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Abstract
The interest in 3D point clouds steadily grows. While the semantic segmentation of 2D images
is nowadays a very common and well-researched field, the assignment of semantic labels in 3D
is lagging. This is partly attributable to the fact that prelabeled training data is only rarely
available since not only the training and application of classification methods but also the manual
labeling process are more time-consuming in 3D.

This thesis focuses on the more classical approach of first calculating features and subse-
quently applying a classification algorithm. Existing handcrafted feature definitions are en-
hanced by using multiple selected reductions of the point cloud as approximations. They serve
as input to train well-studied classifiers like random forests and support vector machines. Both
classification methods are compared.

In contrast, deep learning approaches emerged during the last years. Our results are com-
pared to the recently published Kernel Point Convolution method which can be paraphrased
as a convolutional neural network for direct 3D input. A comparison shows that there are
applications for both modern and classical methods.

Additionally, the developed tool Blender2Helios is presented. It enables the smooth conver-
sion of existing 3D scenes to semantically labeled 3D point clouds. We show that this artificial
data is well-suited for training real-world classifiers.



Zusammenfassung
Das Interesse an 3D-Punktwolken wächst stetig. Während die semantische Segmentierung von
2D-Bildern heutzutage ein sehr verbreitetes und gut erforschtes Themengebiet ist, hinkt das
semantische Labeln in 3D hinterher. Dies ist zum Teil darauf zurückzuführen, dass vorgelabelte
Trainingsdaten eher rar verfügbar sind. Grund dafür ist, dass nicht nur das Trainieren und
Anwenden von Klassifikationsmethoden, sondern auch der Prozess des manuellen Labelns in 3D
zeitaufwendiger ist.

Diese Arbeit konzentriert sich auf den eher klassischen Ansatz, zunächst Features zu berech-
nen und anschließend einen Klassifikationsalgorithmus anzuwenden. Bestehende handgefertigte
Merkmalsdefinitionen werden durch die Verwendung mehrerer ausgewählter Reduktionen einer
Punktwolke als Approximationen ergänzt. Sie dienen als Input, um bekannte Klassifikatoren
wie Random Forests und Support Vector Machines zu trainieren. Beide Klassifikationsmethoden
werden verglichen.

Im Gegensatz dazu sind in den letzten Jahren Deep Learning Ansätze entstanden. Unsere
Ergebnisse werden mit der kürzlich publizierten Kernel Point Convolution Methode verglichen,
die als Convolutional Neural Network für direkte 3D-Eingaben beschrieben werden kann. Im
Vergleich zeigt sich, dass es Anwendungsfälle sowohl für die modernen als auch für die klassischen
Verfahren gibt.

Zusätzlich wird das entwickelte Werkzeug Blender2Helios vorgestellt. Es ermöglicht die
reibungslose Umwandlung bestehender 3D-Szenen in semantisch gelabelte 3D-Punktwolken. Wir
zeigen, dass diese künstlichen Daten gut für das Training von Klassifikatoren in der realen Welt
geeignet sind.
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Chapter 1

Introduction

Semantic classification in 3D point clouds means the process of assigning semantic labels to
each 3D point in a cloud. Some major differences to the same task in 2D exist. Besides the
considerably high volume of data, it lacks a fixed grid-structure. This makes it hard to apply
common algorithms for 2D images on point clouds. The variable density of the data is another
difficulty. It highly depends on the distance to the laser scanner and is influenced by occlusions.

Just a few years ago one typical approach for segmenting point clouds was split into two
parts. First, handcrafted local features of each point were calculated. For this, Principal Com-
ponent Analysis was applied on a number of neighbors. Originally, the size of this neighborhood,
respectively the number of neighbors was fixed.[114] In 2014 an improvement with varying neigh-
borhood sizes, called optimal neighborhood size selection was proposed. Up until 2018 various
other improvements were developed and published. For instance, [45, 104] proposed the calcu-
lation of features on many different scales but with a different neighborhood definition. Second,
common classification algorithms were applied on the features. While basically any general
classifier is applicable, random forests showed high accuracies and became the standard.[115]

With the availability of datasets with billions of labeled 3D points like Semantic3D [43] and
capable hardware, deep learning emerged in this field of research. Thus, the manual definition
of features became redundant. Some early approaches projected 3D points on 2D planes to
create artificial images on which existing methods were applied.[15, 64, 102, 103] Meanwhile, a
direct processing of 3D data is done most often. The published solutions reach from superpoint
graphs [63] to RandLA-Net [52] and KPConv [105]. The latter approach, which is very similar to
known convolutional neural networks, is described in more detail in this thesis. As every year new
methods are developed, there is currently no de facto standard. A good evidence about methods
with currently the highest accuracies is provided by various publicly available benchmark tests
like the Semantic3D challenge at http://www.semantic3d.net/view_results.php.

This thesis describes the work of updating the classical approach with handcrafted features
using current research. We propose the calculation of features on selected point cloud reductions
as a high-performance approximation. A random forest and two support vector machines are
used for the later classification. Additionally, the output of KPConv, a proponent of the deep
learning classifiers, is compared to them.

1

http://www.semantic3d.net/view_results.php


2 Chapter 1. Introduction

For representative results, all parameters of the learners are tuned on only one dataset. Their
performance is reviewed on a total of four different datasets. This resembles typical applications
and differentiates our work from others. The used datasets consists of terrestrial (TLS) and
mobile laser scans (MLS) of outdoor scenes.

One set of scans, the Sim2Real dataset, allows the examination of classifiers that were only
trained with simulated data. For this purpose, we implemented Blender2Helios that allows to
create semantically labeled training data of existing 3D scenes.

It has to be noted that our understanding of classification in point clouds is sometimes also
called segmentation of point clouds. Both mean the same. In contrast, some authors use the
term classification of point clouds to denote the task of assigning one label to a whole point
cloud.

This thesis is best viewed in color as it shows multiple point clouds where semantic labels
are indicated by different colors.

1.1 Outline
This thesis is structured as follows.

Chapter 2 contains preliminaries for understanding this work. It transfers basic knowledge
about laser scanning and 3D point clouds as well as common data structures for efficiently
storing and querying them. Additionally, the Principal Component Analysis that is later used
in the calculation of features is introduced. The last section describes the main concepts of the
used classifiers: Random forests, support vector machines, and neural networks.

The rest of this thesis is organized in two parts. Part I on “Tools and Datasets” is split into
three chapters.

In chapter 3 the variety of tools that was used during this research is introduced. This
includes a detailed introduction to the 3D point cloud processing toolkit 3DTK - The 3D Toolkit
and its internal functioning. Furthermore, the machine learning software Weka and its typical
.arff file format is presented. In addition, the 3D suite Blender and the LiDAR operations
simulator Helios for which we implemented an interface are described.

Four different datasets are presented in chapter 4. Besides the small Oakland and Paris-Rue-
Madame MLS datasets, an overview of the much bigger Semantic3D TLS dataset is given. The
point clouds created during the work on this thesis, which we call Sim2Real, are also introduced.

Chapter 5 on Blender2Helios provides information about the developed interface. It describes
the Blender add-on that allows the conversion of existing scenes to Helios compatible .xml and
.obj files for laser scan simulations. Aside from the occurred challenges during implementation,
its usage and pseudocode are shown.

Semantic classification is examined in the second part.
The concept, implementation, and tuning of different classifiers on the Semantic3D dataset

is depicted in the sixth chapter. For the more classical approach the search for an optimal
neighborhood size is discussed. Furthermore, our understanding of local features on multiple
scales as an approximation of bigger neighborhoods in the original data is presented. At the end,
the process of parameter tuning is described for a random forest, two support vector machines,
and one neural network approach.

Semantic Classification in Uncolored 3D Point Clouds
using Multiscale Features
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All classifiers were trained and tested on the different datasets in chapter 7. A comparison
of their results, in terms of accuracies and example images, is shown. While mainly focusing on
the classification decisions, the run time of the different methods is also taken into account.

Conclusions about the applicability of the considered methods are drawn in the last chapter.
Additionally, thoughts about future work are provided.

The appendix contains pseudocode of helper functions of Blender2Helios as well as more detailed
results of the process of parameter tuning and the classifier comparison. References to it are
given in the text.

1.2 Scientific Contribution
The research done for this thesis contributed to different scientific questions and tasks described
in the following paragraphs.

Proposal of Selective Multiscale Feature Calculation In chapter 6 we propose the cal-
culation of features on multiple but selected scales. In comparison to other work like [45], we
exploit an optimal neighborhood definition introduced in [115]. Additionally, the set of used
features reduces the assumptions that were made, like a consistent height of the laser scanner.
The whole code is open source and released with 3DTK - The 3D Toolkit. Calculated features
are stored in a format that easily allows further processing with machine learning software.

Comparison of Classical and Deep Learning Approaches A comparison of the extended
classical approach and KPConv as a representative of the deep learning approaches is done in
chapter 7. Besides the common setup of using random forests with handcrafted features, we
also investigate the applicability of support vector machines for this task. Previous comparisons
like the results in the Semantic3D challenge often lack a common basis as some algorithms use
more data, e.g. color information, than others. Furthermore, since in the last years mainly
deep learning methods were promoted, these comparisons often miss actual input of classical
methods.

Implementation of Semantic Labels in 3DTK During the work on this thesis some
enhancements for the open source software 3DTK were implemented. These include two new
file formats that contain, besides three-dimensional coordinates, semantic class labels. The
graphical user interface of the contained 3D viewer show was expanded by a legend that varies
depending on the number of classes.

Enabling Highly Detailed and Labeled Laser Scans of Existing 3D Scenes With
Blender2Helios an interface between the 3D suite Blender and the scientific LiDAR operations
simulator Helios was created. As our results in chapter 7.3 show, training a classifier on artificial
data also allows high accuracies on real point clouds. We want to encourage everybody who
has access to highly detailed 3D scenes to generate semantically labeled point clouds. Training
classifiers well is only possible with a big amount of high-quality prelabeled data. Due to the
high expenditure, manual annotation is no alternative.

Semantic Classification in Uncolored 3D Point Clouds
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Chapter 2

Preliminaries

2.1 Laser Scanning and Point Clouds

2.1.1 Methods for Measuring Distances with Light

Laser scanners make use of time of flight (ToF) measurements to acquire the ranges to objects
in various directions. The measurement range of a laser scanner is typically between a few
meters up to some hundred meters. While the whole system is slowly rotating, a tilting mirror
allows for fast and exact vertical alignment of the laser beam as shown in figure 2.1. Reflections
from the surface of objects are detected by a build-in receiver. Each single measurement can
be seen as the polar coordinates defined by the alignment of the laser beam at the moment of
this measurement and its calculated distance. A conversion to Cartesian coordinates is done
afterwards. The resulting data is a 3D point cloud with many infinitesimal small and unordered
points sampled from the real environment. Depending on the actual application, some specifics
have to be taken into account. We will discuss some of them in section 2.1.3.[48]

ToF exploits the time light needs to travel. The velocity of light in vacuum, commonly
denoted c and shown in equation 2.1, is constant.

c = 2.99792458 · 108m

s
(2.1)

There are three commonly used methods for ToF [48]:

Direct Time Measurement The laser scanner sends out a light impulse and receives the
reflected signal after time t. The distance d to the object reflecting the signal is then
calculated by d = c·t

2 . The factor 1/2 comes from the fact that the distance between the
scanner and the scanned object needs to be covered twice. Precise time measurement is
the crucial part of this method. For instance, light needs only approximately 1 ns to travel
a distance of 30 cm. Specialized ICs like the Acam TDC-GP2 can measure time in the
scope of 3.5 ns to 1.8µs with a resolution of 65 ps. This corresponds to measurements of
52.5 cm to 270m with an accuracy of about 1 cm.

5
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laser

receiver
object

t

permeable

mirror

Figure 2.1: Layout of a laser scanner. Adapted from [11].

Pulse Integration The pulse integration method exploits image based technology. Similar to
the first method, the scanner sends out a light impulse. At this point an image sensor
starts to integrate the luminance for a fixed period of time. For nearby objects the re-
flected light signal will affect the integration stronger as it impacts the brightness values
sooner/for a longer period of time within the integration window. The output, in form of
a voltage, is increased. Figure 2.2a illustrates this. In practical applications more than
one measurement is done to account for tolerances and ambient light. A first image is
taken without emitting light to have a basis of brightness available. These values are later
subtracted from the measurements taken with emitted light pulses to eliminate all other
light sources than the own emitter.

light pulse

reflection of near object

reflection of far object

near object

far object

integration window

U

t

(a) Principle of pulse integration. Example
for two objects with different distances from
the scanner.

sent signal
received signal

λm

phase shift
ϕ

1

2
π π 3

2
π 0

(b) Illustration of the phase shift between
sent and received signal.

Figure 2.2: Methods for time of flight measurements. Adapted from [11].
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2.1. Laser Scanning and Point Clouds 7

Modulated Light Instead of sending single pulses (discontinuous methods), modulated light
allows for continuous measurements. The setup is very similar to the direct time mea-
surement. Its difference is that instead of measuring the time for reflections to occur, the
phase shift of a continuously emitted sinusoidal signal is identified. Figure 2.2b shows a
very basic implementation of a receiver sampling four times during a full period (0, 1

2π,
π, and 3

2π) resulting in four assessed amplitudes a0, a1, a2, and a3. By means of discrete
Fourier transform the phase shift ϕ is calculated according to equation 2.2.

ϕ = arctan(a0 − a2
a1 − a3

) (2.2)

Given the modulation frequency f and therefore the time of oscillation, one calculates the
distance d to a reflecting object using equation 2.3.

d = c · ϕ
4π · f (2.3)

Due to the fact that the measured phase shift ϕ stays between 0 and 2π, the maximum
measurable distance is limited. Equation 2.4 shows the calculation of the maximum dis-
tance dmax where ambiguities start to occur. λ = c

f denotes the wavelength of the used
laser.

dmax = c

2f = λ

2 (2.4)

Without this additional constraint there is an infinite number, practically only limited by
physical influences, of potentially observed distances as shown in equation 2.5.

dunconstrained = c · ϕ
4π · f + k · c2f , k = 0, 1, 2, 3, ... (2.5)

With typical sensors a resolution of the phase shift of 1◦ is achieved. This results in
inaccuracies in the scope of centimeters given a typical modulation frequency of 20MHz.
Increasing the frequency offers a higher depth resolution while decreasing the maximum
measurement range.

To overcome the range limitation introduced by ambiguities, two different modulation
frequencies (f1, f2) are used. While the first phase ϕ1 is unambiguous over the entire
measurement range providing only a coarse estimation, the second phase ϕ2 allows for
a much finer resolution within the previously determined and for f2 unambiguous range
window.

In modern laser scanning the first and the last approach are used. Due to the discontinuous
measurement in direct time systems and therefore a high ratio of time waiting for reflected
echoes, the effective data rate of these setups is smaller than when using continuous systems.
In some practical applications, like the Riegl VZ-400i laser scanner, it is possible to have two
pulses in the air simultaneously for an increased data rate.[11] Furthermore, a big advantage of
the direct time measurement is its long range, often up to several kilometers. Another possible
feature of direct time systems is their ability to perform full wave analysis. In the next section
this aspect is described in more detail.

Semantic Classification in Uncolored 3D Point Clouds
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8 Chapter 2. Preliminaries

2.1.2 Point Clouds

This section focuses on the math we use throughout this thesis to denote point clouds. Other
aspects are discussed in more detail in the corresponding chapters about laser scanning.

A point cloud P is an unordered set of n ∈ N infinitesimal small 3D points. In contrast
to 2D images they are usually not aligned in a fixed grid structure. A single point pi ∈ P is
given by the column vector pi = [pi,1 pi,2 pi,3]ᵀ. We limit a point to its three coordinates. In
other applications more attributes like color information or a reflectance value might be present.
Equation 2.6 shows our resulting definition of a point cloud.

P = {p1,p2, . . . ,pn} =
{

p1,1

p1,2

p1,3

 ,

p2,1

p2,2

p2,3

 , . . . ,

pn,1

pn,2

pn,3


}

(2.6)

Given a set of classes C = {1, 2, . . . } our later classification task can also be described as
finding a correct mapping cP : P → C.

2.1.3 Specifics and Advanced Features of Laser Scanning

Beam Divergence and Full Wave Analysis

A laser beam is not an infinitely thin line, but a cone. This so-called laser beam divergence results
in the possibility of hitting multiple objects during one single measurement. [35] provides a good
illustration of this, shown here in figure 2.3.

Typical divergence values are smaller than 1mrad. For instance a Riegl VZ-400 laser scanning
device has a divergence of 0.3mrad which results in an increase of 30mm of beam diameter per
100m distance.

The partial reflection of the laser beam results in multiple echoes. Echoes of nearer objects
are received earlier. Their amplitude depends on the share of the laser beam hitting the object.
In figure 2.3 three echoes are returned by different branches of a tree. The last echo comes from
the house.

There are different ways to handle multiple echoes. Usually only one echo, the first, is used
for further processing. Advanced scanners, however, also support full wave analysis where more
than one range per measurement is returned. This is, inter alia, used in airborne laser scanning
where the laser beam is much wider due to the altitude of an airplane. For instance, vegetation
can be removed from scans to reveal the terrain surface. This is done by only keeping the last
echo, which is returned by ground that was hit between trees or other vegetation. The difference
of the first and the last echo allows to infer the height of vegetation within the laser beam cone.
[2, 93] include more details and discussions about related cases of use.

Density

In contrast to 2D images which have a uniform density given by the alignment of pixels along
a fixed grid, point clouds generated by a laser scanner vary in density. The high variation is
introduced by the different distances to objects.

Semantic Classification in Uncolored 3D Point Clouds
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2.1. Laser Scanning and Point Clouds 9

Figure 2.3: Sketch of full wave analysis. Multiple echoes are received by the laser
scanner sending out one laser beam. Three echoes were reflected by the tree while the
last echo comes from the house. Taken from [35].

As a simple example one can think of a sphere with radius r1 around the scanner. This sphere
with a surface area of A1 is sampled with the exact same amount of measurements as a bigger
sphere with radius r2 = 2r1. However, the surface area A2 of the bigger sphere is four times
bigger as shown in equation 2.7. In general, the scan density behaves indirectly proportional to
the square of the range between the object and the laser scanner. Along the horizontal and the
vertical, the point spacing is direct proportional to the reflecting item’s distance.

A2 = 4πr2
2 = 4π(2r1)2 = 4π4r2

1 = 4A1 (2.7)

In the later presented datasets this behavior led to heavily imbalanced point clouds. Laser
scanners are typically mounted on top of some kind of stand or, for instance, on a vehicle. For
both scenarios a stable surface is chosen. This results in man-made ground, like streets, being
very close to the scanner and therefore sampled with high density.

Occlusions and Scan Registration

Occlusions occur when one object overlays other ones. Everybody intuitively knows this from
normal photographs. In laser scanning this effect has a high impact. Depending on the position
of the laser scanner, some objects might be partly or completely hidden behind other items.
This makes scenes that were converted to point clouds by only one laser scan incomplete. Only
the surface pointing towards the scanner is captured. A cube may look like a flat rectangle and
a globe like a hemisphere. There is no information about the space behind the surface that
reflected the laser beam. More points in a cloud are missing due to the fact that laser scanners
usually do not scan 360◦ vertically. A portion underneath and over the scanner is omitted.

Semantic Classification in Uncolored 3D Point Clouds
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10 Chapter 2. Preliminaries

To minimize occlusions, multiple scans are often brought together which is called scan regis-
tration. By varying the position of the laser scanner, the laser hits objects from different angles
and with/without occlusions. When the exact translation and rotation of the scanner between
the scans is known, the measurements can be easily merged into one point cloud. As this is
usually not the case, the scans need to be matched. A very popular algorithm for solving this
problem is the ICP (iterative closest point) algorithm described in [9]. First, different point
clouds are aligned by an initial guess, for instance given through GPS data on a vehicle. Then,
closest points between different scans are iteratively detected and a translation/rotation is ap-
plied to bring those point pairs closer together. With every iteration an error function E(R, t)
is minimized by changing the rotation R and the translation t between the scans. Equation 2.8
shows a simple version of this error function for two point clouds where pi ∈ P1 and qi ∈ P2 de-
note one of n closest point pairs between both scans. Due to the previously discussed occlusions
and therefore different sampled points on objects, the error will never become zero. However,
after execution the scans are well aligned to each other. Regions that were sampled from more
scan positions are denser and surfaces that are at least scanned once in any scan now occur in
the resulting point cloud.

E(R, t) = 1
n

n∑
i=1
||pi − (Rqi + t)||2 (2.8)

When performing the classification task on point clouds, training and testing data should
contain similar generated point clouds. When comparing samples of a car, a single scan only
sees the front, one side, or the back. Depending on the height of the scanner the roof may be
visible or hidden. Matching multiple scans will result in the car being sampled from multiple/all
sides. This will show a more convex object with points on all sides. Training on single scans and
applying the classifier on matched scans and vice versa might drastically decrease classification
performance. The goal is to choose homogeneous data.

2.1.4 Used Hardware: Riegl VZ-400

Figure 2.4: Image of our Riegl
VZ-400 in the parking lot in
Würzburg.

During the work for this thesis laser scans of different scenes were
taken. The results of a classifier trained on only simulated data
but applied on our real world data of a parking lot at the Uni-
versity of Würzburg are presented later in this thesis. Figure 2.4
shows an image taken during a laser survey.

The Riegl VZ-400 we used for this is a high speed 3D ter-
restrial laser scanner. It supports both single and multiple echo
measurements. Good connectivity is provided by various inter-
faces, i.e. LAN, WLAN, USB, an integrated L1 GPS receiver,
and a camera mount to allow the creation of colored 3D point
clouds.

The laser scanner achieves 5mm accuracy with 3mm repeata-
bility and has a maximum measurement range of 600m with the
eye safe near infrared class 1 laser. Up to 120,000 measurements
can be processed per second. Its vertical field of view is 100◦

Semantic Classification in Uncolored 3D Point Clouds
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2.2. Data Structures for Storing 3D Point Clouds 11

while it covers 360◦ horizontally. The angular step width between two consecutive laser shots is
configurable down to 0.0024◦.[91]

For our scans we chose an angular resolution of 0.04◦ both horizontally and vertically. This
results in a point spacing of 7 cm at a range of 100m. A high speed scan, which allows a maximum
measurement distance of 350m for highly reflective objects, takes around three minutes with
these settings. Such scans contain up to 100◦

0.04◦ · 360◦

0.04◦ = 22.5 million points. As in pratical
applications there are often no objects in the sky, typically around 50% of these points are
present.

2.2 Data Structures for Storing 3D Point Clouds
As shown in the last section, our laser scans typically contain over ten million 3D points cap-
tured within a few minutes. Other hardware like the Velodyne HDL-64E is even capable of
executing multiple million range measurements per second.[67] Performing typical operations
like the search for the nearest neighbor of one 3D point in these enormous clouds consumes
much time when all points are stored in an ordinary list. Due to the three dimensions it is also
not possible to just order the points in the cloud for a reasonably better performance.

More advanced data structures like octrees and k-d trees are commonly used to accelerate
similar queries. Not only their runtime complexity but also their memory complexity has to be
taken into account because of the typical size of 3D point clouds.

2.2.1 Octrees

Octrees are a generalization of binary trees and quadtrees, but for three-dimensional data. In
this section we describe their general structure and the implementation used in [36].

