
Institute for Computer Science VII
Robotics and Telematics

Master’s thesis

An optimized polygon based SLAM
algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient

descent

Fabian Arzberger

September 2021

First reviewer: Prof. Dr. Andreas Nüchter
Second reviewer: Prof. Dr. Klaus Schilling
Advisor: Dr. Dorit Borrmann

Abstract
In todays world, mobile robots are used in a variety of ways for the application of simulta-

neous localization and mapping (SLAM). To perform SLAM, an algorithm must register subse-
quent scans, taken from different locations, into one coordinate system. Usually, an estimation
of the current pose of such a robot is done by a global navigation satellite system (GNSS),
odometry, and/or an inertial measurement unit (IMU). The better the pose estimate is, the
easier it becomes to perform SLAM. However, when pose estimation with GNSS or odometry
is not available, one has to rely only on IMU-based methods, which is sensitive to errors. Addi-
tionally, many mobile robots can not guarantuee a slow, controlled motion, which obscures the
pose estimation further, making SLAM more difficult. Recent publications from the European
Space Agency (ESA) presage the rise of spherical robots for mobile mapping, due to advantages
regarding locomotion and sensor protection. Despite these advantages, the spherical format
suffers from the abovementioned difficulties regarding SLAM, introducing the need for a robust
registration algorithm. This thesis proposes a novel 3D point cloud registration method for
robotic mobile mapping systems using SLAM, based on planar polygon matching in six degrees
of freedom (DoF). The proposed algorithm needs only geometric information, i.e., a point cloud
and coarse pose estimations from an error-prone IMU. With these inputs, the algorithm corrects
the 6 DoF path of the mobile system, improves map quality, and creates a global planar model of
the scene. Furthermore, this thesis proposes a novel segmentation method for 3D point clouds,
that utilizes an efficient adaption of k-d trees, called Bkd-trees, for efficient point to cluster dis-
tance calculation. The Bkd-tree adds efficient insertion and deletion of points while preserving
excellent query performance at all times. An extensive evaluation reveals challenges and open
problems for future research, e.g., the lack of a loop closing technique. However, the results also
show the relevance of the presented algorithm for mobile mapping systems with different motion
profiles and scanning patterns.

Zusammenfassung
In der heutigen Welt werden mobile Roboter auf vielfältige Weise für die Anwendung der

simultanen Lokalisierung und Kartierung (SLAM) eingesetzt. Um SLAM durchzuführen, muss
ein Algorithmus aufeinanderfolgende Scans, die von verschiedenen Standorten aus aufgenom-
men wurden, in einem Koordinatensystem registrieren. In der Regel erfolgt eine Schätzung
der aktuellen Position eines solchen Roboters durch ein globales Satellitennavigationssystem
(GNSS), Odometrie und/oder eine Inertialmesseinheit (IMU). Je besser die Schätzung der Lage
ist, desto einfacher ist die Durchführung von SLAM. Wenn jedoch keine Positionsbestimmung
mit GNSS oder Odometrie zur Verfügung steht, muss man sich auf IMU-basierte Methoden ver-
lassen, die sehr fehleranfällig sind. Darüber hinaus können viele mobile Roboter keine langsame,
kontrollierte Bewegung garantieren, was die Posenschätzung weiter erschwert und SLAM noch
schwieriger macht. Jüngste Veröffentlichungen der Europäischen Weltraumorganisation (ESA)
lassen den Aufschwung von kugelförmigen Robotern für die mobile Kartierung erwarten, da sie
Vorteile bei der Fortbewegung und beim Schutz der Sensoren bieten. Trotz dieser Vorteile leidet
das sphärische Format unter den oben erwähnten Schwierigkeiten in Bezug auf SLAM, was die
Notwendigkeit eines robusten Registrierungsalgorithmus mit sich bringt. Die vorliegende Arbeit
zeigt eine neue Registrierungsmethode in sechs Freiheitsgraden für 3D Punktwolken, gedacht
für den Einsatz mit mobilen Robotersystemen. Der vorgestellte Algorithmus basiert auf flachen
Polygonen, die mit einer Bewertungsfunktion einander zugeordnet werden. Außerdem benötigt
der Algorithmus nur die Punktwolke und eine grobe Poseschätzung für eine Pfadkorrektur in
sechs Freiheitsgraden, Verbesserung der Karte, und ein globales Ebenenmodel. Dafür benutzt
der Algorithmus eine ebenfalls neue Methode zur Segmentierung von Punktwolken, basierend
auf einer Adaption des kd-Baumes, welche das Einfügen und Entfernen von Punkten ermöglicht
ohne die exzellente Abfragekomplexität zu verschlechtern. Eine ausführliche Auswertung of-
fenbart Herrausforderungen und offene Probleme für zukünftige Arbeiten, beispielsweise wurde
keine Methode zum Schliessen von Schleifen implementiert. Allerdings zeigen die Ergebnisse
auch die Relevanz des vorgestellten Algorithmus für alle möglichen Arten von mobilen Robot-
ersystemen, mit verschiedenen Bewegungs- und Scanmustern.

