently scaled point clouds

32 Chapter 4. Point cloud alignment with iterative scale estimation

Data Set bounding box
dimension

bounding box
volume

bounding
sphere PCA

true value/-
manually
selected
points

Cube 4 4 4 3.99903 4
Bunny 10.0072 10.0072 11.4274 10.0177 10
Bunny rotated 9.33278 9.25935 11.4274 10.0177 10
Chapel 272.677 269.995 243.042 348.29 345.481

Table 4.1: Scale values gathered via some heuristics.

for scale estimation. Due to the axis-alignment of the bounding box, this variant only brings an
advantage when the rotation of the point clouds against each other is close to multiples of 90°
around each axis. The scale between the two bunny data sets estimated using these methods
varies by 7.47 %. An alternative to bounding boxes which are fragile when orientations differ is
the usage of bounding spheres which are axis-independent. But the results obtained from either
comparing bounding sphere radii or volumes (both methods delivering the same result because
the volume of a sphere depends only on the radius) vary largely in quality. Both, significant
over- and underestimation, can be observed in Table 4.1.

The last heuristic is based on PCA. Noting that the covariance matrix C is symmetric
(Equation (2.29)) it is possible to diagonalize it in a way that

Λ = V−1CV (4.1)

with Λ being a diagonal matrix with its entries consisting of the eigenvalues of C and V being the
matrix whose columns are the eigenvectors of C. Equation (4.1) can be interpreted as a change
of basis using basis matrix V. The m-th eigenvalue of the covariance matrix corresponds to the
variance of the data in the direction of the m-th eigenvector [22]. The size of the eigenvalues is
related to the extent of the point cloud along the eigenvectors. Because the orientation of the
eigenvectors inside the data is only dependent on the data itself and is rotated with the data and
the variance of the points along them is also unaffected by rigid transformations, the magnitude
of the eigenvalues can be used for a rough comparison of the size of the point clouds and to
derive an estimated scale factor. This is done by taking the square root of each eigenvalue and
using the average of the three eigenvalue ratios. Let λp,1...3 be the eigenvalues of point cloud P
sorted either ascending or descending and λq,1...3 the eigenvalues of point cloud Q sorted in the
same fashion, then approximated scale factor sPCA is calculated as

sPCA = 1
3

(√
λp,1
λq,1

+
√
λp,2
λq,2

+
√
λp,3
λq,3

)
(4.2)

In addition to Table 4.1, Figure 4.2 gives a visual overview of the quality of the different
heuristics utilizing the “Chapel” data set. In green the point cloud is displayed with the scale
factor derived from a bounding sphere is displayed, for the red and blue ones are the bounding
box dimensions and volumes used. The point cloud scaled according to PCA is shown in cyan.

Registration and iterative scale estimation of differently scaled point clouds

4.3. Derivation of useful point cloud properties 33

Figure 4.2: Comparison of different heuristics for an initial scale factor estimation. The initial situation
is displayed in Figure 4.1.

As can be seen in the figure and observed from the values in the table, the scale factor calculated
based on PCA is producing the point cloud which size is closest to the reference point cloud.

4.3 Derivation of useful point cloud properties

A pair of point clouds with different point densities and scales has certain properties which
are useful in the further implementation process. It is assumed that two given point clouds P
and Q are aligned correctly but have a different point density and hence differing average point
distances d̄P and d̄Q. Further, the scale difference s between the two point clouds that correctly
scales Q to P is known. Let, without loss of generality, P be the point cloud with higher average
point density. Then the effective differences in point density and average point distance are not
only dependent on the density and average distance values of the scans itself but also on the
scale factor s. In Figure 4.3 both point clouds initially have the same average point distance.
But when they are resized by applying the known scale factor s it is clear that in reality P is
much more dense than Q.

For registering point clouds, points, point pairs and distances between points in different
point clouds have to be compared. This is especially true when the 4PCS method is applied and
corresponding points to various points in P are searched in Q. Assuming the same average point
distances as above and that P and Q are scaled to the same scale, the distance ‖δp′‖ between
a random point p in Q and the corresponding point p′ can be up to

max
∥∥δp′

∥∥ = d̄Q

2 . (4.3)

Registration and iterative scale estimation of differently scaled point clouds

34 Chapter 4. Point cloud alignment with iterative scale estimation

d̄P

d̄Q

.

(a) Point clouds P and Q have the same average point distance.
d̄P
s

d̄Q

.

(b) P scaled to the same size as Q.

Figure 4.3: Resized to the same scale as point cloud Q (in blue), has point cloud P (in green) higher
point density.

a

b

δa′

δb′

‖a′ − b′‖
a

b

δa′

δb′

‖a′ − b′‖

Figure 4.4: δa′ and δa′ pointing in the same/opposite direction of a − b maximizes the difference
|‖a − b‖ − ‖a′ − b′‖|

Note that a point Q can be considered to multiple points in P . Using this result the maximum
deviation of the distance d between a pair of two points a and b and the corresponding pair a′

and b′ in Q can be found. Each of both points could be shifted a distance of up to d̄Q

2 in some
direction described by the unit vectors δ̂a′ = δa′

‖δa′‖ for a and b′ and δ̂b′ = δb′
‖δb′‖ for b and b′.

max
(∣∣‖a − b‖ − ‖a′ − b′‖

∣∣) = max
(∣∣d− ‖a + δa′ − (b + δb′)‖

∣∣)
= max

(∣∣d− ‖a − b + δa′ − δb′‖
∣∣) (4.4)

In order to maximize the absolute value of an expression both the maximum and minimum
value of the argument have to be examined. Here, only the maximum case is performed, the
argumentation for the minimum value is symmetric and can be done analogously. The term
a−b is constant, the expression is minimized when the combination of the other vectors points
in the opposite direction:

max (d− ‖a − b + δa′ − δb′‖) = d−min
(∥∥∥∥(a − b) + ‖δa′ − δb′‖b− a

d

∥∥∥∥)
= d−min (d− ‖δa′ − δb′‖)

(4.5)

Registration and iterative scale estimation of differently scaled point clouds

4.4. Finding corresponding bases 35

The magnitude of the difference of the error terms is maximized if both point in the opposite
direction of each other and have their maximum value of d̄Q

2 (Equation (4.3).)

d−min (d− ‖δa′ − δb′‖) = d−
(
d−

(
d̄Q

2 + d̄Q

2

))
= d̄Q

(4.6)

This fits with the case that is intuitively imagined that δa′ and δa′ shorten a − b. For the
opposite case of minimizing the difference, a − b is lengthened by the maximum amount. The
situation is also displayed in Figure 4.4.