Each node of an octree represents a rectangular cuboid in 3D space containing eight child
nodes. Each of the children represents one eighth of the 3D space of the parent. Figure 2.5
illustrates this structure down to a depth of two. Defining the maximal depth of the tree or a
minimal number of points per node stops the tree from splitting too often. Without stopping
rules the tree would grow until only one point per leaf is left, resulting in much overhead. Nodes
describing space without any data points are treated as empty which means that they are not
split anymore. Leaves of the tree contain a list of all 3D points within the volume described by
the cuboid.

Memory Efficiency In the software 3DTK, which is introduced later in section 3.1, octrees
are implemented in a very memory efficient way with the capability to store over 1 billion points
in 8 GB of memory. The creation of an octree in a recursively quicksort fashion can be done in
O(n logn), where n again denotes the number of points to store. Also, the runtime of typical
access, add, and delete operations is in O(logn). Figure 2.6 illustrates one node of an octree.
The largest portion of each node is used by the child pointer which is 6 bytes in size on 64-bit
systems when not using far pointers.[61] It refers to the first child node. All other children are
arranged linearly after this first child in memory. Figure 2.7 shows this in more detail. Two
additional bytes are reserved for information about the children. The valid byte encodes the
information if a specific child is part of the list of children. Thus, not every node needs to have
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12 Chapter 2. Preliminaries

Figure 2.5: Structure of an octree with a fixed maximal depth
of two. Empty voxels, colored in white, are not split anymore.
The gray leaf voxels in the most detailed illustration of the cube
link to a list of points within this volume. Taken from [36].

eight children but empty voxels can be skipped. The fact whether a child is a leaf containing
a list of 3D points or a parent node for other children is embodied in the eight leaf bits. As
only valid children can be leaves, some bit combinations in the valid/leaf bytes can never occur.
Therefore a compression to 13 instead of 16 bit is possible. Due to the small saving and concerns
about the runtime efficiency this compression is not done. For octrees with constant depth the
leaf byte is obsolete even resulting in only 7 bytes of memory per node.[36]

As previously described, each leaf holds a pointer to an array containing all 3D points that
lie within its defined 3D volume. The first element encodes the number of points in this voxel.
Clearly, the required memory for a whole leaf – including the 3D points – depends on the
number of points and the amount and accuracy of attributes that are stored per point. Despite
the three coordinates, additional information like color or reflectance values may be part of the
array. Further details are skipped here. Interested readers may consult the original paper [36]
for details.

Octree based reduction of 3D point clouds

3DTK implements different reduction algorithms for 3D point clouds. Based on the storage of
data in octrees it seems reasonable to prune the tree at a predefined depth. In 3DTK this is
typically done by providing a threshold as the minimal side length for the cuboids. Only a small

Figure 2.6: 3DTK’s memory efficient encoding of
an octree node. The child pointer is 48 bits on 64-bit
systems. Valid and leaf indicators are 8 bits each.
A node therefore only contains 8 bytes of memory.
Taken from [36].
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Figure 2.7: Illustration of an octree. The node in the upper left has three children,
indicated by the three active valid bits. The one bit in the leaf section indicates that one
of them, the second one, is a leaf node. Instead of storing eight child nodes, empty nodes
are suppressed in this implementation resulting in a smaller memory footprint. The leaf
node contains a pointer to an array, given by the number of points, here 1, and the points
themselves. Taken from [36].

number of up to i 3D points per every new leaf is kept. This results in an upper boundary for
the point density. Sparse regions are not affected as the number of points per node is already
smaller or equal to i. A special case is i = 1 where each leaf only keeps one single 3D point.
This point is either picked randomly from the subordinated points or the center of the cuboid
is used as a representation. In our work we only use the reduction with i = 1 and sample this
point randomly.

2.2.2 K-D Trees

K-d trees, where k denotes the dimension of the search space, were first introduced in [7].
Like octrees, k-d trees split multidimensional space and enable for efficient queries. However,
discrimination is done based on only one attribute at a time resulting in a binary search tree.
Regions without any points are also exploited for optimization.

Figure 2.8 illustrates the basic implementation of an optimal k-d tree for a number of n
two-dimensional points. Each point pi is therefore given by pi = [pi,1 pi,2]ᵀ for 1 ≤ i ≤ n. On
the root and all even levels, splitting is done based on the values of pi,1. In contrast, on all
other levels, split decisions are made based on pi,2. Each node in the search tree contains one

Figure 2.8: Example of an optimal k-d tree. On each level the median of the current
split axis was used to divide the data. Taken from [11].
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14 Chapter 2. Preliminaries

point pi, whereas all smaller points can be found in the left subtree and all larger points in
the right subtree. Smaller and larger here means a lower or higher value respectively in just
the corresponding split attribute. One can think of a hyperplane, perpendicular to the split
axis, dividing the space into two subspaces at each node. An optimal k-d tree is a balanced
one, i.e. the heights of both subtrees differ by at most one and they are recursively balanced.
So each node can be reached from the root by a path of length blog2 nc at most. To create an
optimal k-d tree, each split is done at the median point with respect to the split attribute on
this level and only the remaining points. In the example shown in figure 2.8, the first split was
performed at point A which is the median when projecting all points on the horizontal axis.
Next, B and C are the medians in the resulting left and right subtree, respectively, splitting
the remaining points by their second attribute value. It depends on the application if spending
much time for creating an optimal k-d tree is favored over creating a tree quickly and tolerating
higher run times for search queries. A significant speedup can also be achieved by storing the
bounding volume of each subtree. Empty spaces can therefore be excluded in search queries. In
the basic implementation each node limits the space in just one direction. In 2D space four of
these constraints are needed to fully define a bounding box.[11]

The implementation of k-d trees from 3DTK is used throughout this thesis. It has shown to
perform well for 3D points and nearest neighbor search. In this implementation all points are
stored within leaf nodes. Intermediary tree nodes are used to store the split axis, pointers to
child nodes, and the center, the side lengths, and the radius of the bounding box surrounding
the contained points. During the creation, which is done recursively, the axis with the largest
extent is chosen as the split axis. If the region of one recursion step consists of only a maximum
of 10 points, a leaf is created. The up to 10 points are stored in a list. This results in much less
overhead for the data structure in comparison to splitting until only one point is left per leaf
node. Algorithm 1 shows the creation of a k-d tree in pseudocode.[11]

2.3 Principal Component Analysis

Principal Component Analysis (PCA) forms the basis for multivariate data analysis. It is used
in face recognition, image compression, and is a common technique for finding general patterns
in high-dimensional data.[100] Its first occurrence was in [82] back in 1901 in biological context.
Later, much work was done in the field of probability theory [49, 55, 69] and image processing [78,
108].[41]

PCA is often used to create an approximation of high-dimensional data while keeping the
introduced error minimal. To achieve this, a transformation into a vector subspace is performed.
The eigenspace of the data’s covariance matrix is suited for this, which is spanned by the
eigenvectors ei. The corresponding eigenvalues λi can be used to determine the variance of the
data in the directions of the new vector space. The projection with the greatest variance builds
the first/main axis, called first principal component. Smaller variances build other principal
components in descending order. So cutting off eigenvectors with small eigenvalues minimizes
the quadratic error while simplifying the data.[41]
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Algorithm 1 3DTK’s implementation to create a k-d tree. Adapted from [11].
Input: Point cloud P
Output: K-d tree with all points of P

1: function KDtree(P)
2: if |P | ≤ 10 then // Create leaf node
3: this.points ← P
4: this.nrPts ← |P |
5: return this
6: else // Inner node
7: this.nrPts ← 0
8: Determine parameters this.center , .d1, .d2, .d3, .r2 of bounding box
9: this.splitAxis ← argmaxi∈{1,2,3}(this.di)

10: this.splitValue ← centersplitAxis
11: left ← empty point cloud
12: right ← empty point cloud
13: for all pi ∈ P do
14: if pi,splitAxis < this.splitValue then
15: Add pi to left
16: else
17: Add pi to right
18: end if
19: end for
20: this.childLeft ← KDtree(left)
21: this.childRight ← KDtree(right)
22: return this
23: end if
24: end function

p∗,1

p∗,2

e1

e2

e1

Figure 2.9: One-dimensional approximation (right) of two-dimensional data (left) by
PCA. The length of the eigenvectors ei corresponds to their eigenvalue λi. Adapted
from [41].
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2.3.1 Visual Representation of PCA

Figure 2.9 sketches the reduction of 2D data, that is indicated as a gray ellipse, into one-
dimensional values. The lengths of the drawn eigenvectors e1 and e2 depict the corresponding
eigenvalues. By removing the dimension e2, the data is approximated with only one dimension.
The number of kept dimensions varies depending on the application.

In our work we make use of PCA without reducing dimensions. Figure 2.10 shows the same
example again but without discarding the second axis. Without loss of generality we let the
major axis point to the right and the minor axis point upwards. Once the data is aligned in
this way, one can compare different point distributions more easily independent of their global
alignment.

Higher-order features are derived by some simple calculations. When the data was aligned
along a straight line, λ1

λ2
is very big. If we had a more circular distribution instead, both

eigenvalues would have been about the same values resulting in λ1
λ2
≈ 1.

In 3D point cloud processing this is heavily used to calculate local features. For instance
one can apply PCA on a number of 100 neighboring 3D points and therefore gather information
about their local structure. Despite these only-local features, other properties can also be taken
into account. For instance, the previously defined eigenvalue-based features cannot distinguish
horizontal and vertical point alignments. But this is needed to differentiate for example between
poles and overhead power lines. One possible additional feature can therefore be the global
alignment of the first principal component e1. When the data is distributed vertically, e1 will
be approximately parallel to the global vertical axis. A detailed description of the features we
used can be found in chapter 6.

2.3.2 Calculations in PCA

Like previously shown, PCA results in a new orthogonal coordinate frame built by the eigen-
vectors ei. We let Q = {q1, q2, . . . , qk} ⊂ P denote neighbors of a point we calculate features
for. To ensure that the eigenvector with the highest eigenvalue really represents the dimension
with the highest data variance, the data must be distributed around the center of the global co-

p∗,1

p∗,2

e1

e2

e1

e2

p∗,1

p∗,2

e1

e2

Figure 2.10: PCA without reduction of dimensions for calculating features. Both data distributions
(left and right) reveal the same features with respect to their eigenvectors ei and eigenvalues λi. The
length of the eigenvectors corresponds to their eigenvalue.
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ordinate frame. To ensure this, the mean q̄ = [q̄1 q̄2 ... q̄d]ᵀ is subtracted from every neighbor.
This results in the (d× n) matrix Q̃ according to equations 2.9 and 2.10. d denotes the points’
dimensions to enable general equations.

q̄ =
∑k
i=1 qi
k

(2.9)

Q̃ =
[
q1 − q̄ q2 − q̄ · · · qn − q̄

]
=


q1,1 − q̄1 q2,1 − q̄1 · · · qn,1 − q̄1

q1,2 − q̄2 q2,2 − q̄2 · · · qn,2 − q̄2
...

... . . . ...
q1,d − q̄d q2,d − q̄d · · · qn,d − q̄d

 (2.10)

Afterwards the eigenvectors of the data’s covariance matrix V , which is determined by the
calculation shown in equation 2.11, needs to be calculated. V is a symmetrical (d× d) matrix.

V = Q̃Q̃
ᵀ (2.11)

The relationship between the eigenvalues λi with their eigenvectors ei is given by the two
statements shown in equation 2.12.[57]

λiei = V ei

(V − λiI)ei = 0
(2.12)

Solving the linear system of equations is done by determining the characteristic polynomial PV
(equation 2.13) and setting it to zero. The zeros λi correspond to the eigenvalues of V with
eigenvectors ei.

PV = det(V − λI) =

∣∣∣∣∣∣∣∣∣∣∣∣

v11 − λ v12 · · · v1d

v21 v22 − λ · · ·
...

...
... . . . ...

vd1 · · · · · · vdd − λ

∣∣∣∣∣∣∣∣∣∣∣∣
(2.13)

For a high number of dimension d, instead of solving the polynomial of degree d to find
zeros, Singular Value Decomposition (SVD) [84, 113] is often used. SVD splits the covariance
matrix into three matrices EΣEᵀ. E here contains the eigenvectors of the covariance matrix
and Σ = diag(

√
λ1,
√
λ2, . . . ,

√
λd). The singular values are the square root of the searched

eigenvalues λi of V . The advantage of using SVD is that there is no need to calculate V
explicitly to find eigenvalues and eigenvectors by its characteristic polynomial.[41]
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2.4 Classification

2.4.1 Random Forests

Random forest (RF) classification is an ensemble method that constructs a multitude of different
random trees during training. It can be seen as a special form of bagging of decisions trees.

Decision Trees

Table 2.1: Example data for building a decision tree. Possible classes are pole/railing, facade, and
ground

Feature f1 Feature f2

Nr. ( λ1
λ2+λ3

) (e1 ≈ horizontal) Class
1 high yes pole/railing
2 high no pole/railing
3 low yes facade
4 low no ground

To be able to fully motivate RFs, we first have to introduce decision trees. Table 2.1 shows
a small sample of training data with four instances. Each line corresponds to a 3D point which
belongs to one of the classes pole/railing, facade, or ground. The two features shown in the table
are very similar to the ones we previously described. We denote them as f1 and f2. f1 takes
the distribution in the three principal axes resulting from the performed PCA into account. f2
describes the alignment of the major axis in the global coordinate frame.

For this small dataset classification rules can easily be determined: Poles and railings have
a high distribution spread along only one axis. Points belonging to facades or ground are likely
to have around the same distribution along their two main axes, resulting in a low value for the
first feature. To be able to distinguish further between facade and ground points, one has to
look at the second feature, the alignment within the global coordinate frame. The first principal

f1

pole/railing

high

f2

facade

yes

ground

no

low

Figure 2.11: Decision tree to distinguish between the classes pole/railing, facade, and
ground. The input contains two features (f1 and f2). Underlined text indicates a leaf
node that returns a class prediction. Refer to table 2.1 for the underlying training data.
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axis is approximately horizontal only for the class facade, not for ground points. We simplified
this example by introducing only nominal/binary values. Later, numeric values are used.

A decision tree, as shown in figure 2.11, is typically automatically generated. At each level it
has to be decided which feature is used for splitting. Instead of testing all possible trees, different
algorithms were developed to find a good tree in less computing time. In Weka the extension
C4.5 of the standard ID3 algorithm is implemented. The implementation is also called J48. It
allows to also handle numeric and weighted attributes as well as missing values. For reasons of
clarity we only introduce the underlying base algorithm here.

The ID3 algorithm does a greedy search through possible tree branches without backtrack-
ing [89]. At each level the locally best split is performed. In each of the resulting subtrees new
split decisions are done iteratively. Only the subset of training data that fits the current position
in the tree is used for further decisions.

H (S) = −
∑
c∈C

pS(c) log2 pS(c) (2.14)

Typically, information gain is used as a metric to determine which attribute is used for
the next split. To calculate information gain, Shannon entropy first needs to be defined. This
definition is shown in equation 2.14. S denotes the set of current training instances at this split
node and C the set of classes in S. Furthermore pS(c) describes the proportion of elements
belonging to a class c ∈ C in the set S.

Gain(S, fi) = H(S)−
∑

v is a value of fi

pS(fi = v)H(Sfi=v) (2.15)

Now information gain can be defined as shown in equation 2.15. fi, i ∈ 1, 2, . . . , d represents one
possible split attribute the information gain is calculated for. Sfi=v ⊂ S denotes the subset of
elements for which fi = v holds true. The according probability of an element to belong to this
subset is denoted as pS(fi = v) = |Sfi=v |

|S| .
At every split, the information gain is maximized by first calculating Gain(S, fi) for all

possible features fi. Then the attribute with the highest information gain is picked. Respectively,
one can say (see equation 2.15) that the entropy within the resulting subtrees is minimized. Each
subtree’s entropy is weighted by it’s size defined by the number of supporting training samples.
This metric homogenizes the subsets of data with each split.[116]

Algorithm 2 shows all steps of the ID3 algorithm to gain a decision tree from a given dataset
S.[50] In our example, presented in table 2.1, we start with all training data S and R = {f1, f2}.
As we have three different classes present in S and there are still remaining split attributes
(|R| > 0), we can search for the best split attribute. For this we have to calculate Gain(S, f1)
and Gain(S, f2) as shown in equation 2.16 et seqq. H([h1, h2, ...]) denotes the entropy of a
distribution where the first class appears h1 times, the second one h2 times, et cetera. Therefore
it is pS(ci) = hi∑

j
hj
.
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Algorithm 2 ID3 algorithm to create decision trees.
Input: S: Set of training data, R: Set of possible split-attributes f1, f2, . . . , fd (class excluded)
Output: Decision tree

1: if |S| = 0 then // Training set empty.
2: return Error node
3: end if
4: if ∀s ∈ S belong to same class c then // We do not need further splits.
5: return Leaf node with result c
6: end if
7: if |R| = 0 then // No attributes for splitting left. We have to predict a class now.
8: return Leaf node with most common class c in S
9: end if

10: fbest ← feature fi ∈ R with maximum Gain(S, fi)
11: R← R\{fbest}
12: {Sfbest=vi

, i ∈ {1, 2, ...,m}} ← m partitions of S with Sfbest=vi
= {s ∈ S|s has attribute value

fbest = vi}
13: Iteratively run algorithm with training data Sfbest=vi

and new, smaller set of possible split-
attributes R.

14: return Decision node with connection to the m subtrees that we created iteratively

H(S) = −
∑
c∈C

pS(c) log2 pS(c)

= −[pS(pole/railing) log2 pS(pole/railing) + pS(facade) log2 pS(facade)
+ pS(ground) log2 pS(ground)] (2.16)

= −[2/4 log2 2/4 + 1/4 log2 1/4 + 1/4 log2 1/4]
= −[0.5 · (−1) + 0.25 · (−2) + 0.25 · (−2)] = 1.5

Gain(S, f1) = H(S)−
∑

v∈{high,low}
pS(f1 = v)H(Sf1=v)

= H(S)− [(pS(f1 = high)H(Sf1=high))
+ (pS(f1 = low)H(Sf1=low))] (2.17)

= 1.5− [(1/2H([2])) + (1/2H([1, 1]))]
= 1.5− [(1/2 · 0) + (1/2 · 1)] = 1.5− 0.5 = 1

Gain(S, f2) = H(S)−
∑

v∈{yes,no}
pS(f2 = v)H(Sf2=v)

= H(S)− [(pS(f2 = yes)H(Sf2=yes))
+ (pS(f2 = no)H(Sf2=no))] (2.18)

= 1.5− [(1/2H([1, 1])) + (1/2H([1, 1]))]
= 1.5− [(1/2 · 1) + (1/2 · 1)] = 1.5− 1 = 0.5
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As it holds Gain(S, f1) > Gain(S, f2), the first split attribute is chosen to be f1.
On the second level, two subtrees have to be created. In the left subtree (see figure 2.11)

that handles all instances where f1 = high, all points belong to the class pole/railing. Therefore
no further splitting is needed. A leaf node predicting this class is created.

On the other side, where f1 = low more than one class is present. Normally the best split
attribute is chosen now by calculating the information gain for all possible splits. In this example
f2 with an information gain as shown in equation 2.19 is the only choice for further splitting. A
new split node is created.

On the third level no remaining split attributes are available, so leaf nodes are created. The
tree fits the given training data perfectly.

Gain(Sf1=low , f2) = H(Sf1=low)−
∑

v∈{yes,no}
pSf1=low (f2 = v)H(Sf1=low,f2=v)

= −(1/2 log2 1/2 + 1/2 log2 1/2)− (1/2H([1]) + 1/2H([1]))
= 1− [(1/2 · 0) + (1/2 · 0)]
= 1− 0 = 1

(2.19)

RFs in Contrast to Decision Trees

As mentioned before, random forests are a special form of bagging of decisions trees. During
training, a single decision tree is created in each iteration. We will use the definition of [18] for
our work with RFs as it is very common and implemented in Weka.

Bagging, which means bootstrap aggregating, is used to improve accuracy and stability of
classification and regression algorithms. Multiple training sets are sampled from the whole set
of training data. They all have the size of the original training set. By sampling uniformly with
replacement, 1 − 1

e ≈ 63.2% of each subset are unique examples while the rest are duplicates.
Each set is then used to train one model. At the end, the output of all models is averaged
(regression) or used for voting (classification).[17]

When thinking about the previously described ID3 algorithm one might wonder how multiple
decision trees, trained on different training subsets, would look like. The probability of building
the same tree or very similar ones again and again is very high as all the uniformly sampled sets
present the original data distribution. The specialty of random forests compared to just bagging
of decision trees is that at every level of the tree, only a subset of all attributes is taken into
account for splitting. To allow the algorithm to create more varying trees, typically only d

√
de

or blog2 (d) + 1c (Weka) of all d features are taken into account when performing split decisions.

Parameters in our RF Implementation

In this section we describe the two parameters that were most important to us when using
random forests. Interested readers may also consult [97] which describes an early study on the
effect of parameter selection.

The number of trees in a forest, is a main parameter when constructing a RF. It has to
be carefully chosen by the user as it strongly influences the performance. Speaking about
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generalization error, [18] provides a proof for its convergence and the existence of an upper
bound for a growing number of trees. However, the question if it is feasible to train as many trees
as computationally possible is discussed for a long time. Other work showed, that increasing
the number of learners not necessarily increases the overall performance but may impact it
negatively. [40] illustrates this in a simple example of bagging. [86] has shown in a benchmark
study on over 300 datasets that the first 100 trees in a forest achieve the highest performance
improvement. In [1] different random forest implementations were tested on five datasets. The
average classification accuracy in all their tests was within a one percent range when changing
the parameter for the number of trees from 100 to 2,000. Meanwhile, using 100 trees has become
a default setting for many random forest implementations. To be comparable to other work, we
stick to this specification in most of our experiments.

Another important parameter is the tree depth. It limits the length of a path from the
root to all leaf nodes. A high depth results in a big number of splits in each tree. Each tree
will start to overfit on the training data. Small depths in contrast will lead to underfitting.
Generally each tree should be able to predict all classes of a data set which gives a constraint of
dt ≥ dlog2 |C|e − 1 for a number of |C| classes. Often this parameter is optimized together with
the number of trees in a grid search.

Performance Evaluation Strategies

In [85] two typical evaluation strategies for random forests are summarized.
The first, k-fold cross validation, is very typical for many learning algorithms in machine

learning. k, which is often chosen between 2 and 10, is the number of folds the training data
is randomly split into. Validation is done by learning k classifiers, here random forests, on
k− 1 folds each. Each learner ignores an other fraction of the training data that is then used to
evaluate this classifier. Averaging the results provides a good estimation of the later performance
on other unseen data.[98]

When using random forests or other bagging techniques, out-of-bag observations are another
strategy to evaluate the training. For this, only a randomly chosen part of the training data
is used for learning each single model, here random tree, in the ensemble. Afterwards all the
training examples are classified by only the classifiers that did not use this example for training.

However, these strategies did not seem very suited for our application. In our approach we
calculate features for optimal local neighborhoods. In the preferred case this neighborhood will
contain roughly the same points for many neighboring 3D points representing the same object.
This results in nearly the same feature values for all of these points whereas other instances of
similar objects will result in diverse values. For instance, the features of two different cars, both
in one scan of a parking lot, might be very different due to various factors. They are influenced
by the distance and angle between the laser scanner and the car. Also other objects might
occlude parts of one car as discussed before.