Danksagung
An dieser Stelle möchte ich all den Personen danken, die in irgendeiner Weise an dieser Arbeit

mitgewirkt haben. Zuerst ein großes Dankeschön an Dorit Borrmann, die auch außerhalb ihrer
Aufgabe als Betreuerin immer für ertragreiche Diskussionen zu haben war und mir bei einigen
technischen Details den Weg weisen konnte. Außerdem spreche ich ein ebenso großes Dankeschön
an einen Komillitonen und Freund aus, Jasper Zevering. Deine Arbeit für die benutzten Pro-
totypen war ebenso unersetzlich wie die zahlreichen Diskussionen über viele Themen. Ebenso
möchte ich einem anderen Arbeitskollegen und Freund danken, Anton Bredenbeck, dessen Sim-
ulator für die Ergebnisse der Arbeit benutzt wurde. Ein spezieller Dank gilt außerdem meiner
Familie. Vielen Dank an meine Eltern und Großeltern. Ihr habt mein gesamtes Studium durch
bedingungslose Unterstützung in jeder Hinsicht bereichert. Deshalb möchte ich euch gern diese
Arbeit widmen.

Contents

1 Introduction 1
1.1 Mobile 3D Mapping with Spherical Robots . 1
1.2 Problem Definition . 2
1.3 Scientific Contribution . 2
1.4 Thesis Outline . 3

2 State of the Art 5
2.1 Planar Segmentation Algorithms . 5
2.2 6D SLAM Algorithms For Mobile Mapping . 7
2.3 Point Cloud Registration With Plane Based Correspondences 8

3 Mathematical Fundamentals 11
3.1 Points and Transformations . 11
3.2 Point to Plane Distance Models . 12

3.2.1 Hesse Distance . 12
3.2.2 Polygon Projection Distance . 13
3.2.3 Crossing Number Algorithm . 14
3.2.4 Winding Number Algorithm . 15

3.3 k-d Trees and the Bkd-Tree . 16
3.3.1 A Forest of Trees . 17
3.3.2 Dynamic Updates . 18
3.3.3 Queries . 19

4 Registration Procedure 21
4.1 Working Pipeline . 22
4.2 Preprocessing . 25

4.2.1 Condensing . 25
4.2.2 Reduction . 26

4.3 Normals Calculation . 26
4.3.1 Approximate Methods . 27
4.3.2 Panorama Images . 28

4.4 Clustering Algorithm . 29
4.4.1 Region Growing with Trees . 30
4.4.2 Filter . 32

vii

4.5 Finding Matches . 33
4.6 Optimization . 36

4.6.1 Error function . 36
4.6.2 Gradient Descent with AdaDelta . 37

5 Results 39
5.1 Segmentation . 39

5.1.1 Artificial Dataset . 39
5.1.2 Real World Dataset . 40

5.2 Registration . 43
5.2.1 Artificial Dataset . 43
5.2.2 Real World Datasets . 43
5.2.3 Comparison with Semi-Rigid Registration 62

6 Conclusions 65

viii

List of Figures

2.1 Taxonomy of 3D point cloud segmentation methods. 5

3.1 Illustration of the Hesse- and polygon projection distance. 12
3.2 Illustration of the idea behind the CN and WN algorithm. 15
3.3 Internal structure of a Bkd-tree. 18