4.4 Finding corresponding bases
Section 3.4 and Algorithm 6 describe a method for finding sets of points in Q that are congruent
to a base (a,b, c,d) found previously in P . However, this naive approach has some drawbacks
that make the application to larger scale problems unpractical. The main obstacle is it’s multi-
pass data flow and quadratic nature. First, all possible pairs of points in Q are considered
candidates for either a and b or c and d. For each of these pairs, a possible intersection point
is calculated and stored. Then these intersection points are matched via lookup in a tree and
combined to 4 point sets. Finally, the sets are filtered such that only sets congruent to base in P
are kept. The area where this algorithm can be primarily improved is the memory consumption.
For each of the pairs that have a similar distance as a and b or c and d two additional points (the
points (pi,pj) could either correspond to (a,b) or to (b,a)) have to be stored. Also, a lookup
from these additional points to the points that they were calculated from is necessary to form a
candidate set if two potential intersection points fall together (see line 19 of Algorithm 6). This
implies the requirement of either an additional data structure like a map or some other way to
store this extra metadata. Furthermore, a complete set of potential candidates is built first and
filtered only afterwards. In summary, much data is processed potentially multiple times only to
be discarded afterwards. Avoiding this and directly constructing only candidate sets that are
congruent to the target base not only reduces memory requirements but also improves runtime
because less data has to be processed.

The goal is to find sets of four point in Q that are congruent to a given base (a,b, c,d).
Congruent sets will have the same ratios r1, r2 and angle α (up to some uncertainty). Using
these properties of congruent sets it is possible to calculate possible positions for the other two
points from a and b. The set of possible point pairs of candidates for c and d can therefore be
constructed from points which have been detected at the calculated positions. Therefore, invalid
candidates are omitted from the set of point pairs from the beginning. The line segments a−b
and c − d intersect at e with angle α. If a, b and e or r1 are known, the location of c can be
narrowed down to a circle. Figure 4.5 shows that the circle is the base of a right cone with tip e
and whose axis runs along a− b. Its slant height d is the distance from e to c. The coordinate
of the center, a radius length and a surface normal are required to properly specify a circle in
3D space. The normal of the circle is the unit vector along a−b, the position of the center can
be found by moving from e into the direction to b by the length h which as the radius can be
derived from the slant height:

Registration and iterative scale estimation of differently scaled point clouds

36 Chapter 4. Point cloud alignment with iterative scale estimation

d

d
r

r

a
h

e b
α

α

Figure 4.5: Possible positions of point c from given points a and b and properties of a coplanar base
as indicated by the base of the cone.

d = ‖e− c‖
r = d · sinα
h = d · cosα

(4.7)

The quantities required to construct the circle and constrain the possible locations of c are either
directly available or can be derived from the properties of the input congruent set from P when
searching for corresponding congruent sets in Q. Therefore, with the above method it is possible
to describe a new algorithm for finding congruent bases which is more performant and requires
less memory than Algorithm 6. The algorithm is described as Algorithm 8.

The advantages compared to algorithm 6 are obvious: The check for a set of candidates for
c and d is obsolete as only candidates for a and b are initially required. The range of allowed
point distances is determined by the current best transformation as described in section 4.3.
Additionally, the angle between the normals of each point of a point pair is calculated and
compared to the angle between normals of the reference points. The notation n(p) describes
the surface normal of point p. Using this approach, at first the algorithm performs a search
for candidate points of a and b. If a given point p is considered for a then the candidates for
b have to be on the surface of a sphere with radius ‖a − b‖ scaled to the scale of Q around
p. The search for points on a sphere can be performed efficiently for point clouds stored as
kD-trees using the method described in Algorithm 2. The allowed tolerance is the average point
distance as calculated in Section 4.3 plus the length scaled by the confidence of the current best
transformation. If the confidence is at its maximum of 1, this additional term ((1− c)1

s‖a−b‖)
is zero, and the lower the confidence is, points further away are considered. To avoid the need
for a map or a similar data structure the calculated intersection points e′ are stored in together
with indices to the points that they were calculated from.

For each of these virtual intersection points the point cloud is searched for potential can-
didates of point c′ as described above. Here the scale s′ that relates the distance ‖a − b‖ to
the one between the source points of e′ is calculated and used afterwards. Allowing a range of
distances here as well, would make no sense as the four point sets correspond to one possible
transformation each and should be internally consistent as a single global scale factor is searched
and not different scale factors in different directions. With a possible candidate c′ for c it is

Registration and iterative scale estimation of differently scaled point clouds

4.4. Finding corresponding bases 37

Algorithm 8: Finding congruent bases in a different scale point cloud
input : Coplanar base B ≡ {a,b, c,d}, Set of 3D points Q, current best scale s,

confidence value of current best transformation c
output: Set of congruent coplanar bases C congruent to B

1 foreach qi ∈ Q do
2 J ← FindPointsSphere(Q,qi,

1
s‖a−b‖, d̄Q + (1− c)1

s‖a−b‖); /* Algorithm 2 */
3 foreach qj ∈ J do
4 if ∠(n(qi), n(qj) ≈ ∠(n(a), n(b)) then
5 E ← E ∪ {(i, j,qi +B.r1(qj − qi)}
6 end
7 end
8 end
9 foreach e′ ∈ E do

10 s′ ← ‖qi−qj‖
‖a−b‖

11 d← s′‖e− c‖
12 n← qj−qi

‖qj−qi‖
13 m← e′ + cos(α) · d · n
14 CC ← FindPointsOnCircle(Q,m, d · sin(α), d̄Q

2 ,n); /* Algorithm 2 */
15 foreach c′ ∈ CC do
16 r← e−c

‖e−c‖
17 d′ ← FindClosest(Q, c+ s′‖c− d‖r, d̄Q) ; /* Algorithm 1 */
18 if ∠(n(c′), n(d′)) ≈ ∠(n(c), n(d)) and
19 ∠(n(c′), n(d′))− ∠(n(qi), n(qj)) ≈ ∠(n(c), n(d))− ∠(n(a), n(b)) then
20 C ← C ∪ {(qi,qj, c′,d′}
21 end
22 end
23 end

straightforward to also verify if the point cloud contains a suitable candidate for d. The direc-
tion r in which it should lie is fixed by the direction to c′ from the point e′ where the search
initially started. Again, the distance where the point should be, can be calculated from the
corresponding points c and d. In addition to checking that the directions of the normals of the
point pair c′,d′ are in similiar relation to one another as the ones of c and d, the angles of the
normals of the whole set of four points including qi and qi are compared to the original ones
from B to make sure that even less unmatching sets are considered candidates. Only if this last
test passes, the four point set is assembled as (qi,qj, c′,d′) and appended to the list of possible
candidates.