For these reasons and because these methods need a higher computation time, we decided
to use the classical hold-out strategy where the dataset is split into training, validation, and
test data. Between these sets all scans should be taken at different scenes. Where this was not
feasible, at least very differing scanner positions were preferred.
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Handling of Highly Imbalanced Data

The data that is used to train the random forests later is highly imbalanced. Tables 4.2 and 4.4
show factors of 100 and 1,000 respectively between different classes – even after preprocessing
and deletion of very small classes. This is caused by the natural structure of the scenes. While
ground and facades are very dominant in urban scenes, motorcycles, bushes, or trash cans are
seen less often. Even if many instances of these infrequent objects are scanned, their small
footprint results in a discrimination of their share in the 3D point cloud.

Learning a RF directly on this imbalanced data results in a classifier that has a bias towards
these predominant classes.[22] For instance, a classifier only correctly predicting facade and
ground on the Paris-rue-Madame dataset (see table 4.4) is able to achieve approximately 90%
accuracy without ever predicting another class. Of course this behavior is undesirable even if
the overall accuracy leads to believe the learner successfully trained.

A general approach to solve this problem is sub-sampling. Two variants are very common.
Up-sampling means that the training data for minority classes is extrapolated. Usually this is
done by sampling each class equally often, nmax times, where nmax is the size of the dominating
class. On the other hand, there is down-sampling. Each class is only sampled nmin times where
nmin is the number of training examples belonging to the smallest class. A big number of
instances of the dominant classes are skipped during training. Further research with imbalanced
data and about the fact that down-sampling is often preferred over up-sampling are found
in [33, 59, 68].

In this thesis we stick to that recommendation for two more application dependent reasons.
First, many data points of the big classes are redundant. Neighboring points of a class, for
instance man-made ground, will result in nearly the same features. Throwing away some of this
data is expected not to hurt the classification performance too much. Second, up-sampling small
classes results in over-fitting on specific instances of objects. While traffic signs can look very
different, the classifier might only see a small subset of possible signs. Showing this training
examples again and again will lead to over-fitting on these instances. We favor to learn a classifier
that will also notice other unseen traffic signs.

Influence of Class Imbalances During Evaluation To be comparable, we decided to
mainly use the four common measures accuracy, precision, recall, and F1 score as shown in
equation 2.20 et seqq. However, since we publish high-detailed results, many other measures
can be derived by the reader.

Accuracy = TP + TN

TP + TN + FP + FN
(2.20)

Precision = TP

TP + FP
(2.21)

Recall = TP

TP + FN
(2.22)

F1 = 2 Precision · Recall
Precision + Recall (2.23)

Figure 2.12 illustrates the division of data in false negatives (FN), true negatives (TN), true
positives (TP), and false positives (FP).
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false negatives true negatives

true
positives

false
positives

TP

FN

FP

TN

Figure 2.12: Visualization of TP, FP, TN, and FN for balanced (left) and imbalanced (right) data. Left:
All gray, filled circles belong to one specific class to predict. The classifier’s positive class predictions
are indicated by the big circle in the middle. Right: Impact of class imbalances. While the relative
classification performance within the class inliers (TP and FN) and outliers (TN and FP) did not change,
a comparison between them, for instance TP and FP, is biased. Adapted from [112].

When comparing our results on highly imbalanced datasets the following has to be kept in mind.

Precision tends be low for small classes As the number of class outliers is high, the prob-
abilty of classifying an outlier wrongly (FP) is also high. Since additionally the number of
true positives (TP) is low, this leads to a low precision for small classes.

Precision tends to be high for dominant classes Due to the fact that the number of class
inliers is higher than the number of outliers (compare to figure 2.12), true positives might
also dominate false positives. This results in a high precision value.

Recall gives a better understanding As recall only focuses on true positives and false neg-
atives, class imbalances have no effect in the evaluation. Therefore this metric is more
meaningful in our context.

The F1 measure is a specialization (β = 1) of the more general Fβ measure. It is characterized
by the harmonic mean of precision and recall. Equations 2.23 and 2.24 depict these measures.[23]

Fβ = (β2 + 1.0) · Precision · Recall
β2 · Precision + Recall (0 ≤ β ≤ +∞) (2.24)

Of course many other evaluation metrics are imaginable. There are cases of use for all of
them and it depends on the exact application and importance of wrong classifications per class
which one to pick. We stick to the recommendation of [60] using precision and recall and also
print confusion matrices for some of our experiments in the appendix to allow readers to calculate
other metrics than the ones used in our comparison.
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2.4.2 Support Vector Machines

Support vector machines (SVMs) [110] are another popular classification technique. Their
concept was introduced by Vladimir Vapnik in 1979 and later heavily improved by Bernhard
Schölkopf [96]. In the simplest form, a SVM perfectly separates positive and negative exam-
ples by a hyperplane. For d-dimensional data this separating hyperplane is given by (d − 1)-
dimensions. This plane is chosen in a way that the margin between both classes is maximized.
A small number of examples closest to the plane defines it. They are called support vectors.
Figure 2.13 shows this on two-dimensional example data.

The output oi of such a linear SVM can be computed as shown in equation 2.25, were ω
is the normal vector to the splitting hyperplane and xi = [xi,1 xi,2 . . . xi,d]ᵀ, i ∈ {1, . . . , n}
denotes the input vectors. A displacement of the hyperplane is done by using the bias b ∈ R.

oi = ω · xi + b (2.25)

The hyperplane itself is therefore given by o = 0 while the closest points lie on the planes
with o = ±1. The resulting margin m is given by equation 2.26.

m = 1
||ω||

(2.26)

A SVM, however, finds the optimal plane with the maximum margin. The corresponding
optimization problem is shown in equation 2.27. ti ∈ {1,−1}, i ∈ {1, ..., n} denotes the cor-
responding target output. Multi-class classification can be done with multiple hyperplanes by
following a one-vs-one or one-vs-rest approach. For this thesis we will not dive deeper into this.

min
ω∈Rn,b∈R

1
2 ||ω||

2

subject to ti(ω · xi + b) ≥ 1, i ∈ {1, ..., n}
(2.27)

In 1995, a modification was introduced that allowed SVMs to also work with not linearly
separable classes.[26] Wrong predictions are allowed but penalized. This led to equation 2.28
with slack variables ζi that permit margin failure and C as a penalty parameter for the error
term to regulate the trade-off between a wide margin and a small number of margin failures.

min
ω∈Rn,b∈R,ζi∈R+

1
2 ||ω||

2 + C
n∑
i=1

ζi

subject to ti(ωᵀxi + b) ≥ 1− ζi, i ∈ {1, ..., n}
ζi ≥ 0, i ∈ 1, ..., n

(2.28)

Typically, this optimization is solved using the dual, Lagrangian, form. Additionally, a
kernel function K is often used. This function maps non-linear separable input data into a
higher dimensional space where a hyperplane can be found to separate the samples. This allows
the SVM to not only split linearly.

Altogether this leads to an output of the SVM as shown in equation 2.29, and the optimiza-
tion problem shown in equation 2.30 with Lagrange multipliers α.[83]

o =
n∑
j=1

tjajK(xj ,x) + b (2.29)
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x∗,2

x∗,1

ω
· x

+
b =

0
ω
· x

+
b =

1

ω
· x

+
b =
−1

margin 2m
=

2||ω||

Figure 2.13: Hyperplane with maximized margin found by a
SVM. Suppport vectors are marked in red.

min
α

Ψ(α) = min
α

1
2

n∑
i=1

n∑
j=1

titjK(xi,xj)αiαj −
n∑
i=1

αi

subject to 0 ≤ αi ≤ C,∀i
n∑
i=1

tiαi = 0

(2.30)

Typical kernel functions, with γ, r, and d as kernel parameters, are:

linear: K(xi,xj) = xi
ᵀxj

polynomial: K(xi,xj) = (γxiᵀxj + r)d

radial basis function (RBF): K(xi,xj) = exp(−γ ||xi − xj ||2)

sigmoid: K(xi,xj) = tanh(γxiᵀxj + r)

Learning of a SVM is nowadays often done by the Sequential Minimal Optimization (SMO)
algorithm. It splits the large quadratic programming optimization problem into small subprob-
lems. The memory amount required for SMO is linear in the size of the training set, while
its runtime is between linear and quadratic.[83] We will skip more details here. Readers may
consult [83] for more information about SVMs and the SMO algorithm. [14, 26] also provide
more information about SVMs and especially the here described C-SVCs. An adaption, called
SVR, can also be used for regression tasks.

Semantic Classification in Uncolored 3D Point Clouds
using Multiscale Features



2.4. Classification 27

2.4.3 Artificial Neural Networks

Input
layer

Hidden
layer 1

Hidden
layer 2

Output
layer

xi,1

h1,1

xi,2

h2,1

xi,3 h1,2 o

h2,1

xi,4

h1,3

xi,5

w1→1,1

w2→1,1

w3→1,1

w5→1,1

w4→1,1

Figure 2.14: Example of a feed-forward multilayer perceptron containing two hidden
layers. The weights that are used to calculate the value of h1,1 given the input xi are
highlighted.

Artifical neural networks (ANNs) are a method in machine learning that is inspired by biological
neural networks. They are successfully applied in many large real world problem areas like
natural language processing [25], image classification [24, 58], human action recognition [53],
and physics [74]. A general network of connected nodes, also called artificial neurons, is trained.
In a classification task, the network learns complex relations by just analyzing labeled training
examples – specific handcrafted features are not required as an intermediate step.

The most-known and still easy to understand neural network architecture is the feed-forward
multilayer perceptron. It consists of one input layer, a number of hidden layers, and one output
layer. Each vertical layer of neurons is fully connected with the adjacent layer. The vertices in
the graph form an acyclic graph. An example with two hidden layers is depicted in figure 2.14.

The computation of a neuron’s output is done by summing up the weighted values of the
preceding neurons. The weight of a connection between node i and node j is given by wi→j .
Also, a bias term bj is added to the sum. Nonlinearity of the system is achieved by an additional
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activation function σ. For instance, the output of the neuron h1,1 in the figure is calculated as
shown in equation 2.31 with xi = [xi,1 xi,2 . . . xi,5]ᵀ denoting a five-dimensional input.

h1,1 = σ(
5∑
i=1

(wi→1,1 · xi) + b1,1) (2.31)

The choice of an activation function σ depends on the application. Very popular ones are,
for instance, the ReLU (equation 2.32) and the sigmoid function (equation 2.33).

ReLU (x) =
{

0 x ≤ 0
x else

(2.32)

sig(x) = 1
1 + e−x

(2.33)

Given enough artificial neurons, a feed-forward multilayer neural network can represent any
function. When used in a classification task, the output layer usually consists of multiple neurons
o1, o2, . . . , o|C| for a number of |C| classes. By applying the softmax function shown in equation
2.34 on all of these neurons, the probabilities of the input belonging to each of the classes is
calculated. Usually, the one with the highest probability is picked as the predicted class.

softmax(o)i = eoi∑|C|
j=1 e

oj

(2.34)

Training a Neural Network At the beginning, all weights and biases are randomly initial-
ized. The network will therefore often output the wrong value/class for an input. To correct this,
a high number of training examples is needed and the so-called backpropagation algorithm [47]
is applied. The training process iterates two steps.

First, a forward pass is performed. The network calculates an output with its current weights
for given input data. The error is defined by a loss function describing the difference between
the target output and the actual output.

Second, the error is backpropagated to all the previous nodes in the network. Calculating
the derivatives with respect to all the weight and bias parameters allows to reduce the error by
following its negative gradient. By repeating both steps, the error is minimized step-by-step.
A user-defined learning rate determines the magnitude of changes in the network and therefore
the time needed until its convergence to a state with local minimal error.

In reality, ANNs are often huge. For instance, networks used for the classification of 2D
images often contain over a dozen layers with multiple thousand neurons each which all need to
be trained. While in the recent years much work was done to be able to describe the internally
learned structure of neural networks [75], they are still considered as black boxes.[81]
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Figure 2.15: Structure of a convolutional neural network (CNN). Adapted from [81].
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Figure 2.16: Illustration of a convolution layer. Adapted from [81].

Convolutional Neural Networks Convolutional neural networks (CNNs) are one major
architecture of deep networks. As KPConv, the later applied deep learning approach, heavily
depends on them, they are introduced here.

The goal of CNNs is to learn higher-order features of the data via convolutions. Often, they
are applied for object recognition in images as they achieve very high accuracies in this task.
They are capable of identifying faces, individuals, street signs, and many other aspects of visual
data. Inspired by the visual cortex, CNNs exploit the spatial arrangement of input data. The
perception in small subregions is tiled together to cover the entire visual field.

A CNN typically consists of an input layer – taking a two-dimensional input image – repeat-
edly followed by convolution and pooling layers. These layers are used to extract higher order
features that are then fed into multiple fully connected layers for classification. This common
structure is depicted in figure 2.15.

Every pooling layer heavily reduces the data’s complexity. Most of the time max-pooling
with a kernel size of 2× 2 is done. This means that a sliding window with a height and a width
of two pixels is moved over the data with a stride length of two and only the maximum of the
four seen values is kept.

Semantic Classification in Uncolored 3D Point Clouds
using Multiscale Features



30 Chapter 2. Preliminaries

The convolution layers, however, detect local patterns. This mathematical operation de-
scribes a rule for how to merge two sets of information. A kernel, for instance with a size of 3×3
pixels, is slid over the data. Usually a stride of one pixel is chosen, but other values are possible.
Figure 2.16 depicts an example for a monochrome image with binary pixel values. The kernel
was already slid over the first row of data. At its current position the calculated convolution
feature is 4. It is the sum of the input data weighted by the corresponding kernel values. The
exact calculation is also shown in the figure. A more mathematical definition with respect to 3D
points is shown in section 6.4.2. In the training process, the kernel values take over the function
of the weights of normal layers. They are adjusted during backpropagation.[81]
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Chapter 3

Used tools

3.1 3DTK - The 3D Toolkit

3DTK - The 3D Toolkit [80], formerly known as Slam6D, is a powerful toolkit for 3D point cloud
processing mainly written in C++. It is available online at http://three-dtk.de. The project
started at the GMD (“Gesellschaft für Mathematik und Datenverarbeitung”) in 2000 and its
featureset was expanded since then by the Fraunhofer Institute, the University of Osnabrück,
and the Jacobs University Bremen. Since 2013, it is mainly maintained by the Institute of
Computer Science at the University of Würzburg.

The main parts of 3DTK are open source (GNU GPLv3). These are[79]:

show A fast 3D viewer. It allows smooth movement in large 3D point clouds via mouse and/or
keyboard by frustum culling and a dynamic point reduction. Show by default only renders
as many points as possible to keep 20 frames per second. It is also capable of taking
colored screenshots or videoclips while flying through the scene. Some additional features
were developed during the work on this thesis. They allow show to handle and display 3D
point clouds with class labels. A screenshot is shown in figure 3.1.

slam6d A high-accurate algorithm for 6D simultaneous localization and mapping (SLAM).

scan_red Reduction of 3D point clouds. It can also be used to generate panorama images.

scanner Used to build 3D models out of videos with moving laser lines.

Figure 3.1 shows the graphical user interface (GUI) of the 3D viewer show. The GUI is split
into three parts. On the right, the selection pane allows the user to change general settings and
perform common tasks. One can for instance adjust the point size or the fog density there. The
choice of a color map allows an improved representation of the point cloud. Actions available in
this pane are for example the recovery of previously saved poses and the creation of screenshots
and video animations.

The changes affect the point cloud view in the main window where a user can navigate
through the cloud by mouse and keyboard commands. Additional controls are available in the
lower pane. Also the view mode can be toggled and additional cameras for 3D animations can
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Figure 3.1: User interface of 3DTK’s 3D viewer show. The imported point cloud was created with
Blender2Helios (chapter 5) in an artificial scene of Hamburg. Thanks to Prof. Dr. Bernhard Höfle for
providing the underlying Unreal Engine scene [56].

be created there. The most important switches are, however, MouseNav, Always all Points,
and Always reduce Points. In MouseNav mode, the user navigates through the point cloud via
mouse movements. If this mode is deactivated, the mouse can be used to select single points of
the cloud. These are then printed on the command line or can later be exported as a partial
cloud. The other two switches are used for the dynamic reduction of the cloud. To take high
quality screenshots and videos, one enables Always all Points to always render the full point
cloud. This allows 3DTK’s GUI to fall under the frame refresh limit during calculations. For
hardware with low performance the Always reduce Points flag can improve the user experience.
In normal mode, where both options are disabled, 3DTK shows as much points as possible while
refreshing with at least 20 fps.

One highlight of 3DTK is its efficient octree implementation already described in section
2.2.1. Each node can be represented by only 8 bytes or even 7 bytes for octrees with constant
depth. Therefore 3DTK supports very large 3D point clouds.

The toolkit also uses libraries under BSD or similar licenses like Boost, ROS, and OpenCV.
So the toolkit may also be used in commercial software.[80] Due to the simplicity of building
software on top of 3DTK, we implemented the algorithms to calculate features of 3D points
based on this toolkit. Details follow in part II. More work in which this powerful toolkit was
used can be found in [12, 13, 34].
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File formats and coordinate systems 3DTK supports many different file formats. The
most basic ones are xyz and uos. For both xyz and uos there are enhanced formats that also
include color information, reflectance values, normals, or temperature data. While all xyz-based
formats expect the data to be in a right-handed frame of reference, uos-formats expect data
points in a left-handed frame as depicted in figure 3.2. Although 3DTK works mainly without
units, distances in xyz-files are expected to be measured in meters, whereas distances in uos-files
are conventionally given in centimeters. This yields the conversation functions shown in equation
3.1 for the point p = [xyz1, xyz2, xyz3]ᵀ in xyz-format and the point q = [uos1, uos2, uos3]ᵀ in
uos-format.

convertxyz→uos(p) = convertxyz→uos(


xyz1
xyz2
xzy3

) = 100


0 −1 0
0 0 1
1 0 0




xyz1
xyz2
xzy3

 = 100


−xyz2
xyz3
xyz1



convertuos→xyz(q) = convertuos→xyz(


uos1

uos2

uos3

) = 1
100


0 0 1
−1 0 0
0 1 0




uos1

uos2

uos3

 = 1
100


uos3

−uos1

uos2


(3.1)

3DTK works internally completely with points converted to uos. This needs to be taken into
account later when calculating features. The second axis is pointing upwards in this coordinate
system.

During the work for this thesis two additional file formats were implemented. These are xyzc
and uosc. These are also ASCII files with coordinate conventions as previously presented. Each
point, however, also contains an additional integer value corresponding to the points’ class. For
the best user experience in the show viewer, the class labels for |C| classes should be chosen in
steps of one, e.g. C = {1, 2, 3, ..., |C|}. This allows 3DTK to create a reasonable color legend.
Instead, for scans with over 20 classes a color bar is created automatically.

1

3

2
(a) Axes in right-handed xyz format.
Values are measured in meters.

3

2

1

2
(b) Axes in left-handed uos format.
Values are measured in centimeters.

Figure 3.2: Alignment of coordinate frames in 3DTK.
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3.2 Weka 3
Weka (Waikato Environment for Knowledge Analysis) is an open source (https://
www.cs.waikato.ac.nz/ml/weka) machine learning software written in Java that was released
under GNU GPLv3. Staff of the University of Waikato is maintaining the project and currently
working on version 3.9. Throughout this thesis, the most current stable version, 3.8.3, was used.
Figure 3.3 shows its main GUI window.[32, 117]

Figure 3.3: Weka’s main window: The GUI Chooser.

In figure 3.4 the Preprocessing tab of the Weka Explorer is shown. It is the main tool we
used for the classification process in this research. Loading, displaying, and altering training
data is possible there. Visualizations are rendered automatically to provide a quick summary of
the data. In the shown example the distribution of the calculated feature planarity between all
classes (indicated by different colors) is shown. Weka can be used for

• Data Preparation,

• Classification,

• Regression,

• Clustering,

• Association Rules, and

• Visualization.

With [116] there is also a book available that explains many aspects of machine learning,
always with examples and implementations in Weka.
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Figure 3.4: The Weka Explorer for easy data preprocessing.

3.2.1 The ARFF File Format

The Attribute-Relation File Format, short ARFF, standardizes ASCII text files containing a list
of instances sharing a set of attributes. It is the main data format that is used by Weka. An
ARFF file consists of two distinct sections, a header and a data section. ARFF is completely
defined as ANTLR (ANother Tool for Language Recognition) v3 grammar in the document
https://waikato.github.io/weka-wiki/files/arff.g.

The name of the relation and the list of attributes including their types is listed in the header.
Percent signs indicate comments. The following lines are an example describing a labeled 3D
point cloud where each data point consists of three real numbers (x, y, z) and a nominal class
label.

Header section of an ARFF file:

% Example 3D point cloud
@RELATION pointcloud

@ATTRIBUTE x NUMERIC
@ATTRIBUTE y NUMERIC
@ATTRIBUTE z NUMERIC
@ATTRIBUTE class {Ground , Building , Car}

The actual data is then joined as data section. The following example indicates five labeled
3D points while the last point misses one attribute value.
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Data section of an ARFF file:

@DATA
8.9 ,3.4 ,5.4 , Car
7.2 ,7.8 ,0.3 , Ground
2.4 ,7.8 ,9.0 , Building
2.5 ,7.7 ,9.0 , Building
% Also missing values can be represended . See ‘?’ in the next line
2.6 ,? ,9.1 , Building

More details, including the representation of sparse ARFF files and how to introduce instance
weights in ARFF files, can be found in [3].

3.2.2 Support Vector Machines in Weka

The prefered way to use support vector machines in Weka is to additionally install the LibSVM
package [21]. Installation can be easily done in Weka’s build-in package manager. LibSVM,
which is also available at https://www.csie.ntu.edu.tw/~cjlin/libsvm, is a wrapper class for
the more powerful LibSVM tools library. Nevertheless, most of the features are present and the
easy integration in a graphical tool like Weka allows for a broad usage of its main features.[21]
Besides LibSVM’s Java and Weka support, there are also interfaces for Matlab/Octave, R,
Python, Node.js, JavaScript, .NET, C#, PHP, GO, and many more.

We decided on using version 1.0.10 of LibSVM with our Weka installation for our SVM
experiments. This was the latest version available in 2020 when this thesis was written. It
has to be noted that there is also a LibLinear package which allows better runtimes while
only supporting SVMs with a linear kernel function. However, as linear SVMs were quickly
outperformed in terms of classification accuracy by the other methods, we did not put any effort
into speed improvements.

3.3 Helios

Helios, the Heidelberg LiDAR Operations Simulator, is a software package for interactive real-
time simulation and visualization of laser scanning surveys. Terrestrial, mobile and airborne
laser scans are supported. The framework is split up into a core component and extension
modules, all written in Java and available at https://github.com/GIScience/helios.[5]

Figure 3.5 summarizes the different XML files needed to configure and run Helios. For our
work we wanted to create 3D scans of very realistic scenes. While it is was easy to create the more
general and short Survey.xml, Scanner.xml, and Platform.xml, writing compatible Scene.xml files
turned out to be a very time consuming task in the preparation for a laser survey. A XML node
for each object within the scene had to be created with a reference to its object file. These had
to be exported as a supported file type for every single item beforehand. Naturally, translation
and rotation needed to be defined in the XML file as well. No simple way, like a level editor,
was available for this task. We therefore decided to create a new tool called Blender2Helios.
This software provides an interface between the well known 3D software Blender and the LiDAR
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Survey.xml
Contains scan positions and
settings per scan position.