4.1 Outline of the presented algorithm. 21
4.2 Outline of the preprocessing and clustering pipeline of the presented algorithm. . 23
4.3 Outline of the global optimization pipeline of the presented algorithm. 24
4.4 Example of condensing a point cloud. 25
4.5 Example of reducing a point cloud. 26
4.6 Illustration of KNNs for a critical case, where point density is low. 27
4.7 Results of K-adaption for normal calculation. 28
4.8 Spherical range image (SRI) obtained from a 3D point cloud. 29
4.9 Comparison between least-squares and derivative method for normal calculation

on spherical range images (SRIs). 30
4.10 Outline of the local clustering algorithm. 31
4.11 Output of the clustering algorithm, using different grow radii. 32
4.12 Histogram showing cluster size after region growing (before filtering). 33
4.13 Outline of the matching algorithm. 34

5.1 Runtime comparison for region growing between bruteforce method and Bkd-tree
method, on reduced versions of the artificial dataset. 40

5.2 Result of the clustering algorihtm on an artificial dataset. 41
5.3 Runtime comparison for region growing between bruteforce method and Bkd-tree

method, on reduced verions of a real world dataset. 42
5.4 Result of the clustering algorithm on a real world dataset. 42
5.5 Evaluation of point distances before and after the plane-based registration on a

simulated dataset. 45
5.6 Sphere rotating on a floating table. 46
5.7 Prototype used for data acquisition with the rolling sphere. 46
5.8 Hardware and setup of the crane descent experiment. 47
5.9 Comparison between the unprocessed and resulting point cloud for the floating

sphere dataset. 49
5.10 Resulting global plane model for the floating sphere dataset. 50

ix

5.11 Comparison between the unprocessed and resulting point cloud and path for the
rolling sphere dataset. 53

5.12 Comparsion between the resulting point cloud and ground truth for the rolling
sphere dataset. 54

5.13 Evaluation of point distances before and after the plane-based registration on the
rolling sphere dataset. 55

5.14 Resulting global plane model for the rolling sphere dataset. 56
5.15 Comparison between the unprocessed and resulting point cloud and path for the

crane descent dataset. 58
5.16 Comparison between the resulting point cloud after applying the presented reg-

istration algorithm and the ground truth point cloud for the crane descent dataset. 59
5.17 Evaluation of point distances before and after the presented registration on the

crane descent dataset. 60
5.18 Resulting global plane model for the crane descent dataset. 61
5.19 Evaluation of point distances after SRR and after the presented method on the

crane descent dataset. 63

x

List of Tables

5.1 Comparison of point-distances in the simulated dataset. 43
5.2 Comparison of point-distances in an indoor real world dataset for the rolling sphere. 51
5.3 Comparison of point-distances in the indoor real world dataset for the descending

sphere. 57
5.4 Comparison of point-distances and runtimes in an indoor real world dataset for

the descending sphere. 64

xi

List of Symbols

pk = [xk, yk, zk] A point with index k, consisting of the coordinates xk, yk, and zk.
ϕ Roll angle, i.e., rotation around x axis
θ Pitch angle, i.e., rotation around y axis
ψ Yaw angle, i.e., rotation around z axis
tx Translation on the x axis
ty Translation on the y axis
tz Translation on the z axis
T (pk) Homogeneous transformation defined by tx, ty, tz, ϕ, θ, and ψ of the point pk
Pi An infinetly extending plane with index i.
Pi A polygon with index i.
Di,k
h Hesse distance between point pk and plane Pi.

Di,k
PPD Projected polygon distance between point pk and polygon Pi.