Registration and iterative scale estimation of differently scaled point clouds

38 Chapter 4. Point cloud alignment with iterative scale estimation

Listing 4.1: Paralleizing a for-loop with OpenMP by adding two compiler directives to it.
pragma omp declare reduction (merge: std :: vector <estruct > :\
omp_out . insert (omp_out .end (), omp_in .begin (), omp_in .end ()))
pragma omp parallel for reduction (merge: E)
std :: vector <estruct > E;
for(size_t i = 0; i < Q.size (); ++i) {

const auto J = tree. find_points_on_sphere ([...]);
for (size_t k = 0; k < J.size (); ++j) {

const size_t j = J[k];
const double normal_angle = angle(n(Q[i]), n(Q[J]));
if (fabs(normal_angle - angle(n(B.a), n(B.b)) <= rad (1)) {

E. emplace_back (i, j, Q[i] + B.r1 * (Q[j] - Q[i]));
}

}
}

4.5 Implementation Details

The algorithm was implemented within the 3DTK framework [32]. The original 4PCS-algorithm
has been implemented for comparison. During the implementation of the proposed algorithm a
main focus was on good performance and low memory consumption because of its demanding
nature. Below, a few approaches are described which have been implemented to achieve these
objectives.

The algorithm relies on surface normals. These can either be calculated during run-time
or be pre-calculated before algorithm start. As the 3DTK framework only offers methods to
recalculate the complete set of surface normals without allocating an unnecessary amount of
memory per point, the pre-calculation option has been chosen. The normals are stored with the
point data in one file and are read together. This data is then stored in a central location in the
implemented program, copies are avoided where possible.

This is supported by one of the available kD-tree implementations in 3DTK. The point
data is not stored directly but rather the tree is constructed from indices which can be used to
reference data stored in an array or another similar data structure. The indexed kD-tree class
has been extended with a wrapper so it can be used as a tree type in the central “Scan” class1

among other options like a normal kD-tree or an approximate nearest neighbor tree (ANN-tree).
That enables classes and code created during this work to always reference and store data by a
single index or a pointer to the actual data. Only data like the calculated intersection points is
stored directly and only if really necessary.

The two main loops of the algorithm have been parallelized using the OpenMP 4.5 framework
[33]. OpenMP allows the easy parallelization of sequential code by adding directives to the code
instructing the compiler to generate machine code that splits the work across multiple threads.

1https://sourceforge.net/p/slam6d/code/HEAD/tree/trunk/include/slam6d/scan.h

Registration and iterative scale estimation of differently scaled point clouds

https://sourceforge.net/p/slam6d/code/HEAD/tree/trunk/include/slam6d/scan.h

4.5. Implementation Details 39

Listing 4.1 shows how a simplified implementation of the loop in line 1 of Algorithm 8 can be
easily transformed. The annotation #pragma omp parallel for instructs the compiler that the
following loop should be parallelized across multiple threads. Each thread will receive a separate
copy of the vector E in which it writes the results it found. Often parallel loops produce results
that need be unified or merged across threads. For example when searching for the maximum
value inside an array of numbers, each threads finds the maximum value of the portion of the
array that it had inspected. The maximum value of the array is the maximum of the maxima
found by each thread. OpenMP includes the reduction concept for such tasks. The second
part of the directive above the loop (reduction(merge: E)) tells the compiler that at the
end of the execution of each the thread the previously declared reduction called “merge” is to
be executed for the private copies of E. A reduction is introduced using #pragma omp declare
reduction. In parentheses follows the name of the reduction and for which types of variables it
is applicable, in this case that is a vector of a type able store two indices and one additional point.
The last part of the reduction describes the actual reduction operation. This can be for example
a function call or any other valid expression of the C++ programming language. OpenMP
provides the special variables omp_in and omp_out that can be used in such a statement. When
the reduction is executed omp_in will refer to the private copy of the variable of the thread and
omp_out will be the combined variable after the reductions have been executed. So after the
execution of the loop in Listing 4.1, E will be the union of the private E variables of each thread
as the reduction clause simply appends the thread local vectors to the resulting one. Aside from
these two compiler directives that have to be added, the rest of the code can be left unmodified
and can be written normally like for the sequential case.

Registration and iterative scale estimation of differently scaled point clouds

Chapter 5

Experimental Results

Multiple experiments have been carried out. In Section 5.1 the runtime of algorithm as described
in 4 is compared against the original one described in 3. Also the speedup gained by parallelizing
parts of it are investigated. In Sections 5.2 and 5.3 the developed algorithm is used to align
two data sets. First it is applied to variations of the Stanford bunny dataset that have been
scaled, rotated and sampled down and the qualities of the found transformations are compared.
Finally a real world data set consisting of a laser scan and a SfM point cloud of the same chapel
is aligned.

5.1 Runtime comparison between different methods for finding
corresponding bases and parallel versions

The algorithms for finding corresponding bases (Algorithms 6 and 8) can be be divided into two
main parts. First the candidate pairs for a and b and for the first algorithm also c and d are
formed and then these pairs are used to construct the four point sets that are used to calculate
possible transformations between both point clouds. For both of these parts the runtime of the
implementations in both algorithms have been compared.