Scene.xml
Contains scene settings such
as the contained objects
(including their position,
scaling, and rotation).

Scanner.xml
Contains scanning
device definitions.

Platform.xml
Contains platform definitions
and settings (for instance
movement type, the model
used for visualization, etc.).

Figure 3.5: Illustration of the various XML files used in Helios. A survey operates a scanner on a
platform within a scene. Adapted from [4].

simulation software Helios. In Blender, new scenes can be created by dragging and dropping
objects in the workspace. It also enables users to import existing scenes that are not directly
readable for Helios. We dedicate the whole chapter 5 to Blender2Helios.

Settings for our Simulated Riegl VZ-400 For the later application of Helios we defined
our own Riegl VZ-400 laser scanner which is very similar to Helios’ default settings for terrestrial
laser scan simulations. We set the parameters as follows.

pulseFreq_hz="300000"
scanAngle_deg="50.0"
scanFreq_hz="120"
headRotatePerSec_deg="4.8"
headRotateStart_deg="0"
headRotateStop_deg="360"

This results in a field of view of 360◦ horizontally and 100◦ vertically with a resolution of
0.04◦ each as shown in equations 3.2 and 3.3. The calculations were done according to the
documentation in [4].

resolutionvertical = 2 · scanAngle_deg · scanFreq_hz
pulseFreq_hz = 2 · 50◦ · 120 Hz

300000 Hz = 0.04◦ (3.2)

resolutionhorizontal = headRotatePerSec_deg
pulseFreq_hz = 4.8◦/s

120 Hz = 0.04◦ (3.3)

These settings match our real scanner’s configuration. As previously mentioned, a resolution of
0.04◦ corresponds to a point spacing of tan(0.04◦) · 100 m ≈ 7 cm at a distance of 100meters.
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3.4 Blender 2.8
Blender (https://www.blender.org) is an open-source 3D graphics software toolset first released
in 1995. It is written in C, C++, and Python. With Blender, users can not only create complex
3D shapes and static 3D scenes but also animated 3D films. Many features like sculpting
and soft body/fluid/particle simulations are supported. Another important capability is the
scripting API. One can automate different tasks in Blender by executing corresponding Python
commands. The API is fully integrated into Blender’s GUI meaning that for most elements
of the interface the associated API calls are displayed. We used Blender 2.81 throughout this
thesis. Version 2.80 which introduced a whole new set of commands showed some bugs in the
scripting engine.

Figure 3.6 presents a screenshot of Blender’s main Layout tab. The main part of the window
displays the 3D scenery with different objects. In the illustrated default scene only a cube, a
camera, and a light source is included. On the right side of the screen all objects are hierarchically
listed. Different objects can be grouped by putting them into the same collection which is named
Collection here. The translation, rotation, and many other attributes of selected items can be
seen and altered in the area in the lower right corner. The screenshot only serves as an overview.
Due to the high number of features, Blender’s interface is split into many different tabs that are
completely customizable.

For a deeper introduction to Blender 2.8 readers are recommended to consult [19].

Figure 3.6: Screenshot of Blender’s user interface currently showing the default scene with a cube, a
camera, and a light.
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Chapter 4

Datasets

Many benchmark datasets are available for 2D image classification. These are for instance
ImageNet [31, 95] and Pascal VOC [37, 38] for rgb images and SUN RGB-D [101] for rgb-d
data.[44] A huge amount of prelabeled training instances makes it possible to successfully apply
modern machine learning algorithms. Often, the classifiers achieve accuracies far over 95%.

For 3D point clouds, however, less training data is available. Even well-known datasets often
consist of only a few million points whereas one of our single laser scans already contains over
ten million points. Compared to terrestrial laser scans most datasets like the Oakland [77],
the Sydney Urban Objects [28], and the IQmulus & TerraMobilita Contest [109] datasets were
created with mobile laser scanners. By design these are sparse compared to terrestrial laser
scans. Instead of multiple minutes per turn around the vertical axis, the mobile scanners turn
much faster. This allows to create a continuous but less dense point cloud during movement.

While the number of 3D points is still comparable to the number of pixels in 2D datasets,
these datasets generally only consist of a small number of individual scans. This results in
similar computation times while only learning on a few training examples, allowing over-fitting
on the seen object instances.

The next sections in this chapter describe the datasets used in this thesis and their pre-
processing. We also present scenes we scanned ourselves. These include real scans taken in
Würzburg and simulated scans. The latter were facilitated by our new open-source Blender
add-on Blender2Helios.

4.1 Oakland

The Oakland dataset is available for free for research purposes at http://www.cs.cmu.edu/~vmr/
datasets/oakland_3d/cvpr09/doc and was first used in [77]. It consists of labeled 3D point
clouds recorded in urban environment around the CMU campus in Oakland, Pittsburgh, PA.
The data was collected from a moving car, the NavLab11. Side looking 2D Sick LMS laser
scanners were mounted to create point clouds in a push broom fashion.

A preprocessed version of the complete dataset consisting of 1.6 million 3D points is available
where splitting in training, testing, and validation data was already done. Furthermore, the 44
semantic classes were merged into five remaining ones as shown in table 4.1.
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Table 4.1: Semantic classes in the preprocessed Oakland dataset.

Label
Our Original Class Name Examples
1 1004 Scatter/Misc Foliage, Shrub
2 1100 Wire Wire bundle, Isolated wire
3 1103 Pole Post, Trunk
4 1200 Load/Bearing Ground, Trail, Walkway, Grass
5 1400 Facade Wall, Column
- - Removed Bench, Garbage, Chimney, Human, Vehicle

The class distribution can be found in table 4.2. As the classifiers were tuned using another
– the Semantic3D – dataset, we did not use the validation data given. We just used the training
data to train the classifiers and the much bigger testing portion to test them.

Table 4.2: Class distribution in the Oakland dataset. Shown for the provided preprocessed data (ta-
ble 4.1).

Label
Subset Scatter/Misc Wire Pole Load/Bearing Facade Total
Training 14,441 2,571 1,086 14,121 4,713 36,932
Validation 8,485 899 1,441 67,419 13,271 91,515
Testing 267,325 3,794 7,933 934,146 111,112 1,324,310

4.2 Paris-rue-Madame
The dataset fully called Paris-rue-Madame database: MINES ParisTech 3D mobile laser scan-
ner dataset from Madame street in Paris is available at http://www.cmm.mines-paristech.fr/
~serna/rueMadameDataset.html. It is under copyright of MINES ParisTech and was released
under the Creative Commons Attribution Non-Commercial No Derivatives (CC-BY-NC-ND-3.0)
license. To follow the dataset’s conditions of use, we express that “MINES ParisTech created
this special set of 3D MLS data for the purpose of detection-segmentation-classification research
activities, but does not endorse the way they are used in this project or the conclusions put
forward”.[99]

The dataset consists of two laser scans containing exactly 10 million points each. Not only a
semantic classification is given per point, but also an indication to what exact object each point
belongs to. 624 objects were annotated and categorized in 26 classes.

The class distributions in the scans are shown in table 4.3. Due to the lack of more scans,
only one scan (scan 1_2 ) was used for training while the other one (scan 1_3 ) was kept for
testing. As many classes do not or only rarely occur in both scans, we additionally eliminated
very small classes. The remaining are shown in table 4.4.
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Table 4.3: Class distribution in the Paris-rue-Madame dataset.

Number of Points
Label Class Name Training (1_2) Testing (1_3)
0 Background 3 11
1 Facade 4,769,417 5,209,018
2 Ground 4,333,059 3,691,236
4 Cars 790,822 1,044,561
7 Light poles 0 2,610
9 Pedestrians 3,656 6,392
10 Motorcycles 81,745 17,122
14 Traffic signs 11,463 4,017
15 Trash can 2,542 2,144
19 Wall Light 3,030 2,356
20 Balcony Plant 983 791
21 Parking meter 111 2,374
22 Fast pedestrian 1,915 7,515
23 Wall Sign 384 1,246
24 Pedestrian + something 491 0
25 Noise 379 5,173
26 Pot plant 0 3,434

Total 10 mio. 10 mio.

4.3 Semantic3D

The highest quantity of training instances used in this thesis was provided by the Seman-
tic3D.net [43] dataset. A static terrestrial laser scanner was used to create dense point clouds of
outdoor scenes consisting of over four billion points. The scanned environments include churches,
streets, railroad tracks, squares, villages, soccer fields, and castles in Central Europe.

Approximately one half of the points is published with class labels as training data. With the
rest of the data, two public challenges are called out at http://www.semantic3d.net. In both,
participants have to label point clouds and submit the results. The main challenge (semantic-8 )
contains over 2.3 billion unlabeled points in 15 scans. In comparison, one has to label approx-
imately 80 million points partitioned in four scans in the smaller reduced-8 challenge. Due to
time constraints we only took part in the reduced-8 challenge.

Eight semantic classes were assigned by manual labeling: man-made terrain, natural terrain,
high vegetation, low vegetation, buildings, hard scape, scanning artefacts, and cars. Table 4.5
pictures the distribution of class labels for the reduced-8 data.

Annotation in 3D is much more difficult than in 2D. For this dataset it was done using two
different strategies[43]:
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Table 4.4: Paris-rue-Madame’s class distribution after preprocessing.

Label Number of Points
Our Orig Class Name scan1 (1_2) scan2 (1_3)
1 1 Facade 4,769,417 5,209,018
2 2 Ground 4,333,059 3,691,236
3 4 Cars 790,822 1,044,561
4 9 Pedestrians 3,656 6,392
5 10 Motorcycles 81,745 17,122
6 14 Traffic signs 11,463 4,017

Total 9,990,162 9,972,346

Table 4.5: Class distribution in the Semantic3D dataset (reduced-8).

Number of Points
Label Class Name Training Testing
- Unlabeled 156,046,453 11,607,777
1 Man-made Terrain 796,491,240 14,317,509
2 Natural Terrain 480,979,227 10,694,746
3 High Vegetation 135,634,808 4,675,871
4 Low Vegetation 99,971,504 3,021,894
5 Buildings 285,746,986 30,911,206
6 Hard scape 83,466,776 2,384,545
7 Artefacts 51,979,924 233,839
8 Cars 15,609,275 851,942

Total 2,105,926,193 78,699,329

Annotation in 3D Parts of the dataset were labeled by student assistants at the ETH Zurich.
A 3D iterative filtering was performed by fitting simple models to a couple of manually
selected points per object. Model outliers were then removed. This procedure was applied
repeatedly until only inliers were left.

Annotation in 2D This procedure was used for outsourcing the annotation task. The user
rotates a point cloud and fixes a 2D view. In this view he draws a closed polygon around
the object. Only the data within this polygon is used in the next iteration where a new
polygon is fitted. These steps are repeated until only class inliers are left. The tool
CloudCompare [42] was used to apply this procedure.
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4.4 Sim2Real
Instead of testing the classifiers only on already existing point clouds, we decided to test the
performance on our own data as well. In this thesis we present one scene of a parking lot
near the Department of Computer Science at the University of Würzburg. To determine the
applicability of training classifiers on easy to generate, artificial scenes and using them for real
world applications, we used two scenes. The first one was created in Blender using freely available
object models. This one is used to train the classifier as it is much easier to get prelabeled point
clouds of artificial scenes. The second one was taken at a real parking lot. It is used for testing.

Simulated Parking Lot Scan To have artificial training data available, we created our
own parking lot scene in Blender. This allowed us to easily generate labeled point clouds
by using Blender2Helios and Helios. Only freely available object models from 3D Warehouse
(https://3dwarehouse.sketchup.com) were used to coarsely remodel the real parking lot shown
in the next paragraph. Paved/asphaltic ground was modeled by just a flat plane while a
Blender modifier was used to represent grass. By applying a Displacement Modifier in Z
direction combined with a Voronoi texture (https://docs.blender.org/manual/en/latest/
render/shader_nodes/textures/voronoi.html), small spikes on a flat plane were created. We
expected them to generate very similar points in the simulation as sampling real grass. As the
classifiers showed that they learned the different ground types, we did not put more effort in
a finer remodeling of the different types of ground. A big difference between artificial and real
word scene is therefore still existent. This enforces the classifiers to generalize. One should be
able to reproduce our results with his or her own 3D scenes without trying to build an exact
copy of the testing data.

The created Blender scene can be seen from bird’s eye view in the next chapter in figure 5.1.

Real Parking Lot Scan Scans of the real parking lot were taken during a normal working
day. We used the previously introduced Riegl VZ-400 with the settings already shown in section
2.1.4. Naturally, these scans mainly contain paved ground and cars but also vegetation, natural
ground, and buildings in the background. Figure 4.1 illustrates the on-site scenery.

To be able to use this data for testing, each point had to be assigned a class label. These
labels were later used to calculate a classifier’s accuracy. We decided for a division into six
classes as shown in table 4.6.

Depending on the application, other class labels are reasonable. For instance, we decided
stairs to be treated like other normal objects. This can be useful on a robot that can not pass
stairs and where distinguishing between other items is not needed. In other scenarios they can
for instance also be labeled as man-made ground. Similar decisions had to be made for other
scenes we tested. How does somebody want to classify a balcony? Does it belong to a dedicated
balcony class or does it belong to facades? Is the floor of a balcony man-made ground? Are the
hand railings also part of the balcony/facade class or do they belong to railings? As every reader
has a different focus, we decided to only print the results of this one scene. With Blender2Helios
everybody is invited to create labeled point clouds of his or her own scenes and to apply the
described learning algorithms.
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Figure 4.1: Photograph of the parking lot where our scans were taken.

CloudCompare (https://www.danielgm.net/cc) was used for labeling the point cloud of
the real parking lot. The cloud was first coarsely sliced using a polygon selection in 2D from
top view. Then, these partitions were cleaned by iteratively applying polygon selections from
different angles before they were exported. Labeling of the real point cloud and the object
classification in Blender were done by the same person to reduce errors introduced by human
aspects. At the time the scan was taken a construction side was nearby. To avoid any influence
on the accuracy by unusual objects like a crane, the corresponding points were removed.

Table 4.6: Semantic classes in our Sim2Real dataset. The dataset is split into training data created
with Helios and real testing data.

Number of Points
Label Class Name Examples Blender Real

1 Man-made ground Paved ground, Asphalt 1,120,044 6,381,848
2 Natural ground Grass, Grassland 128,813 209,347
3 Vegetation Bushes, Trees 204,011 1,823,701
4 Object Lamps, Poles, Railings, Stairs 16,900 64,575
5 Facade Walls, Buildings 280,063 754,867
6 Car All vehicles 161,480 1,478,190

Total 1,911,311 10,712,528
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Chapter 5

Blender2Helios - The Blender
LiDAR Add-on

Blender2Helios is a Blender 2.8 add-on that was developed by the author during this research.
It builds an interface between the common 3D creation suite Blender and the powerful LiDAR
operations simulator Helios introduced in chapter 3. The add-on is released under GNU GPLv3.
Code and documentation is available at https://github.com/neumicha/Blender2Helios.

Before simulating a laser scanning survey in Helios the scene has to be setup. Up until now,
users had to write complex XML files on their own, describing translation and rotation of the
individual 3D objects in the scene. While this is possible for small and undetailed artificial
scenes, a more sophisticated way was desired to create very detailed, realistic scenes.

This is the benefit of our tool. It provides the possibility to build various scenes without
much effort or even use existing ones. These scenes are then converted to Helios compatible
XML files to be able to perform laser scan surveys subsequently. Also, semantic labels can be
assigned easily by the collections feature in Blender.

With our software we want to facilitate the creation of 3D point clouds in simulated scenes.
Many realistic urban or natural environments, for instance created for games with the Unreal
Engine, exist and can now be converted to semantically labeled point clouds.

Figure 5.1 shows the input and output of this toolchain on the example of a parking lot near
the computer science building at the University of Würzburg. The scene includes details like
street lamps, trees with and without leaves and even small poles and handrails. In section 7.3
we additionally show that classifiers trained on this artificial data can achieve high accuracies
on real world scans.
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Example of a Scene.xml file with two objects (denoted as parts) created by Blender2Helios.
Abbreviations are indicated by “. . .”.

<?xml version ="1.0" encoding ="UTF -8"?>
<document >

<scene id=" ParkingLot " name=" ParkingLot ">
<sunDir x="0" y="1" z=" -1" />
<skybox azimuth_deg ="275" texturesFolder =". . ./ sky6_1024 " />
<part >

<filter type=" objloader ">
<param type=" string " key=" filepath "

value=". . ./Cars/Car -221 -538 -153. obj" />
<param type=" boolean " key=" castShadows " value="true" />
<param type=" boolean " key=" receiveShadows " value="true" />
<param type=" boolean " key=" recomputeVertexNormals "

value="true" />
</ filter >
<filter type=" rotate ">

<param type=" rotation " key=" rotation ">
<rot axis="pitch" angle_deg ="0.0" />
<rot axis="roll" angle_deg ="0.0" />
<rot axis="yaw" angle_deg =" -173.0" />

</param >
</ filter >
<filter type=" translate ">

<param type="vec3" key=" offset " value=" -35.0; -27.5;0" />
</ filter >
<filter type="scale">

<param type=" double " key="scale" value="1.0" />
</ filter >

</part >
<part >

<filter type=" objloader ">
<param type=" string " key=" filepath "

value=". . ./ Vegetation /Birch -1307 -1125 -1487. obj" />
. . .

</ filter >
<filter type=" rotate ">. . .</ filter >
<filter type=" translate ">. . .</ filter >
<filter type="scale">. . .</ filter >

</part >
</scene >

</ document >
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(a) Blender scene created with freely available
3D models.

(b) Corresponding 3D point cloud generated
with a simulated Riegl VZ-400 in Helios. Col-
ors respresend class labels.

Figure 5.1: Parking lot scene created in Blender and laser scanned with Helios.

5.1 Main Challenges

Two main challenges occurred during the implementation of Blender2Helios. First, when for
instance thinking of a forest scene, the same tree model might be used multiple times but with
different translation, rotation, and scale. To speed up the export process and to save disk space,
it is reasonable to export the model only once. While the individual translation and rotation
can be easily set by the generated XML file, applying the correct scaling is not that easy. As
Helios only supports uniform scaling in all directions, there are situations where not all instances
of a tree can be represented by one model file. This is the case when different scaling factors
were applied to different dimensions of an object in Blender. To at least minimize the number
of object exports, we implemented a heuristic to decide whether an object needs to be exported
or if it can be replaced by another model.

For the heuristic, the subsequent two rules are checked.

1. The names of both objects in the scene are very similar, i.e. the leading parts of the names,
until a probably existing period, are exactly the same. The period used as a delimiter is
part of Blender’s naming convention. When importing a model called car multiple times,
the objects will be named car, car.001, car.002, et cetera by default.

2. The size after normalization of the scaling is identical. For a Blender object with outer
dimensions [dx dy dz]ᵀ with applied scaling factors [sx sy sz]ᵀ the normalized outer di-
mensions are calculated as [dx dy dz ]ᵀ

sx
. This calculation brings the scaling in x direction

to 1 which usually represents the original size.

These rules can be checked with low computational cost compared to a complex comparison of
vertices and edges. Only if both conditions are satisfied, just one of the objects is exported.
Although this heuristic may generate a small number of false positives, they can be easily
bypassed by a clear naming convention for unambiguous object names on the user’s side to
never erroneously satisfy the first rule.
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The second challenge was the different representation of rotations in Blender and Helios. All
the rotations of objects had to be converted to Tait-Bryan angles. Roll (φ), pitch (θ), and yaw
(ψ) for intrinsic rotations around the three object axes had to be calculated. For this we used
the representation of quaternions of Blender (q = [w x y z]ᵀ) and did a conversion according
to [8]. In combination with the axis settings during the model export and the order of rotations
in Helios this yields the solution shown in equation 5.1. Note that multiple solutions exist as
different orders of the rotation axes are imaginable. This order of rotations, however, is the
standard provided with examples of Helios.

φ = arcsin(2(wy − zx))
θ = arctan2(2(wx+ yz), 1− 2(x2 + y2))
ψ = arctan2(2(wz + xy), 1− 2(y2 + z2))

(5.1)

Part of the generated Scene.xml describing the rotation of an object:

...
<param type=" rotation " key=" rotation ">

<rot axis="pitch" angle_deg ="rad2deg(θ)"/>
<rot axis="roll" angle_deg ="rad2deg(φ)"/>
<rot axis="yaw" angle_deg ="rad2deg(ψ)"/>

</param >
...

5.2 How to Use

After installing and enabling the add-on, a number of parameters can be changed in the pref-
erences dialogue. Figure 5.2 shows the corresponding user interface containing the subsequent
features:

Helios Base Directory Points to the directory containing the folders assets and data of Helios.
It will be used as target path for the later scene export. The .obj models of the scene will
be stored in data/sceneparts within this folder.

Scene Name This string is used as name for the exported Helios scene.

Use materials Defines if the materials of Blender objects are also exported. If disabled (and
the next flag for own materials is also disabled), the objects will just show up black in
Helios. However, this does not affect the spatial data of the simulated laser scans.

Use own materials for classification When enabled, all materials will be replaced depend-
ing on the collection each object belongs to. This allows to create point clouds with
semantic labels. The user has to provide a valid materials.mtl for Helios manually. The
way this is done is shown after this parameter description.

Semantic Classification in Uncolored 3D Point Clouds
using Multiscale Features



5.2. How to Use 51

(a) Preference window in Blender for the
Blender2Helios add-on. It allows to set the main
parameters for scene exports.

(b) Typical collection setup
in Blender to be used with
Blender2Helios.

Figure 5.2: Blender2Helios’s preferences and scene preparation in Blender.

Also write Helios survey file Exporting also generates a survey file for Helios. The location
of Blender’s 3D cursor is used as location for the laser scanner. A default 360◦ setup
with the Riegl VZ-400 is used. The generated survey file may be altered by the user
subsequently depending on the use case.

Always override models The model files are stored according to the naming convention
data/sceneparts/[COLLECTION]/[OBJNAME]-[SIZE].obj. [OBJNAME] is replaced by
the name of an object and [COLLECTION] indicates the Blender collection it belongs
to. As previously discussed, a faster export is possible by consolidating objects that occur
more than once in the scene. Different translations, rotations, and scalings are possible
by exporting the object once and providing different settings in the Scene.xml file. The
naming convention helps to accomplish this. [OBJNAME] is cut at the first period which
is typically introduced by Blender when duplicating an object within the scene. [SIZE]
represents the normalized object size. This convention enables easy caching of objects that
occur multiple times with different scaling and that were already exported before. As long
as users don’t work with extremely big scenes, leaving this setting enabled is reasonable.
If this setting is disabled (faster) obsolete exported objects have to be manually removed
from the sceneparts, otherwise the export will not replace existing files.

Delete cached Helios scene If a scene with the given scene name was already opened in
Helios, a cache was created. It contains Helios’s internal data structure for shorter loading
times. After exporting a new scene one usually wants Helios to open this newly created
one. If this settings is enabled, Helios’s tree cache is deleted during the scene export
procedure.
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To group objects by their semantic labels and use these in the later laser scanning survey in
Helios, we exploit the feature of setting different materials for objects. Blender2Helios expects
all objects within collections. A typical setup of collections and objects used in Blender2Helios
is also shown in figure 5.2. The collection with the name ignore is ignored and can for instance
be used for cameras, lights, or other objects that are unwanted in the laser scan. For all other
collections the assigned objects are exported as .obj [16] files to a folder with the name of this
collection. When the flag Use own materials for classification is set, each exported object file
is modified to use a user-defined material instead of the original materials. The following state-
ments are prepended at every .obj file.