α̂(n1,n2) Smallest angle between two normal vectors n1 and n2.
K Number of nearest neighbors for normal calculation and clustering.
S Number of subsequent scans put together in one linescan.
I Number of gradient descent iterations before updating the correspondence model.
J Number of times how hoften the correspondence model is updated.
εH Threshold for Hesse distance Di,k

h .
εPPD Threshold for projection poylgon distance Di,k

PPD.
εα Threshold for the smallest angle between normals α̂(n1,n2).
ncmin Minimum number of points allowed in a cluster.
dgrowth Growth radius for clustering.
α0 A 6D vector holding the optimization weights for each dimension.

xiii

Chapter 1

Introduction

Today’s robots for mobile mapping come in all shapes and sizes. State of the art for urban
environments are laser scanners mounted to cars. Smaller robotic systems are particularly
used when cars no longer have access. Examples for this are human-operated systems such as
Zebedee [9], a small Hokuyo 2D scanner on a spring, that is carried through the environment,
VILMA [30], a rolling FARO scanner operating in profiler mode, RADLER [8], a SICK 2D
laser scanner mounted to a unicycle, or a backpack-mounted “personal laser scanning system”
as in [29] or [31]. Recently more and more autonomous systems gained maturity. A stunning
example is Boston Dynamics’ quadruped “Spot” that autonomously navigates and maps human
environments [10]. Also, the mobile mapping approaches implemented on the ANYmal platform
such as [16] were very successful.

1.1 Mobile 3D Mapping with Spherical Robots

Of all these formats, one has not been explored thoroughly in the scientific community: The
spherical mobile mapping robot. In fact, the spherical format imposes many challenges on
current state-of-the-art techniques used for mapping. Section 1.2 names some of these challenges
in detail. Nevertheless, let us first dive into some very promising advantages of spherical robots
over other formats. For one, the locomotion of a spherical robot inherently results in rotation.
That way, a sensor fixed inside the spherical structure will cover the entire environment, given
the required locomotion without the need for additional actuators for the sensors. This requires a
solution for the spherical simultaneous localization and mapping (SLAM) problem, given the six
degrees of freedom of the robot. Secondly, a spherical shell that encloses all sensors protects these
from possible hazardous environments. For example, the shell stops any dust that deteriorates
sensors or actuators when settling at sensitive locations. In contrast to a usual enclosing the shell
can separate the sensors from the environment without the need for several points of connection.
A strict requirement then is that the shell is very durable. This is particularly useful for unknown
or dangerous environments. For example, old buildings that are in danger of collapsing, narrow
underground tunnels, construction sites, or mining shafts. The spherical format is, in fact, also
suited for space applications. In the DAEDALUS study [45], such a robot is proposed that is to
be lowered into a lunar cave and create a 3D map of the environment. The authors choose this

1

2 Chapter 1. Introduction

format as the moon regolith is known to damage instruments and other components. They also
present an approach to protect the shell from accumulating dust and dirt.

1.2 Problem Definition

To perform SLAM, an algorithm must register subsequent scans, taken from different locations
at different times, into one coordinate system. Usually, an estimation of the current pose of
such a robot is done by GNSS, odometry, and/or IMUs. The better the pose estimate is, the
easier it becomes to perform SLAM. However, when pose estimation with GNSS or odometry
is not available, one has to rely only on IMU-based methods. Relying on IMU-based position
measurements as a localization technique alone yields inaccurate and noisy pose measurements.
Additionally, many mobile robots can not guarantuee a slow, controlled motion, which obscures
the pose estimation further, making SLAM more difficult. Lidar sensors often have a minimum
scan distance, resulting in a less dense (sometimes even empty) point cloud when the scanner
looks on the ground, whereas density is higher when looking in other directions. The ground itself
is likely to be less populated with points, due to weak angles of incidence while mapping it with
spherical robots. Therefore, a robust registration procedure is needed for spherical robots, that
can cope with vast differences in point cloud density and high noise regarding pose measurements.
Although this thesis is heavily motivated by the spherical format, the aforementioned problems
also arise in many other mobile mapping systems. Hence the presented results apply to many
different motion profiles, too. Yet spherical robots suffer from these difficulties the most, which
is why the majority of the presented results have been generated with such.