5.1.1 Constructing the set of point pair canidates

First the construction of the set of candidates for the point pairs a and b and if required c
and d was examined. Figure 5.1 shows the runtimes of different methods for constructing the
candidate pairs as first step of the algorithms using the cube dataset. In addition to the so far
described methods of simply iterating over all pairs and searching for points that are on the
surface of a sphere, an additional method has been implemented and tested. Here instead of
searching directly for points that are at a given distance from the query point (in other words
lying on the surface of the sphere with the query point in its center), first all points inside a
maximum distance from the query point are searched in the kD-tree which can be imagined as
searching for all points inside a solid sphere around the query point and then filtered depending
on if they fall into the desired distance range. This was done as the the query for all points
inside a maximum range inside a kD-tree is a much more common operation as the for this

41

42 Chapter 5. Experimental Results

0 10 20 30 40 50

0

1

2

3

4

5

Run

T
im

e
in

s

Sphere surface
Solid sphere

Iterating

Figure 5.1: Comparing the runtime of different methods for constructing point pair candidates using the
cube dataset. The dashed lines represents the mean and the dotted lines show the standard deviations.

work implemented search for points on the surface of a sphere. It was also used as a verification
tool by comparing the amount of points returned by both procedures. This additional query
procedure can be created easily by adapting Algorithm 1 to not return the closest point found
but rather all points inside the given distance d. The test was carried out on a Laptop with a
Intel Core i3-7100U CPU with a clock rate of 2.40 GHz. It can be seen that across the 50 runs
that were carried out the sphere method was almost always faster than just iterating over all
point pairs, its mean runtime is 0.717 s compared to 1.617 s. The difference between querying
the kD-tree for points on a sphere and for points in a sphere and filtering afterwards with a
mean runtime 1.063 s is generally smaller but the surface method seems the best for the average
case. Its runtime is also more predictable. While the former method’s runtime has a variance
of 0.692 s2, the variance of the surface method is with 0.325 s2 almost as low as the one of the
simple iteration (0.265 s2).

Testing the three methods on the the Stanford bunny data set shows different results. As can
be seen in Figure 5.2, searching for points on the surface sphere is still the fastest method with an
average runtime of 4.792 s. Iterating over point pairs shows a relatively stable runtime of 15.517 s
with variance of 0.680 s2 because the workload mostly stays the same between multiple runs.
The kD-tree based methods show a more volatile behavior. Here, depending on the requested
distances, a different amount of tree nodes and leaves has to be visited. The surface method
seems to be moderately impacted by this but is almost all the time three times faster than simply
iterating over all point pairs. Searching all points inside a sphere defined by a given maximum

Registration and iterative scale estimation of differently scaled point clouds

5.1. Runtime comparison between different methods for finding corresponding bases and
parallel versions 43

0 10 20 30 40 50

0

10

20

30

40

Run

T
im

e
in

s
Sphere surface
Solid sphere

Iterating

Figure 5.2: Comparing the runtime of different methods for constructing point pair candidates using the
bunny dataset. The dashed lines represents the mean and the dotted lines show the standard deviations.

distance and then discarding all points not inside the actually wanted distance range performs
much worse than in the previous test. It seems also highly impacted by the aforementioned
effect, it has an enormous variance of 125.706 s2. In singular instances it is almost as fast as
the surface method or sometimes the run time falls into the middle of the two approaches. But
most of the time it is the worst method out of the three in regards to performance and takes on
average longer than the naive iteration with 20.459 s.

In summary, it can be concluded that the sphere surface based method seems to be the best
one for the general case. It consistently performs better by a huge margin than simply iterating
over all point pairs. The other kD-tree based method of querying all points inside a solid
sphere and afterwards discarding all points which are not on its surface is unreliable. Although
it performs good in very simple datasets as the two cubes, even a slightly more complicated
example like the Stanford bunny shows that it is ultimately flawed and should be avoided as it
can perform much worse than the other methods.

The above tests were carried out on already parallelized versions of the algorithms using
the OpenMP framework[33]. This was done after determining that sharing the work between
multiple threads proved to be beneficial and offered significant speedup. Using the sphere surface
method, the runtime for constructing the set of point pair candidates was measured using one,
two and four parallel thread with the processor of the used laptop being able to execute 4 threads
in parallel. Figure 5.3 shows the results. On the left the raw runtime is shown, on the right
it is divided by the time needed for the sequential case. Aside from a few outliers the speedup

Registration and iterative scale estimation of differently scaled point clouds

44 Chapter 5. Experimental Results

0 10 20 30 40 50
0

1

2

3

Run

T
im

e
in

s

1 Thread
2 Threads
4 Threads

0 10 20 30 40 50
0%

100%

200%

300%

Run
Pe

rc
en

ta
ge

of
se

qu
en

tia
lr

un
tim

e

Figure 5.3: Comparing the runtime of constructing point pair candidates using the cube dataset and
the sphere surface method with 1, 2 or 4 parallel threads. Dashed lines indicate the optimal speedup
gained from using multiple threads.

from using two threads is near the optimal case indicated by the dashed red line. However using
four threads doesn’t improve performance any further in a significant manner. The runtime
improvement is only very slight to using two threads. Here, the overhead of creating multiple
threads and merging their results does seem to outweigh the benefit of using more threads.
To confirm this the same test was performed on the bunny data set where the pair extraction
takes longer. The results can be seen in Figure 5.4a. Again using two threads performs very
good and achieves a speedup near the optimum indicated by the dashed line. While using four
threads increases the time difference compared to two threads, the performance gain is still not
as high as the step from sequential execution to using two threads. A reason for the observed
not significant speedup when increasing the thread-count could be that the CPU of the laptop
that the tests were performed on, although it is capable of executing four parallel threads at the
same time, only consists of two physical cores [9].

In order to confirm this theory the test was repeated on a desktop computer with an Intel
Core i5-7600K processor. The CPU has a clock rate of 3.80 GHz and consist of four physical
processor cores [9]. Figure 5.4b shows the results. The runtimes are as expected lower compared
to the ones from the laptop because of the more powerful hardware. Also, the graph of execution
time percentages shows that the potential runtime advantage gained from using multiple could
be almost fully exploited. Nearly all data points are near the dashed lines indicating the optimum
speedup. It can be concluded that previously not seen performance increase can be traced back
to the laptop hardware which is able to execute four parallel threads but cannot exploit the full
performance benefit gained from doing so.

Registration and iterative scale estimation of differently scaled point clouds

5.1. Runtime comparison between different methods for finding corresponding bases and
parallel versions 45

0 10 20 30 40 50
0

5

10

15

20

Run

T
im

e
in

s

1 Thread
2 Threads
4 Threads

0 10 20 30 40 50
20%

40%

60%

80%

100%

Run
Pe

rc
en

ta
ge

of
se

qu
en

tia
lr

un
tim

e

(a) Test performed on the laptop.