Header of an exported .obj file for a building with Use own materials for clas-
sification enabled.

mtllib ../ materials .mtl
usemtl Buildings
...

To bring big scenes with unsorted objects into a suited format of collections without too much
manual effort, a scene conversion script is also provided in the Github repository. It moves all
items into collections according to some user-defined rules. This is done by pattern-matching
of each object’s name. The script was tested with a big Unreal Engine scene with around 3,000
objects. It was able to classify over 95% of the objects by rules that were created within minutes.
Additionally, a user has to define the mapping of collections to class labels. This is done by a
materials.mtl file which might contain the subsequent lines.

Content of materials.mtl (partially shown):

newmtl Buildings
Ka 0 0 1
helios_classification 1

newmtl Cars
Ka 1 0 0
helios_classification 2
...

This results in a colored Helios scene with buildings being blue (Ka 0 0 1 ) and cars being
red (Ka 1 0 0 ). The proprietary helios_classification property sets the later class label for each
material. Simulated laser scans will include this value when a 3D point was created by the laser
hitting the corresponding material. [90] provides more details about the material file format.
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5.3 Implementation
Blender2Helios is implemented as a real add-on for the Blender software. Due to the overhead
in code for complying with the add-on conventions, we decided to print its main functionality
in form of pseudocode in this thesis in algorithms 3 and 4. This will give an idea how the ex-
tension works and enables readers to easily understand and modify the code. The small helper
functions are briefly described in appendix A. The newest operational code is always released
at https://github.com/neumicha/Blender2Helios.

Algorithm 3 Blender2Helios - Schema of exporting a scene (Part 1)
1: From os.path import join
2:
3: // Defaults shown. May be changed by the user in the add-on’s preferences
4: HELIOS_BASE_DIR← “/home/USERNAME/"
5: SCENE_NAME ← “blender2heliosScene"
6: ALSO_WRITE_SURVEY_FILE ← true
7: ALWAYS_OVERRIDE_MODELS ← true
8: DELETE_CACHED_SCENE ← true
9: USE_MATERIALS ← true

10: USE_OWN_MATERIALS ← false
11:
12: if DELETE_CACHED_SCENE then
13: Delete join(HELIOS_BASE_DIR,“data/scenes”,SCENE_NAME+“.scene”)
14: end if
15: fScene ← Open join(HELIOS_BASE_DIR,“data/scenes”,SCENE_NAME+“.xml”)
16: fScene.write(xmlSceneHead())
17: fScene.write(buildSceneParts()) // The main work is done here, see algorithm 4
18: fScene.write(xmlSceneFoot())
19: fScene.close()
20: if ALSO_WRITE_SURVEY_FILE then
21: fSurvey ← Open join(HELIOS_BASE_DIR,“data/surveys”,

SCENE_NAME+“.xml”)
22: fSurvey.write(xmlSurvey())
23: fSurvey.close()
24: end if
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Algorithm 4 Blender2Helios - Schema of exporting a scene (Part 2)
25: function BuildSceneParts( )
26: out ← “”
27: for all c ∈ Collections with c.name 6= “ignore” do
28: cName ← c.name.until(“.”) // Cut name at first period
29: for all o ∈ c.objects do
30: oName ← o.name.until(“.”) // Cut name at first period
31: objFileExtension ← toText(scale2Original(o))
32: objFile ← join(HELIOS_BASE_DIR,“data/sceneparts”,cName,

oName+“-”+objFileExtension+“.obj”)
33: scale ← o.scale[0] // Later export it with a scaling of 1 in first dimension
34: o.rotationMode ← “QUATERNION” // Needed to access the data later
35: if ALWAYS_OVERRIDE_MODELS ∨ ¬exists(objFile) then
36: Backup rotation and translation of o
37: o.location ← 0
38: o.scale ← o.scale

scale
39: Select only object o
40: Export selected object to objFile [including materials

⇐⇒ (USE_MATERIALS ∧ ¬USE_OWN_MATERIALS)]
41: Restore rotation and translation of o
42: if USE_OWN_MATERIALS then
43: Prepend material with name cName to objFile
44: end if
45: out ← out + object2XML(cName, oName+“-”+objFileExtension+“.obj”,

o.translation, quaternion2RPY(o.rotation_quaternion), scale)
46: end if
47: end for
48: end for
49: return out
50: end function
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Chapter 6

Implementation and Tuning of the
Classifiers

This chapter mainly describes our more classical approach by calculating local features of each
3D point and using common classification algorithms afterwards. Compared to the original
implementation in [115], we do feature calculation on multiple differently reduced scans. For
classification we tune the parameters of a random forest and two SVMs. Only the last subsection,
6.4, describes an alternative way by using a neural network that is very similar to a CNN.

The process of parameter selection was always performed on the Semantic3D dataset. For
this, the prelabeled training part was split into two parts. One part, containing twelve of
the fifteen scans, was used for training while the remaining three scans (untermaederbrunnen1,
untermaederbrunnen3, and sg28_4 ) were used for validation. The resulting parameters were
then used to train and test the classifiers on all the introduced datasets including the Semantic3D
reduced-8 challenge. Chapter 7 shows their comparison.

For the classical approach of calculating local features in the 3D point cloud and applying
general classifiers, the order of parameter tuning had to be decided. When evaluating different
feature sets and neighborhood parameters for feature calculation, one already needs a classifier
to assess their impact. However, when tuning parameters of the classifier, one already needs
expressive features for training. We decided to first optimize the feature calculation on the
basis of a standard random forest setup with 100 trees and a small tree depth of four. Similar
configurations were already used in literature [104, 114, 115] and proved to be sufficient to detect
changes generated by different parameters in the feature calculation.

To allow the testing of many configurations, features were calculated on only a reduced
number of points. An octree-based reduction with a voxel size of 10 cm was done and features
were only calculated for the resulting points. Afterwards, the data was subsampled to bring the
classes to a uniform distribution with approximately 63,000 points per class. However, for the
calculation of feature values all points were used.

Appendix B shows measures of random forest classifiers with a different number of trees
and with different random seeds for data subsampling and the forest creation. Features of one
reduction scale served as input. One sees that the results are almost stable, i.e. within 2% for
the tested seeds, and that 100 trees are sufficient for representative results.
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6.1 Finding the Optimal Neighborhood Size
To calculate local features, a number of neighbors must be taken into account. For this set of
points the principal components are distinguished using PCA. Typical approaches often use a
sphere with a fixed radius [65] or a cylindrical neighborhood definition [39]. Another approach
is simply using a fixed number of k nearest neighbors [62] to define the neighborhood.

In [115] a state-of-the-art approach which is based on dimensionality features [30] is pre-
sented. Instead of defining a fixed neighborhood size, different ways to find an optimal neigh-
borhood size kOpt per point are compared. The best results were achieved by choosing a neigh-
borhood size that minimizes the eigenentropy. Compared to the common default of using the
nearest k = 100 neighbors for feature calculation, this method yielded 2% to 14% higher overall
accuracy scores depending on the dataset.

Eigenentropy Eλ is given by the Shannon entropy of eigenvalues λi. Its calculation for the
three-dimensional case is depicted in equation 6.1. To reduce the impact of the local point
density, normalized eigenvalues Λi as defined in equation 6.2 are used in our work.

Eλ = −Λ1 ln(Λ1)− Λ2 ln(Λ2)− Λ3 ln(Λ3) (6.1)

Λi = λi∑3
j=1 λj

(6.2)

The three normalized eigenvalues are constrained by
∑3
i=1 Λi = 1. It was therefore possible to

create a heatmap of the eigenentropy in 3D space. Figure 6.1 shows this. When searching for the
optimal neighborhood size, one minimizes the eigenentropy, so blue regions in the heatmap are
favored. One can deduce from the figure that one-dimensional structures are priviledged. The
function’s maximum of − ln(1/3) ≈ 1.0986 is reached by neighborhoods with equally distributed
points along all three axes, resulting in λ1 = λ2 = λ3 and, accordingly, Λ1 = Λ2 = Λ3 = 1/3.

The optimal number of neighbors kOpt is found by repeatedly calculating the eigenentropy
of neighborhoods with a varying number of neighbors k ∈ {kMin, kMin + k∆, . . . , kMax}. kMin,
kMax, and k∆ are parameters that need to be set by the user. Common values are kMin = 10,
kMax = 100, and k∆ = 1. This includes the often fixed value k = 100 and limits the number of
times the eigenvalues have to be calculated per point. By increasing the step width k∆, one can
impact the run time for distinguishing the optimal neighborhood sizes by a constant factor.

Figure 6.2 illustrates the time needed to query the neighborhoods of 1 million points. One
can see that bigger neighborhoods with 500 or even 1,000 neighbors take longer to find and to
perform the PCA on. Especially trying to find optimal neighborhood sizes within big ranges is
very time consuming.

Table 6.1 shows the overall accuracy and class-wise F1 scores when using the optimal neigh-
borhood definition. Using between 500 and 1,000 neighbors for a bigger area of influence showed
the best results. However, using that many neighbors for feature calculation is very time con-
suming as previously presented in figure 6.2.

We therefore decided to follow an approximation approach similar to [45]. Instead of cal-
culating features on a large number of neighbors, a smaller number of neighbors is used within
a reduced representation of the point cloud. This allows a fast calculation while still taking a
wide spatial area into account. Octree-based reductions (see chapter 2.2.1) are used to create
the less dense point clouds.
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Figure 6.1: Illustration of eigenentropy in 3D space. The axes describe two normalized
eigenvalues Λi,Λj , i 6= j while the third eigenvalue can be calculated accordingly. Colors
in the heatmap indicate the corresponding value of eigenentropy. Lower values (blue) are
favored when searching for optimal neighborhoods.
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Figure 6.2: Time needed for calculating features with different neighborhood sizes.
Calculations were done for one million 3D points in a typical outdoor scan. The first
three measurements were taken with a fixed neighborhood size (100, 500, 1000) whereas
for the last three ones our optimal neighborhood definition was used.
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Table 6.1: Impact of varying ranges for finding the optimal neighborhood size. The F1 scores of our
random forest classifier are shown.

Terrain Vegetation Build- Hard Arte- Accu-
N. size Man-m. Nat. High Low ings Scape facts Cars racy
10-100 0.916 0.359 0.749 0.307 0.583 0.157 0.227 0.123 64.26%
10-500 0.913 0.368 0.749 0.300 0.608 0.153 0.225 0.126 64.49%
100-500 0.822 0.298 0.789 0.177 0.729 0.139 0.119 0.123 64.58%
500-1000 0.904 0.249 0.783 0.229 0.715 0.213 0.355 0.122 68.36%
1000-5000 0.880 0.107 0.752 0.289 0.688 0.024 0.410 0.168 66.46%
10-5000 0.893 0.278 0.749 0.300 0.621 0.144 0.243 0.157 64.16%

6.2 Definition of Multiscale Features

[114, 115] also introduced a set of 21 features for every 3D point. [54, 70] describe the underlying
principle of calculating invariant moments representing geometric properties as well as the 3D
structure known from the covariance matrix. The definitions of the special geometric properties
that were exploited are based on [71, 107].

We slightly changed the original feature definition of [115]. One reason was the aim to
reduce the assumptions that were made. While the original features, for instance, include
the absolute height of a 3D point, we decided to calculate a point’s height with respect to
the lowest point within a cylindrical neighborhood with a fixed radius. To some extend this
allows to mix differently created 3D scans as the scanner height does not matter. Also some
inaccuracies were found in [115]. One of the described features is the sum of eigenvalues given
by Σλ,original = Λ1 + Λ2 + Λ3. For the normalized values Λi, however, it always holds equation
6.3 and therefore Σλ,original = 1. As this feature does not store any information about the data,
we used the sum of unnormalized eigenvalues λi to define a feature.

Σλ,original = Λ1 + Λ2 + Λ3 = λ1∑3
i=1 λi

+ λ2∑3
i=1 λi

+ λ3∑3
i=1 λi

= λ1 + λ2 + λ3∑3
i=1 λi

= 1 (6.3)

The 21-dimensional feature vector for each point pi in a point cloud P is given by equations
6.4 to 6.7. λi and λ2D

i denote the i-th eigenvalue of the 3D, respectively 2D, covariance matrices
of the k neighboring points {q1, q2, . . . , qk} with mean µ = 1

k

∑
1≤j≤k qj around point pi.

The neighbors are ordered by their distance to pi (||qj − pi|| ≤ ||ql − pi|| for j ≤ l). Two-
dimensional data is created by projecting all the points pi to two-dimensional points p2D

i on
the ground plane by ignoring the vertical axis. The neighbors {q2D

1 , q2D
2 , . . . , q2D

k } are again
ordered by ascending distance to the reference point. We further order the eigenvalues and the
corresponding eigenvectors ei in a way that λ1 ≥ λ2 ≥ λ3 ≥ 0 and λ2D

1 ≥ λ2D
2 ≥ 0 hold true.

Λi denotes the normalized equivalents of λi again. Calculating normalized Λ2D
i is not needed

for this set of features as it does not impact the value of Ratio2D
k (pi,P ). In all equations the

subscript vert means the vertical dimension. This is often the third axis, but in case of 3DTK
the second one.
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For the cylindrical features we further let qCyl
j , 1 ≤ j ≤ kCyl be points within a cylindrical

neighborhood with radius r around point pi. µCyl = 1
kCyl

∑
1≤j≤kCyl q

Cyl
j denotes their mean.

features(pi, P ) =


features3D

k (pi, P )
features2D

k (pi, P )
featuresCyl

r (pi, P )

 (6.4)

features3D
k (pi, P ) =

Linearity3D
k (pi, P )

Planarity3D
k (pi, P )

Scattering3D
k (pi, P )

Omnivariance3D
k (pi, P )

Anisotropy3D
k (pi, P )

Eigenentropy3D
k (pi, P )

SumOfEigenvalues3D
k (pi, P )

ChangeOfCurvature3D
k (pi, P )

Verticality3D
k (pi, P )

LocalDensity3D
k (pi, P )

Radius3D
k (pi, P )

MaxHeightDifference3D
k (pi, P )

HeightVariance3D
k (pi, P )



=



Λ1−Λ2
Λ1

Λ2−Λ3
Λ1
Λ3
Λ1

3√Λ1 · Λ2 · Λ3
Λ1−Λ3

Λ1

−
∑3
i=1 Λi · ln(Λi)∑3

i=1 λi

Λ3

1− |( e3
||e3||)vert |
k

4/3·π·Radius3D
k (pi,P )3

||qk − pi||
max1≤i≤k(qi,vert)−min1≤i≤k(qi,vert)

1
k

∑k
i=1(qi,vert − µvert)2



(6.5)

features2D
k (pi, P ) =

Radius2D
k (pi, P )

LocalDensity2D
k (pi, P )

SumOfEigenvalues2D
k (pi, P )

Ratio2D
k (pi, P )

 =



∣∣∣∣∣∣q2D
k − p2D

i

∣∣∣∣∣∣
k

π·Radius2D
k (pi,P )2∑2

i=1 λ
2D
i

λ2D
1
λ2D

2

 (6.6)

featuresCyl
r (pi, P ) =

NrPointsCyl
r (pi, P )

MaxHeightDifferenceCyl
r (pi, P )

HeightVarianceCyl
r (pi, P )

HeightAboveMinCyl
r (pi, P )

 =


kCyl

max1≤i≤kCyl (qCyl
i,vert)−min1≤i≤kCyl (qCyl

i,vert)
1

kCyl
∑kCyl
i=1 (qCyl

i,vert − µ
Cyl
vert)2

pi,vert −min1≤i≤kCyl (qCyl
i,vert)

 (6.7)

We also propose the feature calculation with different neighborhood sizes on differently re-
duced scans. This addition is illustrated in the next sections.

Semantic Classification in Uncolored 3D Point Clouds
using Multiscale Features



62 Chapter 6. Implementation and Tuning of the Classifiers

6.2.1 Implementation in 3DTK

The tool scan2features was implemented as part of 3DTK. It provides an easy way to calculate
local features in point clouds. For faster execution it uses the multithreading library OpenMP.
After compilation the tool can be found in the bin directory. It can be called, inter alia, with
the subsequent options.

Excerpt of the command line parameters of bin/scan2features:

$ bin/ scan2features --help

Input options :
-f [-- format ] arg (= uos) Input: uos , uosc , xyz , xyzc , ply , ...

Algorithm options :
-a [-- algorithm ] arg (=0) Algorithm mode. (More may follow )

0 = Calc. features with kOpt
on whole scan ( Weinmann 2014)

use: kMin , kDelta , kMax , cylRadii
set kMin=kMax for fixed kNN

Feature construction options :
-r [-- reduce ] arg (=10) Reduction (cm) for reference points
-i [-- ignoredClasses ] arg Class labels to ignore (only ref. pts)

-R [-- kReductions ] arg (=10) Reductions (cm) for 2D/3D features
-k [--kMins] arg (=10) Minimum number of neighbors (kOpt)
-K [--kMaxs] arg (=100) Maximum number of neighbors (kOpt)
-d [-- kDeltas ] arg (=1) Step widths between kMins and kMaxs

--cylReductions arg (=10) Reductions (cm) for cyl. features
-c [-- cylRadii ] arg (=25) Radii (cm) of cylinders

Output options :
--csv Output features as .csv file instead of .arff (Weka)

Example usage:
./ bin/ scan2features -r 0 --kReductions 2 20 80

--kMins 10 10 10 --kMaxs 100 100 100 --kDeltas 1 1 1
--cylReductions 2 20 80 --cylRadii 25 150 500 -f xyzc .
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Scan2features runs with different input file types depending on the presence (xyzc, uosc) or
absence (xyz, uos, etc.) of class labels. The standard algorithm calculates features for whole
point clouds. The --reduce parameter can be used to determine the subset of points that features
are calculated for. We call them reference points. Depending on the parameter’s value, the point
cloud is first reduced and the feature extraction is only done for the resulting points. This does
not impact the features values themselves. Additionally, the --ignoredClasses feature allows to
provide a list of class labels to ignore. Corresponding points still impact the feature values of
other points but they are never used as reference points for feature calculation.

The feature construction options furthermore include --kReductions, --kMins , --kMaxs, and
--kDeltas which highly impact the resulting feature values. All four parameters hold lists of the
same length, here denoted as klen. For each i ∈ {0, 1, . . . , klen − 1} a reduced scan with a voxel
size of kReductions[i] cm is generated. Within this cloud, denoted as PkReductions[i], the 2D and 3D
features of an optimal neighborhood between kMins[i] and kMaxs[i] with a step size of kDeltas[i]
are calculated. Choosing kMins[i] = kMaxs[i] results in the calculation based on a fixed number
of neighbors. By setting --cylReductions and --cylRadii one defines equivalent scan reductions
and radii used for the calculation of the cylindrical portion of the feature vector. The --csv flag
can be used to write the features to csv files instead of arff files for Weka.

The shown example call calculates features for all (-r 0 ) input points of the xyzc scans
(-f xyzc) within the current directory (.). The 2D and 3D features are calculated based on three
reduced scans with voxel sizes of 2 cm, 20 cm, and 80 cm (--kReductions 2 20 80 ). On all levels
a range of 10 to 100 neighbors is used to find the optimal neighborhood size (--kMins 10 10
10 --kMaxs 100 100 100 --kDeltas 1 1 1 ). The additional features based on cylinders are also
created on the same reduced scans (--cylReductions 2 20 80 ) with radii of 25 cm, 150 cm, and
500 cm, respectively (--cylRadii 25 150 500 ).

Algorithm 5 shows a schema of the algorithm used in scan2features to calculate features
for a whole point cloud. To reduce the number of neighborhood searches, the kMax nearest
neighbors are always queried once and used to find kOpt instead of iteratively querying different
neighborhood sizes. Scan2features outputs three files. The file features.arff holds the calculated
features of one point per line. features_points.3d contains the reference points in the order they
were processed. Due to multi-threading, the order of points may differ to the input. Additionally,
the discovered optimal neighborhood sizes are stored in a file called features_kOpt.arff. This file
can be used for further analysis or could – with some changes in the code – be used to speed up
later feature calculations on the same scans. The latter may be useful for comparing different
feature sets in combination with a constant optimal neighborhood definition.

6.2.2 Parameter Optimization

The best parameters for the approximate feature calculation had to be found. A number of
different reduction parameters was tested with 10 ≤ kOpt ≤ 100. Class-wise F1 scores and
accuracies are printed in table 6.2. Precision and recall measures can be found in appendix C.
One can see that different reductions allow different classes to be recognized better. For instance,
scanning artefacts are identified with higher accuracy in a detailed scan and a spatial small
neighborhood whereas buildings are recognized more often within a wider area in heavily reduced
scans. Voxel sizes over 80 cm seem to negatively impact the accuracy.

Semantic Classification in Uncolored 3D Point Clouds
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Algorithm 5 The feature calculation algorithm used in scan2features
Input: Point cloud P, Reduction parameter reduce,

Lists kReductions, kMins, kMaxs, kDeltas of length klen ,
Lists cylReductions, cylRadii of length cyl len

Output: Files: features.arff, features_kOpt.txt, features_points.3d
1: reductions ← reduce ∪ kReductions ∪ cylReductions // Set of all reduction scales (no dublicates)
2: for all red ∈ reductions do
3: Pred ← reduction of pointcloud P using an octree with voxel size red
4: end for
5: Write arff header to features.arff
6: for all points p ∈ Preduce do
7: features ← empty list
8: kOpts ← empty list
9: for all i ∈ {0, 1, . . . , klen − 1} do

10: neighborhood ← nearest kMaxs[i] neighbors of point p in PkReductions[i]
11: kOpt ← GetKOpt(p,neighborhood,kMins[i],kDeltas[i])
12: kOpts.append(kOpt)
13: features.append(Calc3D2DFeatures(p,neighborhood,kOpt))
14: end for
15: for all i ∈ {0, 1, . . . , cyllen − 1} do
16: neighborhood ← neighbors within a cylinder with radius cylRadii [i] cm around point

p in PcylReductions[i]
17: features.append(CalcCylFeatures(p,neighborhood))
18: end for
19: if semantic labels present then // Training data
20: features.append(p.class)
21: end if
22: Write features to features.arff
23: Write kOpts to features_kOpt.txt
24: Write coordinates of p in uos format to features_points.3d
25: end for
26: function Calc3D2DFeatures(p,neighborhood,k) // Calculate 17 3D/2D features
27: return (features3D

k (p,neighborhood), features2D
k (p,neighborhood))

28: end function
29: function CalcCylFeatures(p,neighborhood) // Calculate 4 cylindrical features
30: return featuresCyl

∞ (p,neighborhood)
31: end function

Using three different reductions showed a reasonable tradeoff between classification accuracy
and computation time. Choosing reduction scales of 2, 20, and 80 cm showed the best result with
72.42% accuracy. More reductions are imaginable but showed only small improvements while
leading to higher computation times and a higher disk space usage for storing the features.
In [45] a fixed number of ten neighbors is used on nine different scales for feature calculation.
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Table 6.2: Impact of different and multiple reduction scales for feature calculation. The F1 scores and
accuracies of our random forest classifier are shown.