1.3 Scientific Contribution

The thesis proposes a SLAM algorithm, which identifies planar polygons in each scan. Such
planar polygons form by clustering the points in the scan and then calculating the convex
hull of these clusters. Point-to-plane correspondences then arise by finding similarities between
polygons in each subsequent scan. Then, an optimization of the 6 DoF pose of the mobile
robot leads to minimization of point-to-plane distances. This thesis has two major scientific
contributions:

• A novel point cloud registration method that uses a score function to find similarities
between planar convex polygons for globally consistent alignment. It needs only geometric
information, i.e., the plain 3D point cloud, and a coarse pose estimate for each scan
and outputs an improved map, improved 6 DoF path, and global plane model. The
presented method copes with multiple scanning patterns and motion profiles, as well as
high noise levels regarding 6 DoF pose measurements, vast differences in point cloud density
in each scan, and huge scan size differences between subsequent scans. The algorithm
utilizes multiple distance models to establish point-to-plane correspondences. Then, it
uses AdaDelta for 6 DoF optimization, minimizing point-to-plane distances.

• A novel region growing based point cloud segmentation method which utilizes a dynami-
cally scalable, fully space utilized modification to the k-d tree (the Bkd-tree) for calculating

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

1.4. Thesis Outline 3

point-to-cluster distances. Note that the Bkd-tree maintains its balance with minimum
effort, regardless of the number of point insertions or deletions. However, the dynamic
updates on the data structure do not deteriorate the runtime performance of the segmen-
tation due to the improvement of query performance.

1.4 Thesis Outline

The following chapters introduce you to both aforementioned contributions. Mostly, the sec-
tions cover those two independently from the other. Chapter 2 presents the state-of-the-art for
point cloud segmentation in Section 2.1, while Section 2.2 covers only state of the art SLAM
algorithms. Chapter 5 presents the results in the same way: Section 5.1 shows segmentation
results, whereas Section 5.2 shows only registration results. However, the two methods are de-
signed to work together, which is why a strict separation does not always make sense. Therefore,
Chapter 3 presents the mathematical principles used for both the segmentation and registration
procedures. Chapter 4 presents the registration procedure as a whole and, therefore, also in-
cludes the segmentation part in Section 4.4. This emphasizes the guiding thread of the chapter
and thus it improves readability and understandability. Finally, Chapter 6 draws a conclusion
by outlining the strengths and major drawbacks of the algorithms.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

Chapter 2

State of the Art

The following sections introduce you to the state-of-the-art (SOTA) methods for point cloud
segmentation and registration. As the presented algorithm works by finding planar polygons,
section 2.1 presents different approaches for point cloud segmentation. Then, Section 2.2 in-
troduces other SOTA methods for SLAM in 6 DoF for mobile mapping. As this thesis uses
point-to-plane based correspondences for point cloud registration, Section 2.3 mentions other
algorithms that use this approach.

2.1 Planar Segmentation Algorithms

The subject of clustering 3D point clouds based on certain geometrical properties is a thoroughly
studied field of research. Nguyen et al. [37] give a broad overview on the topic. They subdivide
the 3D point cloud segmentation problem into five categories, as shown in Figure 2.1: edge-based,
region-based, attribute-based, model-based, and graph-based methods.

Edge-based methods segment points utilizing local regions of high contrast, i.e., sharp fea-
tures. This is often done with gradient-based methods [5] or binary edge maps [48]. Since these
methods rely on local qualities like high local intensity differences, they are all very sensitive to

Figure 2.1: Taxonomy of 3D point cloud segmentation methods. Source: Nguyen et al. [37]

5

6 Chapter 2. State of the Art

noise and in uneven density point clouds.
Region-based methods work by grouping neighboring points together if they have similar

properties. There are, in general, two ways of approaching this problem:

• Bottom-up (Seeded-region) methods, where an initial seed of points is used to grow similar
regions. An algorithm that implements a seeded region growing was first introduced by Besl
et al. [4], where the selection of initial seed points is based on the curvature of each point.
Ning et al. [38] adapt the algorithm by proposing a procedure with two stages: rough and
detail segmentation, where the information of the normal vector of each point is utilized.
Dorninger et al. [13] improve the time complexity of the algorithm by sequentializing the
algorithm and utilizing course contour information. However, seeded-region approaches
are highly sensitive to the choice of the initial seed points. Starting with an inaccurate
seed leads to under- or over-segmentation of the point cloud.