0 10 20 30 40 50
0

2

4

6

8

Run

T
im

e
in

s

1 Thread
2 Threads
4 Threads

0 10 20 30 40 50
20%

40%

60%

80%

100%

Run

Pe
rc

en
ta

ge
of

se
qu

en
tia

lr
un

tim
e

(b) Test performed on the desktop computer.

Figure 5.4: Comparing the runtime of constructing point pair candidates using the bunny dataset and
the sphere surface method with 1, 2 or 4 parallel threads. Dashed lines indicate the optimal speedup
gained from using multiple threads.

5.1.2 Assembling the congruent four point sets

A detailed performance comparison of the methods of the algorithms for assembling the can-
didate four point sets was not possible. Due to the inefficiencies described in Section 4.4 the
execution of the implementation of Algorithm 6 took a long time and the 16 GB of available
memory didn’t suffice causing the program to be aborted early. Table 5.1 shows the results
gathered across 10 runs on the desktop computer using the cube data set. The time for Algo-
rithm 6 includes additionally the time needed to filter the constructed four point sets from the

Registration and iterative scale estimation of differently scaled point clouds

46 Chapter 5. Experimental Results

Table 5.1: Comparison of the runtimes of the methods for assembling the congruent four point sets using
the cube dataset, values are in seconds. Entries marked with * mean that the program was terminated
early due to insufficient available memory.

Algorithm 8 15.125 83.577 37.656 8.793 8.330
Algorithm 6 362.814* 667.456* 480.076* 896.429 200.038*
Algorithm 8 4.677 12.070 41.210 6.987 44.187
Algorithm 6 15.139 1442.960* 320.433* 1225.490* 831.573*

ones that are not congruent to the base. This was done because for Algorithm 8 such a step is
not necessary and the approach developed in this work of constructing the point sets directly
is a major improvement over the one based on tree-matching. The original algorithm could not
be successfully executed more often than it managed to finish due to the vast required amount
of memory. It was also significantly slower by a huge amount regardless if it succeeded or was
terminated during execution. There is one instance where it worked reasonably fast (but still
more than 3 times slower) but that seems like an outlier given the other data.

This second part of the algorithm is a heavy work loop that also processes data in each
iteration independently from those before, which makes it a prime candidate for parallelizing in
order to improve the execution time. Like the first loop and part of the algorithm the OpenMP
framework was used for this and tested using the Stanford bunny dataset. As before multiple
thread counts were tested on the laptop and on the more powerful desktop computer. The results
in Figure 5.5 are similar to the ones in Figure 5.4. The potential runtime improvement gained
from using two threads can be exploited by both systems. On the laptop the speedup seems
more consistent as was the case in the previous section. Most of the measured runtimes are
close to the dashed line indicating the optimal runtime. However, as before the hardware is not
able to efficiently utilize additional threads. While the difference is also more consistent than in
the previous case the speedup is quite small and in terms of the actual runtime inconsequential.
As expected, the desktop computer is able to fully make use of two and four parallel threads.
Although closer inspection and comparing Figure 5.5b to Figure 5.4b conveys the impression
that there is more parallel overhead in this instance or the work was not shared equally between
the threads. OpenMP will divide the iterations of the outer loop equally across the threads
but depending on the point pairs that were found in the previous step of the algorithm and the
stucture of the point cloud that is being searched the amount of work between these iterations
can vary depending on how many points are found in each step of the loop.

5.2 Aligning the Stanford bunny

Applying the algorithm to the data set consisting of two models of the Stanford bunny shows
how it operates. First the algorithm was tested on a the original model and a scaled down
version of it that is 10 times smaller. Afterwards the smaller model was rotated by 45° around
each axis. Then the amount of points of the second model was reduced to approximately three
fourths of the original by randomly sampling of points and both tests repeated. In each tests 10

Registration and iterative scale estimation of differently scaled point clouds

5.2. Aligning the Stanford bunny 47

0 10 20 30 40 50

0

20

40

60

80

Run

T
im

e
in

s

1 Thread
2 Threads
4 Threads

0 10 20 30 40 50
20%

40%

60%

80%

100%

Run
Pe

rc
en

ta
ge

of
se

qu
en

tia
lr

un
tim

e

(a) Test performed on the laptop.

0 10 20 30 40 50

0

10

20

30

40

Run

T
im

e
in

s

1 Thread
2 Threads
4 Threads

0 10 20 30 40 50
20%

40%

60%

80%

100%

Run

Pe
rc

en
ta

ge
of

se
qu

en
tia

lr
un

tim
e

(b) Test performed on the desktop computer.

Figure 5.5: Comparing the runtime of assembling the congruent for point sets as per Algorithm 8 using
the bunny dataset with 1, 2 or 4 parallel threads. Dashed lines indicate the optimal speedup gained from
using multiple threads.

iteration of the algorithm were performed but if the termination condition of 90 % aligned points
was reached the early, fewer iterations have been performed. Figure Table 5.2 shows the results
of these tests in the order they were described. The first column displays the number iterations
that were taken until the result. The following columns show the transformation matrix that
was found to align the two point clouds the best after the iterations of the algorithm, the result
of the refinement step after applying the ICP algorithm and the last column shows the expected

Registration and iterative scale estimation of differently scaled point clouds

48 Chapter 5. Experimental Results

(a) Before applying ICP (b) After applying ICP

Figure 5.6: Result of aligning the bunny data set with an initial scale difference of 10.

outcome which is the true transformation between the two models. In table 5.3 the errors
between the calculated transformations and the known true ones are listed. The scale error is
given as a relative error and the translation as the added distance along all three dimensions. For
the rotation the distance as described by Kuffner [23] between the rotation angles described by
the rotational parts of the matrices is given. The Figures 5.6 to 5.9 display the results visually.
The left image of each figure shows the first scan of the data set in yellow and the second one in
cyan with the found transformation applied before employing the ICP algorithm. On the right
of each figure the same comparison can be seen except that the transformation is applied to the
second point clouds shown in magenta after undergoing the steps of ICP.