Red- Terrain Vegetation Build- Hard Arte- Accu-
uction(s) Man-m. Nat. High Low ings Scape facts Cars racy
0 0.946 0.356 0.758 0.335 0.578 0.011 0.394 0.132 66.47%
1 0.947 0.349 0.739 0.337 0.547 0.046 0.385 0.129 65.24%
2 0.939 0.394 0.744 0.337 0.571 0.047 0.363 0.141 65.68%
5 0.932 0.390 0.743 0.330 0.580 0.052 0.265 0.134 65.21%
10 0.916 0.359 0.749 0.307 0.583 0.157 0.227 0.123 64.26%
20 0.873 0.374 0.755 0.260 0.708 0.139 0.189 0.176 66.41%
40 0.848 0.315 0.765 0.187 0.708 0.135 0.166 0.164 65.20%
80 0.895 0.277 0.741 0.224 0.679 0.071 0.177 0.191 66.32%
160 0.767 0.048 0.688 0.258 0.618 0.028 0.220 0.205 58.31%
2, 10 0.923 0.431 0.764 0.329 0.603 0.064 0.350 0.135 65.84%
2, 20 0.933 0.468 0.777 0.318 0.627 0.070 0.324 0.130 67.34%
2, 80 0.938 0.371 0.789 0.325 0.697 0.081 0.362 0.225 70.76%
2, 10, 80 0.926 0.377 0.805 0.343 0.735 0.152 0.382 0.212 71.99%
2, 20, 80 0.931 0.429 0.812 0.321 0.740 0.122 0.379 0.196 72.42%
2, 8, 32 0.920 0.411 0.774 0.385 0.729 0.158 0.359 0.186 69.51%
5, 20, 80 0.926 0.402 0.804 0.340 0.744 0.125 0.317 0.202 72.09%
10, 20, 40 0.917 0.424 0.791 0.306 0.733 0.154 0.247 0.197 70.46%

The reductions were done with voxel sizes between 2.5 cm and 6.5m. This leads to approximately
the same spatial sizes as our neighborhoods reaching from ten neighbors in a 2 cm voxel reduced
scan to 100 neighbors in a scan reduced with 80 cm voxel size.

Figure 6.3 depicts the size of points that are left after reducing a point cloud. Considering
the logarithmic scale, 300 million points of Semantic3D’s sg27_station1 scan are reduced to
approximately 43,000 points when using a voxel size of 80 cm.

Additionally, figure 6.4 illustrates the varying optimal neighborhood sizes in a whole laser
scan for different reduction parameters. While in a detailed scan (2 cm voxel size) especially
thin poles and sharp edges on cars show a high number of neighbors, on coarser reduction scales
other areas prefer big neighborhoods. Interestingly mainly medium-sized objects like bushes and
cars favor a high number of neighbors in a scan reduced with a voxel size of 80 cm. Even if it
looks like heavily reduced clouds contain more points with a neighborhoods size close to 100,
figure 6.5 shows that the distribution of different neighborhood sizes is very similar across all
three reductions. The points with a big neighborhood size are just concentrated within a few
small scan regions in these reductions.

For the previous results only one small cylindrical neighborhood of 25 cm on a scan reduced
with voxel size 10 was used. Understandably, the previously found best point cloud reductions
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Figure 6.3: Size of octree-based reduced point clouds. Reductions were made with voxel
sizes of 0, 2, 20, and 80 cm. Note the logarithmic scaling of the y axis.

of 2, 20, and 80 cm for 2D/3D feature calculation are preferably also used for the cylindrical
features. This minimizes the runtime as there is no need to calculate additional reductions.
Table 6.3 shows the improvement of F1 and accuracy scores when also using three approximated
cylindrical neighborhoods. Due to time limitations the radii were chosen manually in a way
that they contain approximately between 100 and 1,000 points in common outdoor scenes. This
addition increased the overall accuracy by over 4% to 76.81%. Rechecking the possible impact
of a higher number of trees in the forest showed again that the number of 100 trees is sufficient.

6.3 Parameter Tuning of the Classifiers

The following two sections describe the tuning of parameters for the random forest classifier and
two SVM classifiers with different kernels.

Table 6.3: Impact of multiple cylindrical features and more trees in the forest.

Cylindrical Features Weighted
# Trees [Reduction(Radius)] in cm Avg. F1 Accuracy
100 10 (25) 0.752 72.42%
100 2 (25), 20 (150), 80 (500) 0.786 76.81%
500 2 (25), 20 (150), 80 (500) 0.784 76.61%
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(a) Reference image colored by point height. (b) Reduction with 2 cm voxel size.

(c) Reduction with 20 cm voxel size. (d) Reduction with 80 cm voxel size.

Figure 6.4: Illustration of optimal neighborhood sizes kOpt on differently reduced scans. The color
gradient indicates the found optimal neighborhood size from kMin = 10 (blue) to red kMax = 100 (red).

6.3.1 Random Forest

For the previously shown results a standard setup with 100 trees and a tree depth of four was
used. After determining a good set of features, the classifier itself needed to be tuned. As
indicated in table 6.3 before, we expected no further improvement when using more than 100
trees. The tables in appendix B support this estimation. Not only the different number of trees
but also the impact of different random seeds for data subsampling and the creation of random
forests is depicted there.

Therefore, the only parameter we additionally tuned was the tree depth. Figure 6.6 shows
its influence. The overall accuracy increased from 75.96% (depth of 3) to 81.95% (depth of 63).
Very small trees naturally discriminate some classes as they do not have enough branches to
predict every class. The maximum of 63 was given by the number of 21 attributes we calculated
on three different reductions.

To avoid overfitting we decided to keep the trees small and picked a tree depth of 20 for the
later comparison. It corresponded to 81.59% overall accuracy on our validation data.
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Figure 6.5: Distribution of optimal neighborhood sizes kOpt on different reduction scales. Input was
the outdoor scan created with the Riegl VZ-400 already shown in figure 6.4.

6.3.2 Support Vector Machines

In comparison to the results of the random forest, we also researched the accuracy of support
vector machines on the calculated features. Two kernels (RBF and Linear) were evaluated
with the LibSVM library in Weka. Due to the high run time complexity in the number of
training samples, the training data was subsampled. The parameter selection had to be done
with a training set of only 2,000 samples per class to allow checking a few hundred parameter
settings. Readers that are new to SVMs may also consult [51] for a more detailed introduction
to parameter tuning of SVMs.

Preprocessing for SVMs

In contrast to random forests, the magnitude between different features matters in a SVM.
Thus, some kind of preprocessing had to be done. The standard approach for doing this is the
min-max normalization. After application all feature values are within the range [0, 1], where
the minimum of all features values is mapped to 0 and their maximum is mapped to 1. The
corresponding formula to calculate the normalized value x′i,j given the unnormalized value xi,j
and the minimum minj = mini∈{1,2,...,n} xi,j and maximum maxj = maxi∈{1,2,...,n} xi,j of feature
j is depicted in equation 6.8.

x′i,j = xi,j −minj
maxj −minj

(6.8)

Due to outliers this normalization approach was not applicable for our features. To di-
minish the impact of outliers and as many of the features showed some kind of Gaussian dis-
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Figure 6.6: Influence of the tree depth on the random forest’s accuracy.

tribution, we decided to perform standardization, also called z-score normalization. In this
kind of preprocessing all values are scaled in such a manner that all features have zero-mean
x̄′j = 1

n

∑
i∈{1,2,...,n} x

′
i,j = 0 and unit-variance σ′j = 1. The calculation is done as shown in

equation 6.9 where x̄j denotes the original mean of feature j and σj its standard deviation.

x′i,j = xi,j − x̄j
σj

(6.9)

With this kind of preprocessing most values stay within a small range around 0. Outliers
are kept but scaled towards zero. One has to remember that the mean and standard deviation
of the training set also has to be used when preprocessing data that the SVM is later applied
on. Otherwise an error is introduced by the different distribution of the data.

Radial Basis Function Kernel

SVMs with Radial Basis Function (RBF) kernel have two main parameters that have to be
selected according to the data: C and γ. They are usually obtained by performing a grid search
and using k-fold cross-validation.[51] Like in the case of random forests, we tested our parameters
on a fixed data portion instead of cross-validation. This sped up the process and eliminated, as
discussed before, the danger of over-fitting on the exactly seen object instances.

A grid search with 335 configurations for C and γ was performed. The results are shown
in figure 6.7. In the coarse search, 110 configurations were tested. The exponents of C and γ
to the basis of two were incremented by steps of two. In the finer search around the peak of
C = 211 and γ = 2−11, increments were reduced to 0.25 resulting in 225 more configurations
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to check. The second peak at the coarse search was not taken into account as it lies closer to
regions with lower accuracy. Choosing the more stable peak was reasonable.

As a result of the finer search, C = 212.25 = 4871 and γ = 2−12.5 ≈ 0.00017263 were chosen
for all later experiments. This configuration showed the highest accuracy of over 77.89%.
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Figure 6.7: Grid search for parameters C and γ with LibSVM using a RBF kernel. The peak around
C = 211 and γ = 2−11 in the coarse search was broken down further in 0.25 increments in the exponent.

Linear Kernel

A classical linear C-SVM only needs the cost parameter C to be optimized. Typically, C is
being searched within a range approximately between 2−5 and 215. As shown in figure 6.8, the
accuracy was very stable, i.e. within a range of 0.25%, over a wide range of 2−1 ≤ C ≤ 211. We
therefore picked the median of these exponents and continued the experiments with C = 25 = 32.

6.4 Deep Learning: KPConv

6.4.1 Deep Learning for 3D Point Cloud Classification

There are many different approaches of using deep learning algorithms for classifying 3D point
clouds. [105] splits these into four different categories. Some attempts rely on projection methods
projecting the data to a regular grid structure. One can, for instance, render 2D images from
a point cloud and apply common 2D classifiers afterwards [15, 64, 102, 103]. Other approaches
suggest voxel-based methods using 3D grids [6, 73, 94].

Another category are graph convolution networks. Depending on the implementation, the
convolution operator on a graph has been addressed in different ways. It can either be computed
as a multiplication on its spectral representation [29, 120] or focus on the surface represented
by the graph [20, 72, 76]. Compared to point convolutions, graph convolutions learn filters on
edge relationships instead of the points’ relative positions.

PointNet [87] is considered a milestone in pointwise MLP networks. A shared multilayer
perceptron (MLP) is used on every point and individually followed by a global max-pooling.
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Figure 6.8: Influence of the cost parameter C on our SVM
with linear kernel.

While the MLP learns a set of spatial encodings, the global part picks the maximal response
among all the points for each of these encodings. Much other work, like [66, 88], was done to
develop hierarchical architectures to aggregate local neighborhood information with MLPs.

KPConv belongs to the last category, the point convolution networks. Other well-known rep-
resentatives are Pointwise CNN [118] and SpiderCNN [119]. In contrast to KPConv, Pointwise
CNN locates the kernel weights with voxel bins. This means that it lacks flexibility. Fur-
thermore, their approach involves a higher computational burden. In SpiderCNN, a kernel is
defined as a family of polynomial functions with a different weight for each neighbor. Compared
to KPConv this weight depends on the distance-wise order of neighbors instead of their actual
distance. This makes their filters spatially inconsistent.[105]

6.4.2 Kernel Point Convolution (KPConv)

Kernel Point Convolution (KPConv) is a new design of point convolution described in [105]. It
operates directly on point clouds without any intermediate representation. The used convolution
concept is closely related to the convolution layers in CNNs already described in section 2.4.3.
Due to the lack of a fixed grid structure, the convolution weights of KPConv are located in
Euclidean space by so-called kernel points. These are applied on the input points close to them.

The authors describe their KP-FCNN as the applicable method for our point-wise classifica-
tion task in 3D point clouds. It implements an encoder-decoder CNN consisting of convolutional
blocks, designed like bottleneck ResNet blocks [46]. First, higher-order features are calculated
step-by-step on reductions of the point cloud. Then, the original detailedness is achieved by
nearest upsampling in the decoder part. Skip links [10, 92, 111] are used to transfer informa-
tion between layers, skipping the network parts in between. The following descriptions heavily
depend on [105] and its supplementary material [106].
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The Kernel

In section 2.4.3 the typical definition of a convolution layer was illustrated. Instead of using
a grid with weights, KPConv uses kernel points and a correlation function within spherical
neighborhoods. Figure 6.9 illustrated this concept.

Further, let again pi denote 3D points of a point cloud P . Corresponding features from
F ∈ Rn×d are denoted as fi. The spherical neighborhood with radius r around a point p ∈ R3

is defined by Np = {pi ∈ P | ||pi − p|| ≤ r}. Equation 6.10 denotes the general point convolution
of F using a kernel g at point p.

(F ∗ g)(p) =
∑
pi∈Np

g(pi − p)fi (6.10)

Starting from here, yi denotes the vector pi − p for clarity. Similar to 2D convolutions, g is
expected to apply different weights within an local area. For this, a neighborhood ball with
radius r is defined by Br = {y ∈ R3| ||y|| ≤ r}.

Given the k kernel points {p̃j | j < k} ⊂ Br and the corresponding weight matrices
{Wj | j < k} ⊂ Rdin×dout to map the features from a layer’s input dimension din to a layer’s
output dimension dout, the kernel function g is given by equation 6.11.

g(yi) =
∑
j<k

h(yi, p̃j)Wj (6.11)

The correlation h between two points should be high if both points are close together.
Inspired by the bilinear interpolation described in [27], the authors of KPConv decided to use
the linear correlation shown in equation 6.12. σ regulates the impact of the distance between
the two points and is chosen according to the input density.

h(yi, p̃j) = max(0, 1− ||yi − p̃j ||
σ

) (6.12)

Another critical aspect is the alignment of the kernel points. The authors of KPConv propose
two approaches. The first uses rigid kernel point positions. A number of k kernel points is spread
across the sphere by applying repulsive forces and solving the optimization problem. One point
is constrained to stay in the middle. This rigid version is extremely efficient.

On the other hand, there are deformable kernels. As the kernel function g is differentiable
with respect to p̃j , they are learnable parameters. The network learns a set of k different shifts
∆p for every convolution position p ∈ R3. This results in the new convolution function shown in
equation 6.13 with the kernel function gdeform as depicted in equation 6.14. The offsets ∆k

p are
defined as the output of a rigid KPConv mapping din input features to 3k values. [105] shows
that the descriptive power of deformable kernels is higher than that of rigid kernels – especially
for a small number of kernel points.

(F ∗ g)(p) =
∑
pi∈Np

gdeform(yi,∆p)fi (6.13)

gdeform(yi,∆p) =
∑
j<k

h(yi, p̃j + ∆k
p)Wj (6.14)
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Figure 6.9: Illustration of KPConv. A kernel point convolu-
tion is applied on scalar input points. Each kernel point has a
filter weight. The output at the current location is the sum of
the weighted features. Taken from [105].

Our Setup

In [105] KPConv was already applied on numerous datasets. One of them is the Semantic3D
dataset our RF classifiers was tuned with. The source code is available at https://github.com/
HuguesTHOMAS/KPConv. In the available file for training (training_Semantic3D.py) their opti-
mized parameters can be reviewed. It describes the 18-layer encoder-decoder network and the
exact kernel parameters. 15 kernel points are used and a subsampling with a voxel size of 6 cm is
performed at the beginning. The network’s learning rate decreases slowly, starting with a value
of 10−2. Cross-entropy loss is calculated after a batch with a size of ten while the training ends
after 500 epochs.

As the parameters were already optimized by the authors, we decided to copy these settings.
We will skip further details here as [105, 106] provide all the information about the architecture.
Readers are also invited to examine the well-arranged published source code files for details.

For the following comparison we only adapted the handling of additional features in the
data. Under fair conditions KPConv was only trained on three-dimensional coordinates without
additional color or reflectance information.
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Chapter 7

Results and Comparison

This chapter shows a comparison of the different classifiers applied on the four datasets. Section
7.4 presents the results we achieved when participating in the Semantic3D challenge. A coarse
runtime comparison between the two methods with the highest accuracy, our RF approach and
KPConv, is additionally given in section 7.5. The settings of the feature calculation procedure
were chosen as previously shown: kRed = cylRed = (2, 20, 80) and cylRadii = (25, 150, 500).
Random forests with 100 trees and a tree depth of 20 were trained. The scores of the original
RF implementation were taken from the original paper [115] for reference.

The figures 7.1 to 7.4 show the real class labels of the Paris-rue-Madame and the Sim2Real
datasets including the results of our random forest and the KPConv classifiers. The results are
discussed in the following sections belonging to the datasets.
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(a) Semantic labels in the Paris-rue-Madame test data.

(b) White circles indicate regions that are later discussed in the text.

Figure 7.1: Paris-rue-Madame’s labeled test data for reference. Colors indicate class affiliations. Red: fa-
cade, yellow: ground, green: cars, light blue: pedestrians, dark blue: motorcycles, rose: traffic signs.

Semantic Classification in Uncolored 3D Point Clouds
using Multiscale Features



77

(a) Output of our random forest classifier.

(b) Output of KPConv.

Figure 7.2: Output of our RF and KPConv applied on the Paris-rue-Madame dataset. Colors indicate
class affiliations. Red: facade, yellow: ground, green: cars, light blue: pedestrians, dark blue: motorcycles,
rose: traffic signs.
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(a) Semantic labels in the Sim2Real test data. Annotation was done manualy.

(b) White circles indicate regions that are later discussed in the text.

Figure 7.3: Sim2Real’s labeled test data for reference. Colors indicate semantic class affiliations.
Red: man-made ground, yellow: natural ground, green: vegetation, light blue: object, dark blue: facade,
rose: car.
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(a) Output of our random forest classifier.

(b) Output of KPConv.

Figure 7.4: Output of our RF and KPConv applied on the Sim2Real dataset. Colors indicate semantic
class affiliations. Red: man-made ground, yellow: natural ground, green: vegetation, light blue: object,
dark blue: facade, rose: car.
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7.1 Oakland
Applied on the Oakland dataset our RF classifier showed an accuracy of 95.27% which is around
3% higher than the results using the original single-scale approach described in [115]. Our
approach also minimizes the assumptions made, like a consistent height of the laser scanner. The
detailed result of our random forest is shown in table 7.1. Class-wise F1 scores and the overall
accuracies of the different classifiers are printed in table 7.2. While both SVMs’ performances
were far behind, KPConv performed slightly better than our RF approach. Recall and precision
values as well as detailed confusion matrices can be found in appendix D.1.

It has to be noted that this dataset only contained 1,086 points belonging to class pole. The
RF and SVM classifiers were therefore only trained on 5,430 equally distributed points.

Table 7.1: Performance of our RF on the Oakland dataset. Overall accuracy: 95.27%.

Our Label Orig. Label Class Name Precision Recall F-Measure
1 1004 Scatter/Misc 0.953 0.922 0.937
2 1100 Wire 0.101 0.894 0.181
3 1103 Pole 0.376 0.751 0.501
4 1200 Load/Bearing 0.999 0.994 0.996
5 1400 Facade 0.893 0.696 0.782

Weighted Avg. 0.974 0.953 0.961

Table 7.2: Comparison of F1 scores and accuracies of the classifiers on the Oakland dataset.

Class F1 Score Overall
Classifier 1 2 3 4 5 Accuracy

Original RF 0.878 0.165 0.364 0.978 0.749 92.2%
Our RF 0.937 0.181 0.501 0.996 0.782 95.3%

Our SVMRBF 0.772 0.039 0.098 0.894 0.420 75.8%
Our SVMLinear 0.811 0.030 0.107 0.893 0.336 75.9%

KPConv 0.966 0.186 0.429 0.992 0.813 95.7%
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7.2 Paris-rue-Madame
We used scan 1_2 for training and scan 1_3 for testing. Due to the small number of pedestrians
in the training data, the data was subsampled to 3,656 examples per class for our RF and SVM
classifiers. Compared to the original paper we achieved an over 6% higher accuracy of 96.44%
as presented in table 7.3. Another 2% were achieved by KPConv.

Table 7.3: Comparison of F1 scores and accuracies of the classifiers on the Paris-rue-Madame dataset.

Class F1 Score Overall
Classifier 1 2 3 4 5 6 Accuracy

Original RF 0.960 0.932 0.672 0.036 0.206 0.105 90.1%
Our RF 0.983 0.965 0.897 0.000 0.202 0.304 96.4%

Our SVMRBF 0.973 0.924 0.859 0.000 0.119 0.033 91.7%
Our SVMLinear 0.977 0.914 0.864 0.000 0.049 0.069 91.5%

KPConv 0.989 0.988 0.972 0.000 0.733 0.767 98.6%

Figure 7.2 shows the outputs of our random forest and KPConv after applying them to the
test data shown in figure 7.1. Region A in the figure shows an area where the high recall value
belonging to the class cars of our random forest classifier can be seen. However, also the points
belonging to the ground around the cars is assigned the same label. In constrast, KPConv labels
cars more conservative leading to a higher precision score but introducing some errors where
facades are predicted. The traffic sign in region B is detected with a high accuracy by both
methods. KPConv shows only a small mistake where is detects facade points. The motorcycle
in area C was not detected in both outputs. KPConv, however, detected other motorcycles that
are not presented in the illustration with a higher accuracy. The pedestrian in sector D was
ignored by both approaches.

Especially the bad matching of pedestrians has to be noted. Precision and recall values are
zero for this class as shown in table 7.4. We interpret this as an over-fitting on the seen object
instances due to the fact that only three pedestrians were part of the training data. Especially
by the used optimal neighborhood definition, all points of a pedestrian are described by roughly
the same features. Thus, oversimplified, the data can be seen as only three data points with a
higher weight. For instance in class 1, 181 different facades were also down-sampled to 3,656
points. The variance of these points is much higher resulting in a classifier that recognizes many
different kinds of facades. Lowering the tree depth by a factor of 1/2 to allow a higher degree of
generalization did, however, not show any improvement.

Confusion matrices and more precision/recall values can be found in appendix D.2.
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Table 7.4: Performance of our RF on the Paris-rue-Madame dataset. Overall accuracy: 96.44%.

Our Label Orig. Label Class Name Precision Recall F-Measure
1 1 Facade 0.984 0.982 0.983
2 2 Ground 0.994 0.937 0.965
3 4 Cars 0.816 0.995 0.897
4 9 Pedestrians 0.000 0.000 0.000
5 10 Motorcycles 0.291 0.154 0.202
6 14 Traffic signs 0.200 0.635 0.304

Weighted Avg. 0.968 0.964 0.965

7.3 Sim2Real

The simulated laser scan created with Blender, Blender2Helios, and Helios was subsampled to
16,900 examples per class for training our RF/SVMs. Table 7.5 shows the detailed performance
of our RF classifier. Evaluation was done with the manually labeled real scan from the parking
lot in Würzburg.

Table 7.5: Performance of our RF classifier on the Sim2Real dataset. Overall accuracy: 94.21%.

Label Class Name Precision Recall F-Measure
1 Manmade Ground 1.000 0.973 0.986
2 Natural Ground 0.784 0.762 0.773
3 Vegetation 0.876 0.961 0.916
4 Lamps/Railings 0.893 0.304 0.454
5 Buildings/Walls 0.959 0.650 0.775
6 Cars 0.827 0.986 0.900
Weighted Avg. 0.947 0.942 0.940

Results of the different classifiers are shown in table 7.6. Our RF and KPConv reached
the same overall accuracy of 94.21%. Only the SVM with RBF kernel showed a very similar
accuracy. The linear kernel was approximately 8% behind KPConv and our approach. It has
to be noted that this table misses a comparison with the original RF implementation as this
dataset was created on our own and no reference values exist. Confusion matrices and detailed
scores are again attached in the appendix (D.3).