• Top-down (Unseeded-region) methods, where the points are initially grouped in one region,
which is then subdivided further into smaller, dissimilar regions. Chen et al. [11] use
this approach to perform architectural modeling, introducing a function that expresses
confidence in the likelihood that the local neighborhood is planar. Typically, unseeded
approaches require prior knowledge about the scene, e.g. an object model, region size, or
the number of desired regions.

Attribute-based methods assign properties to each point, or even regions of points, before
clustering them together. Biosca et al. [6] introduce a methodology for combining multiple
attributes based on unsupervised fuzzy cluster merging, however have difficulties with param-
eter tuning and time consumption. Filin et al. [20] use normal and height differences between
neighboring points as attributes for segmenting airborne laser data. They define the local neigh-
borhood adaptively using inherent properties of the data itself, i.e. distance, point density, and
point distribution. It is a robust clustering technique that deals with outliers, noise, and uneven
point density. The drawback with most attribute-based methods comes with high amounts of
input points since computing multiple attributes is computationally burdensome especially when
they are multidimensional.

Model-based methods assume perfect mathematical models to be underlain in the point
data, such as cylinders, spheres, or, for the purposes of this thesis: planes. Regions of points
with a matching mathematical description are therefore clustered together. The 3D Hough
Transform, as well as RANSAC (RANdom SAmple Consensus), are widely known, frequently
applied techniques that many algorithms use as a foundation for matching such models to the
point data. RANSAC works by considering a set of random samples of n data points, where
n is the number of points needed to calculate model parameters. Then, other data points
are considered and joined the set if their distance to the model is sufficiently small. If the
set has enough points, it is considered as a possible solution. After a predefined number of
iterations, the set with the most points is chosen as a solution. The 3D Hough transform maps
the input data to a parameter space, the so called Hough space. In this parameter space,
the parameters correspond to an arbitrary model representation, e.g., a plane. Therefore, for
each point and its local neighborhood, quantized model parameters are calculated. Then, the
bin corresponding to these parameters is incremented. Finding the local maxima in parameter

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

2.2. 6D SLAM Algorithms For Mobile Mapping 7

space yields the best model representation of the underlying data. Tarsha-Kurdi et al. [53]
compared the 3D Hough transform with RANSAC, segmenting rooftop planes from airborne
laser-scan data. In their work, they found that RANSAC yields better segmentation results
and is faster in runtime. However, this is hard to generalize, as the time complexity of both
RANSAC and the Hough transform heavily depend on many parameters. With RANSAC,
the bottleneck is the examination of all points, yet there are also variants which test only a
subset. With the Hough transform, the discretization of the Hough space plays a decisive
role, as making the bins too small leads to a higher runtime. There are numerous variants
for the Hough transform. In particular, the Randomized Hough Transform (RHT) increases
the efficiency tremendously. Gelfand et al. [23] use mathematical models of rotationally and
translationally symmetric shapes, called “slippable” shapes. Those include sphere, helix, plane,
cylinder, linear extrusions, and surfaces of revolution. The algorithm works by merging initial
patches of slippable surfaces to create more complicated structures, and thus the quality of the
segmentation relies on the size of the initial patches. Li et al. [32] introduce a global coupling
algorithm, which is able to correct a set of initial local RANSAC primitives and align them
globally. They do so by establishing relations between primitives such as orientation, placement,
and equality, which are then iteratively amplified by constrained optimization. Model-based
segmentation methods yield fast and accurate results while being able to deal with a large
amount of noise and outliers. However, they are inaccurate when the point data does not fit a
perfect mathematical model, or the model is unknown.