The transformation found for the pair with only a scale difference is already quite good
without ICP. There is a slight rotation error but it is corrected after the execution of the
ICP step. Visually both point clouds lie on top of each other (Figure 5.6) but inspecting the
transformation matrix reveals that the scale factor is a bit low. Instead of 10 it is only a
bit larger than 9.9 which amounts to a scaling error of under 1 %. Starting with a rotational
difference between point clouds also produces a larger rotational offset of about 7° in the result
that is clearly visible in Figure 5.7. As before applying ICP improves the alignment such that
there is no noticeable difference in orientation. The scale factor is overestimated this time but
is with 10.038 the closest one to the real value in this series of experiments. The tests using
the downsampled data show the same pattern. If there is an initial orientation difference, the
result will also show a larger discrepancy in orientation. However the additional ICP refinement
is able to correct it. In general the iterative process produces transformations for these data
sets that are less exact than for the two before. The scaling factor is also overestimated in both
cases. Here the largest error occurs on the non-rotated dataset, clearly visible in Figure 5.8.
The model is also shifted upwards but this translational offset is like the rotational one, that is
about the same as in the previous test, corrected by ICP. Figure 5.9 shows the largest disparity
when applying the transformation produced by iterative process in this series of tests. Both

Registration and iterative scale estimation of differently scaled point clouds

5.2. Aligning the Stanford bunny 49

(a) Before applying ICP (b) After applying ICP

Figure 5.7: Result of aligning the bunny data set with an additional rotation between the two models.

the rotational and translational errors of almost 17° and 2 units are substantially larger as the
next largest one in Table 5.3. Nevertheless, both point clouds are still correctly aligned after
applying the ICP algorithm on them. The scale factor is estimated quite well, the error being
around 1 % as in the first test.

In general in all of the above described initial situations the algorithm was able to produce a
transformations that aligns both point clouds well. Minor and larger rotational and translational
offsets could be fixed in its final ICP step. The scale was both over- and underestimated but
was always quite close to the true value.

Registration and iterative scale estimation of differently scaled point clouds

50 Chapter 5. Experimental Results

(a) Before applying ICP (b) After applying ICP

Figure 5.8: Result of aligning the bunny data set after resampling the second model at a lower density.

(a) Before applying ICP (b) After applying ICP

Figure 5.9: Result of aligning the bunny data set after resampling the second model at a lower density
and rotating it.

Registration and iterative scale estimation of differently scaled point clouds

5.2.
A
ligning

the
Stanford

bunny
51

Table 5.2: Results of applying the algorithm to the Stanford bunny dataset.

Iterations Transformation Matrix ICP Applied Expected Outcome

scaled 5

9.897 0.008 0.304 0.012
−0.004 9.901 −0.104 0.122
−0.304 0.104 9.897 −0.051

0 0 0 1

9.902 0.003 0.002 −0.028
−0.003 9.902 0.003 0.087
−0.002 −0.003 9.902 0.012

0 0 0 1

10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 1

rotated 10

6.248 7.628 1.880 −0.211
−5.532 2.567 7.973 0.420

5.578 −5.999 5.802 −0.717
0 0 0 1

5.019 8.568 1.470 0.010
−5.019 1.470 8.568 −0.036

7.098 −5.019 5.019 −0.003
0 0 0 1

5 8.536 1.464 0
−5 1.464 8.536 0

7.071 −5 5 0
0 0 0 1

reduced 8

10.171 0.427 1.036 −0.660
−0.508 10.190 0.791 0.028
−0.998 −0.837 10.150 0.990

0 0 0 1

10.233 0.077 −0.029 −0.016
−0.077 10.233 0.013 −0.244

0.029 −0.013 10.233 −0.014
0 0 0 1

10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 1

reduced &
rotated

10

6.634 7.365 1.971 −0.033
−2.890 0.011 9.684 0.117

7.056 −6.920 2.113 1.861
0 0 0 1

5.052 8.628 1.476 0.030
−5.055 1.484 8.625 −0.093

7.146 −5.050 5.057 −0.014
0 0 0 1

5 8.536 1.464 0
−5 1.464 8.536 0

7.071 −5 5 0
0 0 0 1

Table 5.3: Errors for the found transformation shown in Table 5.2 compared to the expected outcome.

Transformation Matrix ICP Applied
scaling error rotational error translation error rotational error translation error

scaled −0.981 % 1.688° 0.133 0.023° 0.092
rotated 0.379 % 7.116° 0.857 0.018° 0.037
reduced 2.329 % 7.063° 1.190 0.425° 0.245

reduced & rotated 1.064 % 16.809° 1.865 0.036° 0.099

R
egistration

and
iterative

scale
estim

ation
of

differently
scaled

point
clouds

52 Chapter 5. Experimental Results

Figure 5.10: Top view of the data set. On the left, the laser scan of the chapel in yellow and the reduced
SfM pointcloud with the found transformation applied. On the right the same situation but after ICP
has ben applied.

5.3 Aligning the chapel data set

Finally, the algorithm was tested on the real world chapel data set. While the SfM point cloud
being still being smaller than the one from the laser scanner by a huge amount it was still too
large for being processed efficiently. For this reason, this point cloud was sampled in order to
produce a transformation in a reasonable time. Visual inspection of the found transformation
can be done with the whole point cloud again. This test was not a total success. The developed
algorithm is probabilistic in its nature. The first few runs limited to 10 iterations on this dataset
didn’t produce a satisfactory transformation. The output of the sixth run is shown in Figure
5.10 on the left. As can be seen the rotational and transitional error is still large. After the
pass through the ICP step however both point clouds are better aligned. However, it also shows
that the recovered scale factor is too small. The round tower at the top right is aligned well but
the chapel is clearly too small. The right and left walls don’t reach the respective walls of the
yellow laser scan. The extracted scale factor of 320.93 has an error of −7.85 % relative to the
value of 348.29 calculated from manually selected point pairs in Section 4.2. Figure 5.11 shows
some areas of the registered data sets in more detail.

The picture on the top left shows a side top view of the chapel. The side surfaces of the
roofs are aligned. This view also shows clearly that the scaling is too small. The half-circular
back wall of the magenta SfM model doesn’t reach the yellow one and the crest of the roof is
too low. The same observations about the roof can be made in the image on the lower right. It
shows additionally a part of the side wall and secondary tower. The wall is well aligned as does
the detail of the window in it. The same holds for the tower. The parts of the tower that are
of lower density in the laser scan are filled appropriately by the other point cloud. The main
tower is in a similiar position in both point clouds as displayed in the lower left image. Here
the low scale factor is again apparent. The cross on top of the tower ends midway of the cross
of the laser scan. In the background the described features of the roof can be spotted again
from another viewpoint. This picture also shows that the found rotation while quite good is not
perfect. Due to the higher elevation and distance from the ground, smaller rotational errors are

Registration and iterative scale estimation of differently scaled point clouds

5.3. Aligning the chapel data set 53

(a) The roof. (b) The flagpole.