Figure 7.3 shows an excerpt of the test data. It also highlights regions that were labeled very
differently by our random forest approach and KPConv. Their outputs are printed in figure 7.4.
Region A shows a car that was correctly classified by us, but was treated like vegetation by
KPConv. The recognition of area B, the upper part of a street light, was incorrectly classified
by both methods. Sector C shows paved ground. It is likely that a higher variance in the
handcrafted features, potentially originated by the higher distance to the scanner, led to the
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Table 7.6: Comparison of F1 scores and accuracies of the classifiers on Sim2Real.

Class F1 Score Overall
Classifier 1 2 3 4 5 6 Accuracy

Our RF 0.986 0.773 0.916 0.454 0.775 0.900 94.2%
Our SVMRBF 0.989 0.662 0.885 0.239 0.786 0.890 92.5%

Our SVMLinear 0.961 0.366 0.892 0.121 0.835 0.727 86.2%
KPConv 0.990 0.364 0.888 0.373 0.946 0.876 94.2%

classification as natural ground. We have no explanation why KPConv detected a facade here.
However, in part D, KPConv detects the building with a much higher accuracy. Area E is
probably the most difficult section. The grassland has an irregular incline and is peppered
with smaller plants. Big parts of it were correctly classified by the random forest. KPConv, in
constrast, heavily labeled the points as cars or vegetation.
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7.4 Semantic3D Challenge
Semantic3D is the dataset containing the most points for training and testing. As both SVM
approaches were already clearly outperformed on the other datasets, they were ignored here for
time reasons.

Our RF To tune the parameters, an additional split of the supplied training data was used.
Now, all the prelabeled data was used to create an equally distributed set of features to train a
classifier with best performance.

KPConv As previously mentioned, KPConv is already provided with a training procedure
for the Semantic3D challenges. As the authors of [105] already put much effort into tuning,
this was just adapted to our needs. The only change that was made was the removal of the
color information. Our results show that this change did not impact the classification accuracy
significantly. In this case the classifier even got slightly better.

The results of our submissions to Semantic3D’s reduced-8 challenge are given in table 7.7.
For comparison the original KPConv results that used color information are also depicted. F1
scores and accuracies are shown in table 7.8. Confusion matrices and precision and recall values
can be found in appendix D.4.

Table 7.7: Results of the Semantic3D reduced-8 submissions: Intersection over Union.

Colors Intersection over Union for Class Average
Classifier Used? 1 2 3 4 5 6 7 8 IoU

Our RF No 0.886 0.839 0.595 0.371 0.861 0.187 0.203 0.398 0.542
KPConv No 0.982 0.905 0.814 0.373 0.943 0.319 0.609 0.824 0.721
KPConv Yes 0.909 0.822 0.842 0.479 0.949 0.400 0.773 0.797 0.746

Table 7.8: Results of the Semantic3D reduced-8 submissions: F1 scores and accuracies.

Colors Class F1 Score Overall
Classifier Used? 1 2 3 4 5 6 7 8 Accuracy

Our RF No 0.940 0.912 0.746 0.541 0.926 0.315 0.337 0.569 86.49%
KPConv No 0.991 0.950 0.897 0.543 0.971 0.484 0.757 0.903 93.51%
KPConv Yes 0.952 0.902 0.914 0.648 0.974 0.571 0.872 0.887 92.86%
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7.5 Run Times
The calculations were usually done on different hardware. While a server with many CPU cores
was used to improve performance of the feature calculation in our RF approach, another machine
was used to train the random forests. Yet another system with a modern graphics card allowed
running the KPConv implementation.

To be able to do a comparison, the training and testing procedures of our classical random
forest approach and KPConv on the Sim2Real dataset were repeated on similar hardware. Due
to the corona pandemic at the time this thesis was written, only a laptop with external GPU
was available.

The used Lenovo Yoga 720-15IKB was equipped with an Intel Core i5-7300HQ CPU (4x
2.50GHz) and 24GB of RAM. An Asus GeForce RTX 2080 Ti ROG STRIX with 11GB of
video memory was plugged into a Razer Core X external GPU graphics card enclosure. The
Thunderbolt connection was caught to be a small bottleneck and only allowed utilizing the
GPU up to approximately 70-80%. Of course, modern workstations will perform better than
our hardware. However, the times shown in table 7.9 already provide a coarse reference.

Table 7.9: Run times of our RF and the KPConv classifier.

Time Taken (Approx.)
Task Number of Points Step Our RF KPConv

Training 2 million
Feature calculation 40 seconds (100,000)1,2

7 hours
Classifier training 40 seconds (100,000)3

Training 10 million
Feature calculation 3 minutes (400,000)1,4

13.5 hours
Classifier training 4 minutes (400,000)3

Testing 10 million
Feature calculation 1 hour

1 hour
Applying classifier 9 minutes

1 These values were roughly estimated as our current implementation only supports the feature calculation
on whole 3D scans. The number in brackets shows the number of points that we were able to choose equally
distributed from the whole scan for training.
2 Feature calculation on all 2 million points took 11 minutes.
3 The random forests were only trained on the equally distributed number of points.
4 Feature calculation on all 10 million points took roughly one hour.

The numbers indicate that calculating handcrafted features and training a random forest is
much faster than the neural network approach. It has to be mentioned that KPConv was also
optimized for the huge Semantic3D dataset. While we trained the network for 500 epochs, the
loss was very stable after 200 to 300 epochs, depending on the dataset. Training times of our
RF solution adapt better to varying dataset sizes. By changing the learning rate and adapting
the stop criterion a speedup of the KPConv learning process seems likely.

Semantic Classification in Uncolored 3D Point Clouds
using Multiscale Features





Chapter 8

Conclusions and Future Work

The main objective of this research was the comparison of different approaches for semantic
classification in 3D point clouds. One can see that classical methods with handcrafted features
still have a right to exist. With our optimization of using multiple reduced scans to approximate
different neighborhood sizes they showed very similar results compared to the deep learning
approach on small- to medium-sized datasets. Their short runtime for training makes them an
excellent choice for creating a good baseline or for choosing a reasonable set of training data.
Due to their low hardware requirements, they can be used on cheap and even mobile hardware.
The comparison of different classifiers showed that random forests perform better than SVMs
with linear or RBF kernels.

On the big Semantic3D dataset the deep learning approach performed better. We justify
this by its capability of learning a more complex model. This comes with the downside of
long training times and increased hardware prerequisites. The used KPConv network needed
approximately nine gigabytes of graphics memory. Expensive and power-consuming hardware
is needed to apply this method.

All the written code is released publicly to allow the reproduction of our results. While
the implementations allow users to change many parameters directly, one can easily adapt the
algorithms to his or her needs.

With the development of Blender2Helios, an – in our opinion necessary – interface between
an easily usable 3D suite and the LiDAR simulation software Helios was created. Due to the
good compatibility of Blender, many existing scenes can now be converted to 3D point clouds.
As labeling in Blender is much easier than in the point cloud, we hope to promote the creation of
highly detailed and labeled training data for the learning of classifiers. In this thesis we showed
with the Sim2Real dataset that artificial data can be used to train classifiers that are later used
in real-world applications.

Future Work Many different neighborhood definitions and sets of handcrafted features exist.
It is conceivable that other combinations achieve higher accuracies than the ones we have tested.
[104], for instance, recommends using spherical neighborhoods with a specific radius instead
of using the k nearest neighbors. The authors justify this by a lower sensitivity to varying
densities. As we perform reductions on the point clouds this impact is expected to be relatively
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small. Additionally, in almost every publication a slightly different set of features is used. One
possible enhancement is the extension of scan2features to allow combining a variation of them.
Furthermore, as shown in chapter 7, an improvement when calculating features for classifier
training can be implemented. It is reasonable to calculate features for an equally distributed
set of points only. This significantly reduces the time needed for training. On the other hand,
all training instances could be weighted. It is likely that the classifiers generalize better after
seeing a higher number of different samples.

Since the classical and the deep learning approach showed different errors, one may combine
the methods and do a vote for the correct class. We are highly interested in the results of this
setup.

In addition, we want to promote the use of Blender2Helios again. For instance in the field of
computer games, large and highly-detailed 3D scenes were already created. In combination with
our published preprocessing script, these can easily be converted to labeled 3D scans to create
training data. One can also use our tool to create laser scans of own scenes. This is especially
helpful when training data of similar scenes is not or only sparsely available. We hope to see
some applications of our tool in future publications.
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Appendix A

Blender2Helios Code Schema

Algorithm 6 Blender2Helios - Schema of exporting a Scene (Part 3)
1: // The following functions are only briefly described for readability reasons
2: function xmlSceneHead( ) . . . // Returns a default XML header for a scene
3: end function
4:
5: function xmlSceneFoot( ) . . . // Returns a default XML footer for a scene
6: end function
7:
8: function xmlSurvey( ) . . . // Returns XML code for a default 360◦ scan survey
9: end function

10:
11: function toText(elements) . . . // Returns string of values
12: “e1 − e2 − · · · − en” (ei ∈ elements)
13: end function
14:
15: function scale2Origional(object) . . . // Returns dimensions of object as if scaling of

first dimension was 1 (object.dimensions/object.scale[0]). For instance returns [100,200,300] for
object with dimensions [200,400,600] when scaled by [2,y,z] for any y,z

16: end function
17:
18: function object2XML(cName, fileName, translation, rotation, scale) . . . // Re-

turns Helios compatible XML string that represents one object.
19: end function
20:
21: function quaternion2RPY(quaternion) . . . // Returns roll-pitch-yaw of quaternion
22: end function
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Appendix B

Impact of Different RF
Configurations and Random Seeds

Table B.1: Different configurations for randomness and tree size and the resulting classification accuracy.
Trained and tested on our own split of the Semantic3D dataset.

Conf. # Forest Size Seed (Subsampl.) Seed (RF) Accuracy
1 10 1 1 64.90%
2 25 1 1 65.49%
3 50 1 1 66.19%
4 100 1 1 66.46%
5 100 1 2 67.27%
6 100 2 2 66.34%
7 100 3 3 67.00%
8 100 4 4 65.03%
9 200 1 1 66.70%
10 500 1 1 66.37%
11 500 2 2 66.07%
12 500 3 3 67.00%
13 500 4 4 65.88%
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Table B.2: F1 values for different configurations (see B.1). Trained and tested on our own split of the
Semantic3D dataset.

Terrain Vegetation Build- Hard Arte- Weight.
Conf. # Man-m. Nat. High Low ings Scape facts Cars Avg.

1 0.861 0.109 0.756 0.270 0.669 0.102 0.349 0.157 0.683
2 0.872 0.109 0.752 0.277 0.677 0.036 0.388 0.172 0.686
3 0.872 0.106 0.756 0.287 0.689 0.022 0.391 0.174 0.691
4 0.880 0.107 0.752 0.289 0.688 0.024 0.410 0.168 0.692
5 0.893 0.127 0.758 0.290 0.686 0.025 0.411 0.167 0.697
6 0.875 0.106 0.760 0.278 0.681 0.030 0.420 0.164 0.691
7 0.898 0.131 0.757 0.277 0.678 0.031 0.407 0.161 0.696
8 0.864 0.103 0.751 0.273 0.673 0.027 0.411 0.166 0.683
9 0.881 0.107 0.752 0.287 0.691 0.030 0.419 0.175 0.693
10 0.878 0.107 0.753 0.284 0.687 0.027 0.418 0.172 0.692
11 0.875 0.107 0.754 0.281 0.680 0.026 0.422 0.167 0.689
12 0.898 0.131 0.757 0.277 0.678 0.031 0.407 0.161 0.696
13 0.877 0.108 0.752 0.278 0.680 0.024 0.415 0.164 0.688
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Appendix C

Parameter Optimization: Precision
and Recall on Different Scales

Table C.1: Precision values for our random forest classifier using different scales for feature calculation.

Class Precision Score Weight.
Red. 1 2 3 4 5 6 7 8 Avg.
0 0.964 0.278 0.776 0.244 0.840 0.085 0.278 0.076 0.765
1 0.954 0.294 0.764 0.240 0.801 0.151 0.284 0.074 0.750
2 0.958 0.298 0.782 0.242 0.805 0.124 0.252 0.082 0.757
5 0.958 0.291 0.793 0.238 0.785 0.162 0.172 0.079 0.754
10 0.959 0.260 0.816 0.224 0.764 0.250 0.149 0.072 0.756
20 0.960 0.254 0.838 0.194 0.787 0.221 0.136 0.108 0.767
40 0.937 0.212 0.812 0.221 0.815 0.118 0.115 0.094 0.757
80 0.899 0.223 0.796 0.220 0.773 0.083 0.116 0.113 0.730
160 0.831 0.032 0.729 0.211 0.714 0.088 0.153 0.123 0.670
2, 10 0.961 0.311 0.854 0.246 0.773 0.151 0.238 0.076 0.772
2, 20 0.952 0.360 0.883 0.243 0.761 0.185 0.218 0.074 0.777
2, 80 0.939 0.328 0.875 0.228 0.812 0.128 0.251 0.149 0.784
2, 10, 80 0.936 0.309 0.880 0.252 0.863 0.212 0.266 0.132 0.802
2, 20, 80 0.934 0.371 0.890 0.244 0.858 0.164 0.266 0.119 0.802
2, 8, 32 0.957 0.301 0.862 0.291 0.879 0.178 0.243 0.113 0.800
5, 20, 80 0.935 0.341 0.888 0.248 0.857 0.201 0.214 0.128 0.802
10, 20, 40 0.958 0.313 0.874 0.230 0.835 0.220 0.166 0.124 0.795
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Table C.2: Recall values for our random forest classifier using different scales for feature calculation.

Class Recall Score Weight.
Red. 1 2 3 4 5 6 7 8 Avg.
0 0.928 0.495 0.740 0.532 0.441 0.006 0.677 0.514 0.665
1 0.940 0.430 0.715 0.562 0.415 0.027 0.594 0.518 0.652
2 0.920 0.580 0.709 0.558 0.443 0.029 0.648 0.501 0.657
5 0.906 0.590 0.699 0.542 0.460 0.031 0.577 0.424 0.652
10 0.877 0.578 0.692 0.484 0.471 0.115 0.477 0.419 0.643
20 0.800 0.711 0.687 0.392 0.644 0.102 0.311 0.480 0.664
40 0.775 0.613 0.724 0.162 0.626 0.159 0.301 0.639 0.652
80 0.890 0.366 0.694 0.228 0.605 0.063 0.377 0.609 0.663
160 0.713 0.099 0.651 0.332 0.544 0.017 0.392 0.618 0.583
2, 10 0.889 0.704 0.692 0.494 0.494 0.040 0.662 0.577 0.658
2, 20 0.915 0.669 0.694 0.462 0.533 0.043 0.638 0.534 0.674
2, 80 0.937 0.428 0.718 0.565 0.610 0.059 0.648 0.459 0.708
2, 10, 80 0.916 0.484 0.741 0.535 0.639 0.118 0.679 0.536 0.720
2, 20, 80 0.927 0.509 0.747 0.469 0.650 0.097 0.662 0.551 0.724
2, 8, 32 0.886 0.650 0.702 0.569 0.622 0.142 0.687 0.526 0.695
5, 20, 80 0.917 0.488 0.735 0.538 0.656 0.090 0.611 0.478 0.721
10, 20, 40 0.880 0.659 0.722 0.457 0.654 0.119 0.484 0.481 0.705
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Appendix D

Detailed Results of Comparing
Classifiers

D.1 Oakland

Table D.1: Comparison of precision scores on the Oakland dataset.

Class Precision Score
Classifier 1 2 3 4 5

Original RF 0.959 0.091 0.236 0.972 0.846
Our RF 0.953 0.101 0.376 0.999 0.893

Our SVMRBF 0.767 0.020 0.053 0.998 0.769
Our SVMLinear 0.805 0.015 0.061 0.997 0.715

KPConv 0.964 0.104 0.327 0.998 0.933

Table D.2: Comparison of recall scores on the Oakland dataset.

Class Recall Score
Classifier 1 2 3 4 5

Original RF 0.809 0.862 0.798 0.985 0.672
Our RF 0.922 0.894 0.751 0.994 0.696

Our SVMRBF 0.776 0.764 0.719 0.809 0.289
Our SVMLinear 0.816 0.820 0.427 0.809 0.220

KPConv 0.968 0.900 0.623 0.985 0.720
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Table D.3: Confusion matrix - Our RF on Oakland.

Act.
Pred.

1 2 3 4 5

1 246442 9366 1800 1128 8589
2 288 3393 21 2 90
3 1434 249 5954 23 273
4 2896 2454 20 928480 296
5 7464 18141 8059 102 77346

Table D.4: Confusion matrix - KPConv on Oakland.

Act.
Pred.

1 2 3 4 5

1 258644 3234 1281 661 3505
2 334 3415 22 23 0
3 1248 132 4939 56 1558
4 3658 9334 154 920312 688
5 4465 16852 8727 1048 80020
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D.2 Paris-rue-Madame

Table D.5: Comparison of precision scores on the Paris-rue-Madame dataset.

Class Precision Score
Classifier 1 2 3 4 5 6

Original RF 0.962 0.964 0.755 0.019 0.123 0.055
Our RF 0.984 0.994 0.816 0.000 0.291 0.200

Our SVMRBF 0.975 0.984 0.895 0.000 0.087 0.017
Our SVMLinear 0.973 0.989 0.891 0.000 0.032 0.036

KPConv 0.981 0.994 0.989 0.000 0.884 0.996

Table D.6: Comparison of recall scores on the Paris-rue-Madame dataset.

Class Recall Score
Classifier 1 2 3 4 5 6

Original RF 0.957 0.902 0.606 0.575 0.639 0.974
Our RF 0.982 0.937 0.995 0.000 0.154 0.635

Our SVMRBF 0.972 0.871 0.827 0.011 0.188 0.752
Our SVMLinear 0.981 0.851 0.839 0.000 0.108 0.860

KPConv 0.998 0.982 0.957 0.000 0.625 0.623

Semantic Classification in Uncolored 3D Point Clouds
using Multiscale Features



100 Appendix D. Detailed Results of Comparing Classifiers

Table D.7: Confusion matrix - Our RF on Paris-Rue-Madame.

Act.
Pred.

1 2 3 4 5 6

1 5115398 15492 70100 51 1909 6068
2 79831 3457036 146914 659 4142 2654
3 149 4076 1039714 221 401 0
4 960 7 4681 0 0 744
5 803 681 12028 221 2642 747
6 1463 3 0 0 0 2551

Table D.8: Confusion matrix - KPConv on Paris-Rue-Madame.

Act.
Pred.

1 2 3 4 5 6

1 5199160 9858 0 0 0 0
2 59019 3624301 7090 0 816 10
3 34156 10711 999197 0 497 0
4 5942 1 449 0 0 0
5 1971 635 3807 0 10709 0
6 1390 35 0 0 89 2503

Semantic Classification in Uncolored 3D Point Clouds
using Multiscale Features



D.3. Sim2Real 101

D.3 Sim2Real

Table D.9: Comparison of precision scores when trained on Sim2Real.

Class Precision Score
Classifier 1 2 3 4 5 6

Our RF 1.000 0.784 0.876 0.893 0.959 0.827
Our SVMRBF 0.998 0.536 0.964 0.157 0.697 0.922

Our SVMLinear 0.994 0.232 0.955 0.067 0.783 0.938
KPConv 0.999 0.871 0.800 0.929 0.967 0.909

Table D.10: Comparison of recall scores when trained on Sim2Real.

Class Recall Score
Classifier 1 2 3 4 5 6

Our RF 0.973 0.762 0.961 0.304 0.650 0.986
Our SVMRBF 0.979 0.867 0.819 0.499 0.901 0.860

Our SVMLinear 0.931 0.864 0.837 0.586 0.895 0.594
KPConv 0.981 0.230 0.999 0.233 0.925 0.845
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Table D.11: Confusion matrix - Our RF on Sim2Real.

Act.
Pred.

1 2 3 4 5 6

1 6212347 26761 19840 5 50 122845
2 169 159496 15309 29 43 34301
3 6 2697 1752082 633 1771 66512
4 268 4193 11463 19649 18104 10898
5 5 3659 189184 1575 490993 69451
6 246 6568 12681 107 919 1457669

Table D.12: Confusion matrix - KPConv on Sim2Real.

Act.
Pred.

1 2 3 4 5 6

1 6260474 4611 93398 11 11459 11895
2 4266 48177 50699 203 1501 104501
3 1064 240 1821503 425 342 127
4 6 985 34595 15059 10464 3466
5 71 1247 50105 410 698364 4670
6 2313 23 226584 103 66 1249101
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D.4 Semantic3D Challenge
Results with color information of the authors of KPConv can be found at http://
www.semantic3d.net/view_method_detail.php?method=KP-FCNN.

Table D.13: Comparison of precision scores on Semantic3D.

Class Precision Score
Classifier 1 2 3 4 5 6 7 8

Our RF 0.977 0.873 0.646 0.506 0.961 0.390 0.224 0.478
KPConv 0.989 0.962 0.821 0.678 0.950 0.688 0.712 0.944

Table D.14: Comparison of recall scores on Semantic3D.

Class Recall Score
Classifier 1 2 3 4 5 6 7 8

Our RF 0.905 0.955 0.882 0.582 0.893 0.264 0.679 0.703
KPConv 0.993 0.938 0.989 0.453 0.992 0.373 0.807 0.866
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Table D.15: Confusion matrix - Our RF on Semantic3D.

Act.
Pred.

1 2 3 4 5 6 7 8

1 12951866 1150287 18418 103437 19675 19349 10003 4447
2 197760 10216373 2965 194123 6868 51665 1746 23246
3 9 865 4124839 304765 145582 55702 36093 8016
4 6040 194580 667482 1758590 50533 103550 51632 189487
5 86046 124814 1402283 651191 27591613 710196 238779 106284
6 7658 9592 151616 347803 784780 629731 190675 262690
7 572 502 11883 7054 19858 14962 158757 20251
8 1434 995 1215 105935 92052 30249 21030 599032

Table D.16: Confusion matrix - KPConv on Semantic3D.

Act.
Pred.

1 2 3 4 5 6 7 8

1 14222419 27827 87 1163 38542 16977 7369 3125
2 77759 10033009 5182 553962 20681 4013 61 79
3 0 1514 4625609 10043 31319 5029 2292 65
4 31737 338222 984133 1369104 81573 179988 31312 582
5 27396 10011 4366 11145 30672552 183650 1939 147
6 24007 17224 14011 72032 1305063 888420 29405 34383
7 1609 199 1627 278 29699 11628 188768 31
8 2064 13 0 623 105499 2003 3799 737941

Semantic Classification in Uncolored 3D Point Clouds
using Multiscale Features



Bibliography

[1] Mario Amrehn, Firas Mualla, Elli Angelopoulou, Stefan Steidl, and Andreas Maier. The
random forest classifier in Weka: Discussion and new developments for imbalanced data.
arXiv preprint arXiv:1812.08102, 2018.

[2] Karen Anderson, Steven Hancock, Mathias Disney, and Kevin J Gaston. Is waveform
worth it? A comparison of lidar approaches for vegetation and landscape characterization.
Remote Sensing in Ecology and Conservation, 2(1):5–15, 2016.