(c) The main tower. (d) Windows in the side wall.

Figure 5.11: Detail views of the alignment between the two data sets.

more visible. The magenta tower is skewed to left compared to the yellow one. This is reinforced
by another vertical feature of the scene - the flagpole on the far side of the chapel displayed
on the top right. It shows a rotation in the same direcretion exacerbated by the viewing angle.
Note that the viewing direction is roughly from the opposite site compared to the picture of the
main tower. Again the falling short of the scale factor can be seen at the roof and smaller roof
on the side of the wall. The algorithm might produce a better result with an increased number
of iterations. However, it is recommended to run tests on a more powerful machine due to the
required runtime.

Registration and iterative scale estimation of differently scaled point clouds

Chapter 6

Conclusions

In this thesis an algorithm for aligning point clouds of different scales has been developed on
the basis of the 4PCS algorithm. It uses affine invariant properties of point sets to match them
across point clouds and calculate a transformation. It was shown that the implementation of
the developed algorithm performed faster than an equivalent implementation of the original one.
While tests on simple data sets showed encouraging results - the point clouds being fully aligned
after execution or at least close together so that the ICP refinement step could fully align them
- the algorithm was not able to fully register a real world data set consisting of two point clouds
that have been gathered by the means of laser scanning and SfM. Here additional work is needed
so that the algorithm performs better in these kind of scenarios.

Another area were the developed algorithm can still be improved is performance. Despite
taking huge care to not introducing performance hindrances in the implementation, it took still
a long time for registering the chapel data set although the point clouds had been sampled
down. Currently all normals are loaded at the start of the program. However, only a tiny
percentage of the normals of the points of P will be used. An idea to further reduce memory
consumption could be to only load or calculate the surface normals on demand when they are
to be used. This should be at least an improvement for the point cloud P , all points of Q are
at least queried once each iteration and the probability that their normals are required in a
later step is high. Because the absolute orientation of normals is of no relevance to this work,
only relative orientations between normals are, there is no need to transform them when testing
the found transformations. However, currently the 3DTK framework will also transform the
normals when transforming the point cloud. This introduces an overhead of factor two for each
transformation.

Also related to normals is the way that they are used when comparing them between points
to restrict the set of candidates in Q to those that have similar normals as the reference points
in P . Here instead of comparing angles a signature of normal orientations in a four point set
similar to the SHOT descriptor could be used, with further potential performance gains because
the comparison if a set of points has similar normals is more accurate. Additional criteria that
can be used for identifying points like color or reflectance values will also further restrict the set
of candidates that needs to be checked and help performance.

55

Bibliography

[1] D. Aiger, N. J. Mitra, and D. Cohen-Or. 4-points congruent sets for robust surface regis-
tration. ACM Transactions on Graphics, 27(3):#85, 1–10, 2008.

[2] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-d point sets.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9:698–700, 1987.

[3] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Commun. ACM, 18(9):509–517, September 1975.

[4] P.J. Besl and Neil D. McKay. A method for registration of 3-d shapes. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 14(2):239–256, February 1992.

[5] Dorit Borrmann. Multi-modal 3D mapping - Combining 3D point clouds with thermal and
color information. PhD thesis, Universität Würzburg, 2018.

[6] H. Bülow and A. Birk. Spectral registration of volume data for 6-dof spatial transformations
plus scale. In 2011 IEEE International Conference on Robotics and Automation, pages
3078–3083, 2011.

[7] Dylan Campbell and Lars Petersson. GOGMA: Globally-optimal gaussian mixture align-
ment. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, jun 2016.

[8] Dylan John Campbell, Lars Petersson, Laurent Kneip, and Hongdong Li. Globally-optimal
inlier set maximisation for camera pose and correspondence estimation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, pages 1–1, 2018.

[9] Intel Corporation. Intel® Core™ i3-7100U Processor Product Specifica-
tions. https://ark.intel.com/content/www/us/en/ark/products/95442/
intel-core-i3-7100u-processor-3m-cache-2-40-ghz.html.

[10] M. Corsini, M. Dellepiane, F. Ganovelli, R. Gherardi, A. Fusiello, and R. Scopigno. Fully
automatic registration of image sets on approximate geometry. International Journal of
Computer Vision, 102(1):91–111, Mar 2013.

[11] Shaoyi Du, Nanning Zheng, Shihui Ying, Qubo You, and Yang Wu. AN extension of the
ICP algorithm considering scale factor. In 2007 IEEE International Conference on Image
Processing. IEEE, 2007.

57

https://ark.intel.com/content/www/us/en/ark/products/95442/intel-core-i3-7100u-processor-3m-cache-2-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/95442/intel-core-i3-7100u-processor-3m-cache-2-40-ghz.html

58 Bibliography

[12] J. Elseberg, S. Magnenat, R. Siegwart, and A. Nüchter. Comparison on nearest-neigbour-
search strategies and implementations for efficient shape registration. Journal of Software
Engineering for Robotics (JOSER), 3(1):2–12, 2012.

[13] Georgios D. Evangelidis, Dionyssos Kounades-Bastian, Radu Horaud, and Emmanouil Z.
Psarakis. A generative model for the joint registration of multiple point sets. In Computer
Vision – ECCV 2014, pages 109–122. Springer International Publishing, 2014.

[14] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Commun. ACM,
24(6):381–395, June 1981.

[15] F. Grosan, A. Tandrau, and A. Nüchter. Localizing Google SketchUp Models in Outdoor
3D Scans. In Proceedings of the XXIII International Symposium on Information, Commu-
nication and Automation Technologies (ICAT ’11), Sarajevo, Bosnia, October 2011. IEEE
Xplore.

[16] Joachim Hertzberg, Kai Lingemann, and Andreas Nüchter. Mobile Roboter. Springer Berlin
Heidelberg, 2012.

[17] Berthold Horn, Hugh Hilden, and Shahriar Negahdaripour. Closed-form solution of abso-
lute orientation using orthonormal matrices. Journal of the Optical Society of America A,
5:1127–1135, 07 1988.

[18] Berthold K. P. Horn. Closed-form solution of absolute orientation using unit quaternions.
J. Opt. Soc. Am. A, 4(4):629–642, April 1987.

[19] H. Houshiar, J. Elseberg, D. Borrmann, and A. Nüchter. A Study of Projections for Key
Point Based Registration of Panoramic Terrestrial 3D Laser Scans. Journal of Geo-spatial
Information Science, 18(1):11–31, January 2015.

[20] X. Huang, J. Zhang, L. Fan, Q. Wu, and C. Yuan. A systematic approach for cross-source
point cloud registration by preserving macro and micro structures. IEEE Transactions on
Image Processing, 26(7):3261–3276, July 2017.

[21] Bing Jian and B C Vemuri. Robust point set registration using gaussian mixture models.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8):1633–1645, aug
2011.

[22] I. T. Jolliffe. Principal Component Analysis. Springer Series in Statistics. Springer-Verlag,
New York, 2002.

[23] James J Kuffner. Effective sampling and distance metrics for 3d rigid body path planning. In
IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04.
2004, volume 4, pages 3993–3998. IEEE, 2004.

[24] Stanford University Computer Graphics Laboratory. Stanford Bunny. http://graphics.
stanford.edu/data/3Dscanrep/#bunny. Accessed: 2020-03-19.

Registration and iterative scale estimation of differently scaled point clouds

http://graphics.stanford.edu/data/3Dscanrep/#bunny
http://graphics.stanford.edu/data/3Dscanrep/#bunny

Bibliography 59

[25] Xinju Li and Igor Guskov. Multi-scale features for approximate alignment of point-based
surfaces. In Proceedings of the Third Eurographics Symposium on Geometry Processing,
SGP ’05, Aire-la-Ville, Switzerland, Switzerland, 2005. Eurographics Association.

[26] D. G. Lowe. Object recognition from local scale-invariant features. In Proceedings of the
Seventh IEEE International Conference on Computer Vision, volume 2, pages 1150–1157
vol.2, 1999.

[27] Nicolas Mellado, Dror Aiger, and Niloy J. Mitra. Super 4pcs fast global pointcloud regis-
tration via smart indexing. Computer Graphics Forum, 33(5):205–215, 2014.

[28] A Moussa and N Elsheimy. Automatic registration of approximately leveled point clouds of
urban scenes. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information
Sciences, pages 145–150, 2015.

[29] D. Novak and K. Schindler. Approximate registration of point clouds with large scale
differences. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information
Sciences, II-5/W2:211–216, oct 2013.

[30] A. Nüchter, J. Elseberg, P. Schneider, and D. Paulus. Study of Parameterizations for the
Rigid Body Transformations of The Scan Registration Problem. Journal Computer Vision
and Image Understanding (CVIU), 114(8):963–980, August 2010.

[31] Andreas Nüchter and Helge Andreas Lauterbach. Maria-Schmerz-Kapelle Randersacker.
http://kos.informatik.uni-osnabrueck.de/3Dscans/. Data Set No. 26.

[32] A. Nüchter et al. 3DTK - The 3D Toolkit. http//www.threedtk.de/. Accessed: 2020-03-
19.

[33] OpenMP Architecture Review Board. OpenMP application program interface version 4.5.
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf, November 2015.

[34] M. Pauly, M. Gross, and L.P. Kobbelt. Efficient simplification of point-sampled surfaces.
In IEEE Visualization, 2002. VIS 2002. IEEE, 2002.

[35] Furong Peng, Qiang Wu, Lixin Fan, Jian Zhang, Yu You, Jianfeng Lu, and Jing-Yu Yang.
Street view cross-sourced point cloud matching and registration. In 2014 IEEE International
Conference on Image Processing (ICIP). IEEE, October 2014.

[36] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. In Proceedings Third
International Conference on 3-D Digital Imaging and Modeling. IEEE Comput. Soc, 2001.

[37] R. Schnabel, R. Wahl, and R. Klein. Efficient RANSAC for Point-Cloud Shape Detection.
Computer Graphics Forum, 2007.

[38] Pascal W Theiler, Jan DWegner, and Konrad Schindler. Markerless point cloud registration
with keypoint-based 4-points congruent sets. ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences, 2(5/W2):283–288, 2013.

Registration and iterative scale estimation of differently scaled point clouds

http://kos.informatik.uni-osnabrueck.de/3Dscans/
http//www.threedtk.de/
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

60 Bibliography

[39] Federico Tombari, Samuele Salti, and Luigi Di Stefano. Unique signatures of histograms
for local surface description. In Computer Vision – ECCV 2010, pages 356–369. Springer
Berlin Heidelberg, 2010.

[40] James M. Van Verth and Lars M. Bishop. Essential Mathematics for Games and Interactive
Applications. A. K. Peters, Ltd., USA, 3rd edition, 2015.

[41] Reiji Yoshimura, Hiroaki Date, Satoshi Kanai, Ryohei Honma, Kazuo Oda, and Tatsuya
Ikeda. Automatic registration of mls point clouds and sfm meshes of urban area. Geo-spatial
Information Science, 19(3):171–181, 2016.

[42] Timo Zinßer, Jochen Schmidt, and Heinrich Niemann. Point set registration with integrated
scale estimation. In International conference on pattern recognition and image processing,
pages 116–119, 2005.

Registration and iterative scale estimation of differently scaled point clouds

Proclamation

Hereby I confirm that I wrote this thesis independently and that I have not made use of any
other resources or means than those indicated.

Würzburg, May 2020

	Preliminaries
	Zusammenfassung
	Abstract
	Acronyms

	Introduction
	Motivation
	Related Work
	Contribution and Outline
	Data sets

	Fundamentals
	kD-tree
	Searching in a tree

	Transformation between two sets of points
	Affine transformations
	Calculating the transformation between two sets of points

	Iterative Closest Points
	Principal Component Analysis
	RANSAC

	Four point congruent sets
	Coplanar bases
	The algorithm
	Selecting a coplanar base
	Finding corresponding bases

	Point cloud alignment with iterative scale estimation
	Introducing scale estimation
	Initial scale estimation
	Derivation of useful point cloud properties
	Finding corresponding bases
	Implementation Details

	Experimental Results
	Runtime comparison between different methods for finding corresponding bases and parallel versions
	Constructing the set of point pair canidates
	Assembling the congruent four point sets

	Aligning the Stanford bunny
	Aligning the chapel data set

	Conclusions