[3] S. Bechtold et al. Arff stable - Weka wiki. https://waikato.github.io/weka-wiki/
formats_and_processing/arff_stable, 2019. Accessed: 2020-02-01.

[4] S. Bechtold et al. Manual - giscience/helios wiki. https://github.com/GIScience/
helios/wiki/Manual, 2019. Accessed: 2020-02-01.

[5] S. Bechtold and B. Höfle. HELIOS: A multi-purpose lidar simulation framework for re-
search, planning and training of laser scanning operations with airborne, ground-based
mobile and stationary platforms. ISPRS Annals of Photogrammetry, Remote Sensing &
Spatial Information Sciences, 3(3):161–168, 2016.

[6] Yizhak Ben-Shabat, Michael Lindenbaum, and Anath Fischer. 3DmFV: Three-dimensional
point cloud classification in real-time using convolutional neural networks. IEEE Robotics
and Automation Letters, 3(4):3145–3152, 2018.

[7] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

[8] Paul Berner. Orientation, rotation, velocity, and acceleration and the srm. SEDRIS
Organization, ISO/IEC JTC, 1, 2007.

[9] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Sensor fusion IV:
control paradigms and data structures, volume 1611, pages 586–606. International Society
for Optics and Photonics, 1992.

[10] Christopher M Bishop et al. Neural networks for pattern recognition. Oxford university
press, 1995.

105

https://waikato.github.io/weka-wiki/formats_and_processing/arff_stable
https://waikato.github.io/weka-wiki/formats_and_processing/arff_stable
https://github.com/GIScience/helios/wiki/Manual
https://github.com/GIScience/helios/wiki/Manual


106 Bibliography

[11] Dorit Borrmann. Multi-modal 3d mapping - combining 3d point clouds with thermal
and color information. In Schriftenreihe Würzburger Forschungsberichte in Robotik und
Telematik, Band 14. Universität Würzburg, 2018, 2018.

[12] Dorit Borrmann, Jan Elseberg, Prashant Narayan KC, and Andreas Nüchter. Ein punkt
pro kubikmeter – präzise registrierung von terrestrischen laserscans mit scanmatching.
Photogrammetrie Laserscanning Optische 3D-Messtechnik, Beiträge der Oldenburger 3D-
Tage, 2012.

[13] Dorit Borrmann, Jan Elseberg, and Andreas Nüchter. Thermal 3d mapping of building
façades. In Intelligent autonomous systems 12, pages 173–182. Springer, 2013.

[14] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for
optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational
learning theory, pages 144–152, 1992.

[15] Alexandre Boulch, Bertrand Le Saux, and Nicolas Audebert. Unstructured point cloud
semantic labeling using deep segmentation networks. 3DOR, 2:7, 2017.

[16] Paul Bourke. Object files. http://paulbourke.net/dataformats/obj. Accessed: 2020-
02-01.

[17] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[18] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[19] Allan Brito. Blender Quick Start Guide: 3D Modeling, Animation, and Render with Eevee
in Blender 2.8. Packt Publishing Ltd, 2018.

[20] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine,
34(4):18–42, 2017.

[21] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

[22] Chao Chen, Andy Liaw, Leo Breiman, et al. Using random forest to learn imbalanced
data. University of California, Berkeley, 110(1-12):24, 2004.

[23] Nancy Chinchor. MUC-4 evaluation metrics. In Proceedings of the 4th conference on
Message understanding, pages 22–29. Association for Computational Linguistics, 1992.

[24] Dan Ciresan, Alessandro Giusti, Luca M Gambardella, and Jürgen Schmidhuber. Deep
neural networks segment neuronal membranes in electron microscopy images. In Advances
in neural information processing systems, pages 2843–2851, 2012.

[25] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural language processing (almost) from scratch. Journal of machine
learning research, 12(Aug):2493–2537, 2011.

Semantic Classification in Uncolored 3D Point Clouds
using Multiscale Features

http://paulbourke.net/dataformats/obj


Bibliography 107

[26] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[27] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei.
Deformable convolutional networks. In Proceedings of the IEEE international conference
on computer vision, pages 764–773, 2017.

[28] Mark De Deuge, Alastair Quadros, Calvin Hung, and Bertrand Douillard. Unsupervised
feature learning for classification of outdoor 3d scans. In Australasian Conference on
Robitics and Automation, volume 2, page 1, 2013.

[29] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural net-
works on graphs with fast localized spectral filtering. In Advances in neural information
processing systems, pages 3844–3852, 2016.

[30] Jérôme Demantké, Clément Mallet, Nicolas David, and Bruno Vallet. Dimensionality
based scale selection in 3d lidar point clouds. 2011.

[31] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[32] Rossen Dimov, Michael Feld, Dr Michael Kipp, Dr Alassane Ndiaye, and Dr Dominik Heck-
mann. Weka: Practical machine learning tools and techniques with java implementations.
AI Tools SeminarUniversity of Saarland, WS, 6(07), 2007.

[33] Chris Drummond, Robert C Holte, et al. C4.5, class imbalance, and cost sensitivity: why
under-sampling beats over-sampling. In Workshop on learning from imbalanced datasets
II, volume 11, pages 1–8. Citeseer, 2003.

[34] Emil Dumic, Anamaria Bjelopera, and Andreas Nüchter. Projection based dynamic point
cloud compression using 3DTK toolkit and H.265/HEVC. In 2019 2nd International
Colloquium on Smart Grid Metrology (SMAGRIMET), pages 1–4. IEEE, 2019.

[35] Jan Elseberg, Dorit Borrmann, and Andreas Nüchter. Full wave analysis in 3d laser scans
for vegetation detection in urban environments. In 2011 XXIII International Symposium
on Information, Communication and Automation Technologies, pages 1–7. IEEE, 2011.

[36] Jan Elseberg, Dorit Borrmann, and Andreas Nüchter. One billion points in the cloud - an
octree for efficient processing of 3d laser scans. ISPRS Journal of Photogrammetry and
Remote Sensing, 76:76–88, 2013.

[37] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI Williams, John Winn,
and Andrew Zisserman. The pascal visual object classes challenge: A retrospective. In-
ternational journal of computer vision, 111(1):98–136, 2015.

[38] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes (voc) challenge. International journal of
computer vision, 88(2):303–338, 2010.

Semantic Classification in Uncolored 3D Point Clouds
using Multiscale Features



108 Bibliography

[39] Sagi Filin and Norbert Pfeifer. Neighborhood systems for airborne laser data. Photogram-
metric Engineering & Remote Sensing, 71(6):743–755, 2005.

[40] J Friedman, T Hastie, and R Tibshirani. The elements of statistical learning: Springer
series in statistics springer, 2001.

[41] Simone Frintrop. Robuste Roboterlokalisierung mit omnidirektionaler Bildsensorik. PhD
thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2001.

[42] Daniel Girardeau-Montaut. Cloudcompare – point cloud processing workshop, 2016.

[43] Timo Hackel, Nikolay Savinov, Lubor Ladicky, Jan D Wegner, Konrad Schindler, and
Marc Pollefeys. Semantic3d. net: A new large-scale point cloud classification benchmark.
arXiv preprint arXiv:1704.03847, 2017.

[44] Timo Hackel, Jan DWegner, Nikolay Savinov, Lubor Ladicky, Konrad Schindler, and Marc
Pollefeys. Large-scale supervised learning for 3d point cloud labeling: Semantic3d.net.
Photogrammetric Engineering & Remote Sensing, 84(5):297–308, 2018.

[45] Timo Hackel, Jan D Wegner, and Konrad Schindler. Fast semantic segmentation of 3d
point clouds with strongly varying density. ISPRS annals of the photogrammetry, remote
sensing and spatial information sciences, 3:177–184, 2016.

[46] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[47] Robert Hecht-Nielsen. Theory of the backpropagation neural network. In Neural networks
for perception, pages 65–93. Elsevier, 1992.

[48] Ekbert Hering and Gert Schönfelder. Sensoren in Wissenschaft und Technik: Funktion-
sweise und Einsatzgebiete. Springer, 2018.

[49] Harold Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of educational psychology, 24(6):417, 1933.

[50] Badr Hssina, Abdelkarim Merbouha, Hanane Ezzikouri, and Mohammed Erritali. A com-
parative study of decision tree ID3 and C4. 5. International Journal of Advanced Computer
Science and Applications, 4(2):13–19, 2014.

[51] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. A practical guide to support
vector classification, 2003.

[52] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang, Niki Trigoni,
and Andrew Markham. RandLA-Net: Efficient semantic segmentation of large-scale point
clouds. arXiv preprint:1911.11236, 2019.

[53] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks for
human action recognition. IEEE transactions on pattern analysis and machine intelligence,
35(1):221–231, 2012.

Semantic Classification in Uncolored 3D Point Clouds
using Multiscale Features



Bibliography 109

[54] B Jutzi and H Gross. Nearest neighbour classification on laser point clouds to gain object
structures from buildings. The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, 38(Part 1):4–7, 2009.

[55] Kari Karhunen. Über lineare Methoden in der Wahrscheinlichkeitsrechnung, volume 37.
Sana, 1947.

[56] Thomas P Kersten, Felix Tschirschwitz, Simon Deggim, and Maren Lindstaedt. Virtual
reality for cultural heritage monuments–from 3d data recording to immersive visualisation.
In Euro-Mediterranean Conference, pages 74–83. Springer, 2018.

[57] Hans-Joachim Kowalsky. Lineare algebra. Walter de Gruyter, 2013.

[58] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with
deep convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

[59] Miroslav Kubat, Stan Matwin, et al. Addressing the curse of imbalanced training sets:
one-sided selection. In Icml, volume 97, pages 179–186. Nashville, USA, 1997.

[60] Shir Meir Lador. What metrics should be used for evaluating a model on an imbalanced
data set? (precision + recall or roc=tpr+fpr). https://towardsdatascience.com/
what-metrics-should-we-use-on-imbalanced-data-set-precision-recall-roc-
e2e79252aeba, 2017. Accessed: 2020-02-11.

[61] Samuli Laine and Tero Karras. Efficient sparse voxel octrees. pages 55–63. IEEE, 2010.

[62] Jean-François Lalonde, Nicolas Vandapel, Daniel F Huber, and Martial Hebert. Natural
terrain classification using three-dimensional ladar data for ground robot mobility. Journal
of field robotics, 23(10):839–861, 2006.

[63] Loic Landrieu and Martin Simonovsky. Large-scale point cloud semantic segmentation
with superpoint graphs. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4558–4567, 2018.

[64] Felix Järemo Lawin, Martin Danelljan, Patrik Tosteberg, Goutam Bhat, Fahad Shahbaz
Khan, and Michael Felsberg. Deep projective 3d semantic segmentation. In International
Conference on Computer Analysis of Images and Patterns, pages 95–107. Springer, 2017.

[65] Impyeong Lee and Toni Schenk. Perceptual organization of 3d surface points. Interna-
tional Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
34(3/A):193–198, 2002.

[66] Jiaxin Li, Ben M Chen, and Gim Hee Lee. SO-Net: Self-organizing network for point
cloud analysis. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 9397–9406, 2018.

[67] Velodyne Lidar. HDL-64E. https://velodynelidar.com/products/hdl-64e/, 2020. Ac-
cessed: 2020-03-01.

Semantic Classification in Uncolored 3D Point Clouds
using Multiscale Features

https://towardsdatascience.com/what-metrics-should-we-use-on-imbalanced-data-set-precision-recall-roc-e2e79252aeba
https://towardsdatascience.com/what-metrics-should-we-use-on-imbalanced-data-set-precision-recall-roc-e2e79252aeba
https://towardsdatascience.com/what-metrics-should-we-use-on-imbalanced-data-set-precision-recall-roc-e2e79252aeba
https://velodynelidar.com/products/hdl-64e/


110 Bibliography

[68] Charles X Ling and Chenghui Li. Data mining for direct marketing: Problems and solu-
tions. In Kdd, volume 98, pages 73–79, 1998.

[69] Michel Loève. Probability theory 1. New York, 1963.

[70] Hans-Gerd Maas and George Vosselman. Two algorithms for extracting building models
from raw laser altimetry data. ISPRS Journal of photogrammetry and remote sensing,
54(2-3):153–163, 1999.

[71] Clément Mallet, Frédéric Bretar, Michel Roux, Uwe Soergel, and Christian Heipke. Rele-
vance assessment of full-waveform lidar data for urban area classification. ISPRS journal
of photogrammetry and remote sensing, 66(6):S71–S84, 2011.

[72] Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. Geodesic
convolutional neural networks on riemannian manifolds. In Proceedings of the IEEE in-
ternational conference on computer vision workshops, pages 37–45, 2015.

[73] Daniel Maturana and Sebastian Scherer. VoxNet: A 3d convolutional neural network for
real-time object recognition. In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 922–928. IEEE, 2015.

[74] Grégoire Montavon, Matthias Rupp, Vivekanand Gobre, Alvaro Vazquez-Mayagoitia,
Katja Hansen, Alexandre Tkatchenko, Klaus-Robert Müller, and O Anatole Von Lilien-
feld. Machine learning of molecular electronic properties in chemical compound space.
New Journal of Physics, 15(9):095003, 2013.

[75] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for interpreting
and understanding deep neural networks. Digital Signal Processing, 73:1–15, 2018.

[76] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and
Michael M Bronstein. Geometric deep learning on graphs and manifolds using mixture
model cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5115–5124, 2017.

[77] Daniel Munoz, J Andrew Bagnell, Nicolas Vandapel, and Martial Hebert. Contextual
classification with functional max-margin markov networks. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pages 975–982. IEEE, 2009.

[78] Hiroshi Murase and Shree K Nayar. Visual learning and recognition of 3-d objects from
appearance. International journal of computer vision, 14(1):5–24, 1995.

[79] Andreas Nüchter, Dorit Borrmann, and Johannes Schauer. 3DTK - the 3d toolkit. http:
//threedtk.de, 2019. Accessed: 2020-02-01.

[80] Andreas Nüchter and K Lingemann. 3DTK - the 3d toolkit. https://
robotik.informatik.uni-wuerzburg.de/telematics/download/IAS-tutorial-01.pdf,
2014. Accessed: 2020-02-01.

Semantic Classification in Uncolored 3D Point Clouds
using Multiscale Features

http://threedtk.de
http://threedtk.de
https://robotik.informatik.uni-wuerzburg.de/telematics/download/IAS-tutorial-01.pdf
https://robotik.informatik.uni-wuerzburg.de/telematics/download/IAS-tutorial-01.pdf


Bibliography 111

[81] Josh Patterson and Adam Gibson. Getting started with deep learning. O’Reilly Media,
Inc., 2018.

[82] Karl Pearson. On lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572,
1901.

[83] John Platt. Sequential minimal optimization: A fast algorithm for training support vector
machines. 1998.

[84] William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery. Numer-
ical recipes in c, 1988.

[85] Philipp Probst. Hyperparameters, tuning and meta-learning for random forest and other
machine learning algorithms. PhD thesis, lmu, 2019.

[86] Philipp Probst and Anne-Laure Boulesteix. To tune or not to tune the number of trees in
random forest. The Journal of Machine Learning Research, 18(1):6673–6690, 2017.

[87] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. PointNet: Deep
learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 652–660, 2017.

[88] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. PointNet++: Deep hier-
archical feature learning on point sets in a metric space. In Advances in neural information
processing systems, pages 5099–5108, 2017.

[89] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[90] Diane Ramey, Linda Rose, and Lisa Tyerman. Mtl material format (lightwave, obj).
http://paulbourke.net/dataformats/mtl, 1995. Accessed: 2020-02-01.

[91] Riegl. Riegl VZ-400 datasheet. http://www.riegl.com/uploads/
tx_pxpriegldownloads/10_DataSheet_VZ-400_2017-06-14.pdf, 2017. Accessed:
2020-03-01.

[92] Brian D Ripley. Pattern recognition and neural networks. Cambridge university press,
2007.

[93] Jürgen Rossmann, Michael Schluse, Arno Bücken, and Petra Krahwinkler. Using airborne
laser-scanner-data in forestry management: A novel approach to single tree delineation.
In Proceedings of the ISPRS Workshop on Laser Scanning, pages 350–354, 2007.

[94] Xavier Roynard, Jean-Emmanuel Deschaud, and François Goulette. Classification of point
cloud scenes with multiscale voxel deep network. arXiv preprint arXiv:1804.03583, 2018.

[95] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. ImageNet large
scale visual recognition challenge. International journal of computer vision, 115(3):211–
252, 2015.

Semantic Classification in Uncolored 3D Point Clouds
using Multiscale Features

http://paulbourke.net/dataformats/mtl
http://www.riegl.com/uploads/tx_pxpriegldownloads/10_DataSheet_VZ-400_2017-06-14.pdf
http://www.riegl.com/uploads/tx_pxpriegldownloads/10_DataSheet_VZ-400_2017-06-14.pdf


112 Bibliography

[96] Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al. Learning with kernels: sup-
port vector machines, regularization, optimization, and beyond. MIT press, 2002.

[97] Mark R Segal. Machine learning benchmarks and random forest regression. 2004.

[98] Heidi Seibold, Christoph Bernau, Anne-Laure Boulesteix, and Riccardo De Bin. On the
choice and influence of the number of boosting steps for high-dimensional linear cox-
models. Computational Statistics, 33(3):1195–1215, 2018.

[99] Andrés Serna, Beatriz Marcotegui, François Goulette, and Jean-Emmanuel Deschaud.
Paris-rue-madame database: a 3d mobile laser scanner dataset for benchmarking urban
detection, segmentation and classification methods. 2014.

[100] Lindsay I Smith. A tutorial on principal components analysis. Technical report, 2002.

[101] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. SUN RGB-D: A rgb-d scene
understanding benchmark suite. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 567–576, 2015.

[102] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-view
convolutional neural networks for 3d shape recognition. In Proceedings of the IEEE inter-
national conference on computer vision, pages 945–953, 2015.

[103] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-Yi Zhou. Tangent convo-
lutions for dense prediction in 3d. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3887–3896, 2018.

[104] Hugues Thomas, François Goulette, Jean-Emmanuel Deschaud, and Beatriz Marcotegui.
Semantic classification of 3d point clouds with multiscale spherical neighborhoods. In 2018
International Conference on 3D Vision (3DV), pages 390–398. IEEE, 2018.

[105] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François
Goulette, and Leonidas J Guibas. KPConv: Flexible and deformable convolution for point
clouds. In Proceedings of the IEEE International Conference on Computer Vision, pages
6411–6420, 2019.

[106] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Mar-
cotegui, François Goulette, and Leonidas J Guibas. Supplementary
material for KPConv: Flexible and deformable convolution for point
clouds. http://openaccess.thecvf.com/content_ICCV_2019/supplemental/
Thomas_KPConv_Flexible_and_ICCV_2019_supplemental.pdf, 2019. Accessed: 2020-
04-01.

[107] Alexander Toshev, Philippos Mordohai, and Ben Taskar. Detecting and parsing archi-
tecture at city scale from range data. In 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 398–405. IEEE, 2010.

Semantic Classification in Uncolored 3D Point Clouds
using Multiscale Features

http://openaccess.thecvf.com/content_ICCV_2019/supplemental/Thomas_KPConv_Flexible_and_ICCV_2019_supplemental.pdf
http://openaccess.thecvf.com/content_ICCV_2019/supplemental/Thomas_KPConv_Flexible_and_ICCV_2019_supplemental.pdf


Bibliography 113

[108] Matthew Turk and Alex Pentland. Face recognition using eigenfaces. In Proceedings.
1991 IEEE computer society conference on computer vision and pattern recognition, pages
586–587, 1991.

[109] Bruno Vallet, Mathieu Brédif, Andrés Serna, Beatriz Marcotegui, and Nicolas Paparoditis.
Terramobilita/iqmulus urban point cloud analysis benchmark. Computers & Graphics,
49:126–133, 2015.

[110] Vladimir Vapnik. Estimation of dependences based on empirical data berlin, 1982.

[111] William N Venables and Brian D Ripley. Modern applied statistics with S-PLUS. Springer
Science & Business Media, 2013.

[112] Walber. Precision and recall - wikimedia commons. https://commons.wikimedia.org/
wiki/File:Precisionrecall.svg, 2014. CC-BY-SA-4.0. Accessed: 2020-03-01.

[113] Andrew R Webb. Statistical pattern recognition. John Wiley & Sons, 2003.

[114] Martin Weinmann, Boris Jutzi, and Clément Mallet. Feature relevance assessment for the
semantic interpretation of 3d point cloud data. ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, 5(W2):1, 2013.

[115] Martin Weinmann, Boris Jutzi, and Clément Mallet. Semantic 3d scene interpretation:
A framework combining optimal neighborhood size selection with relevant features. IS-
PRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
2(3):181, 2014.

[116] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[117] Ian H Witten, Eibe Frank, Leonard E Trigg, Mark A Hall, Geoffrey Holmes, and Sally Jo
Cunningham. Weka: Practical machine learning tools and techniques with java implemen-
tations. 1999.

[118] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 3D ShapeNets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1912–1920, 2015.

[119] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao. SpiderCNN: Deep learning
on point sets with parameterized convolutional filters. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 87–102, 2018.

[120] Li Yi, Hao Su, Xingwen Guo, and Leonidas J Guibas. SyncSpecCNN: Synchronized spec-
tral cnn for 3d shape segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2282–2290, 2017.

Semantic Classification in Uncolored 3D Point Clouds
using Multiscale Features

https://commons.wikimedia.org/wiki/File:Precisionrecall.svg
https://commons.wikimedia.org/wiki/File:Precisionrecall.svg




Proclamation

Hereby I confirm that I wrote this thesis independently and that I have not made use of any
other resources or means than those indicated.

Würzburg, May 2020


	Introduction
	Outline
	Scientific Contribution

	Preliminaries
	Laser Scanning and Point Clouds
	Methods for Measuring Distances with Light
	Point Clouds
	Specifics and Advanced Features of Laser Scanning
	Used Hardware: Riegl VZ-400

	Data Structures for Storing 3D Point Clouds
	Octrees
	K-D Trees

	Principal Component Analysis
	Visual Representation of PCA
	Calculations in PCA

	Classification
	Random Forests
	Support Vector Machines
	Artificial Neural Networks


	I Tools and Datasets
	Used tools
	3DTK - The 3D Toolkit
	Weka 3
	The ARFF File Format
	Support Vector Machines in Weka

	Helios
	Blender 2.8

	Datasets
	Oakland
	Paris-rue-Madame
	Semantic3D
	Sim2Real

	Blender2Helios - The Blender LiDAR Add-on
	Main Challenges
	How to Use
	Implementation


	II Semantic Classification
	Implementation and Tuning of the Classifiers
	Finding the Optimal Neighborhood Size
	Definition of Multiscale Features
	Implementation in 3DTK
	Parameter Optimization

	Parameter Tuning of the Classifiers
	Random Forest
	Support Vector Machines

	Deep Learning: KPConv
	Deep Learning for 3D Point Cloud Classification
	Kernel Point Convolution (KPConv)


	Results and Comparison
	Oakland
	Paris-rue-Madame
	Sim2Real
	Semantic3D Challenge
	Run Times

	Conclusions and Future Work
	Appendices
	Blender2Helios Code Schema
	Impact of Different RF Configurations and Random Seeds
	Parameter Optimization: Precision and Recall on Different Scales
	Detailed Results of Comparing Classifiers
	Oakland
	Paris-rue-Madame
	Sim2Real
	Semantic3D Challenge