Graph-based methods work by representing the 3D point data with a graph, then apply
algorithms from graph theory. Golovinskiy et al. [25] utilize the k-nearest neighbors (KNNs) of
points to represent the point cloud as a graph. Their algorithm infers background and foreground
constraints and then finds the min-cut to compute a foreground-background segmentation. Of-
ten, graph-based methods make use of random fields, such as Conditional Random Fields (CRF)
and Markov Random Fields (MRF) [28], as they generate flexible stochastical image models.
Rusu et al. [46] create fast point feature histograms (FPFH) [47] which encode geometrical
surface information locally. Then they use CRF for contextual information to put the FPFHs
together by defining classes of 3D geometric shapes. Tatavarti et al. [54] introduce a stochas-
tical graph-based method consisting of three steps: The first two steps consist of detecting a
candidate set of planar surfaces and merging the initial candidate set. The third step of their
algorithm uses MRF on the point data and the planar model to compute the maximum a pos-
teriori probability (MAP) of the segmentation labels using bayesian belief propagation (BBP).
Their algorithm shows novelty since unlike other graph-based methods color information is not
needed. Furthermore, the algorithm provides a tradeoff between segmentation performance and
detail. Other graph based methods exists, though many of them use camera systems, e.g. [51],
[49], and [19]. In general, graph-based methods perform well with noise, outliers, and uneven
point density. However, they are usually not suited for real-time applications.

2.2 6D SLAM Algorithms For Mobile Mapping

Laser-based SLAM algorithms for motion in six degrees of freedom (DoF) have been thoroughly
studied. For outdoor environments [39] provides a first baseline. Adding a heuristic for closed-

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

8 Chapter 2. State of the Art

loop detection and a global relaxation Borrmann et al. yield highly precise maps of the scanned
environment [7]. Zhang et al. propose a real-time solution to the SLAM problem in [58]. They
achieve the performance at a lower computational load by dividing the SLAM algorithm into
two different algorithms: one performing odometry at a high frequency but low fidelity and
another running at a lower frequency performing fine matching and registration of the point
clouds. More recently Dröschel et al. also propose an online method using a novel combination
of a hierarchical graph structure with local multi-resolution maps to overcome problems due to
sparse scans [14]. Another intriguing example is the NavVis VLX system [36]. They perform
real-time SLAM on a mobile, wearable platform, producing colored point clouds with high
accuracy by combining it with a camera system. However, this platform has to be moved by
a human operator. They also employ artificial markers that can be placed in the environment,
which get recognized by the camera system to further improve registration accuracy. The de-
facto standard for many SLAM algorithms is the Iterative-Closest-Point (ICP) algorithm [3]
that employs point-to-point correspondences using closest points, as the name suggests. Since
these approaches are based on point-to-point correspondences, they require a rather high point
density to achieve precise registration. For low-cost LiDARs, this implies slow motion and a long
integration time. To overcome the requirements on point-density imposed by the point-to-point
correspondences, instead other correspondences are used.

2.3 Point Cloud Registration With Plane Based Correspondences

In many environments, planes are abundantly available and hence provide an attractive base for
correspondences. Pathak et al. [42] propose to reduce the complexity of the registration by using
correspondences between planar patches instead of points. They demonstrate the effectiveness
of their approach even with noisy data in cluttered environments. However, their approach is
designed for data acquired in stop-scan-go fashion and not for mobile mapping applications. As
they use a region growing procedure with randomized initialization for detecting planar patches
the distortions in the data introduced by pose uncertainties are likely to affect the shape of
the planar patches and lead to faulty correspondences. Förster et al. use the planarity of
human-made environment successfully in [22]. They register point clouds using plane-to-plane
correspondences and include uncertainty measures for the detected planes and the estimated
motion. Thereby, they propose a costly exact algorithm and cheaper approximations that yield
high-quality maps. Favre et al. [17] use point-to-plane correspondences after preprocessing the
point clouds using plane-to-plane correspondences to register two scans with each other success-
fully. Both approaches use plane-to-plane correspondences to pre-register the scans. However,
for pre-registration, the classical point-to-point registration is also very effective. One advantage
that point-to-point correspondences have over plane-to-plane correspondences is that they do
not require a long stop to obtain enough points to detect planes in each pose. For plane-to-
plane correspondences, this is necessary to gather enough data to measure planes in each scan
robustly. In particular, this pause is needed when the field-of-view (FOV) is limited, as the de-
tected planes are thin slices of the true planes which are difficult to find correct correspondences
for. The resulting scan procedure is stop-scan-and-go. However, a standstill in each pose cannot
be guaranteed or even approximated for many mobile mapping systems, making continuous-time

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

2.3. Point Cloud Registration With Plane Based Correspondences 9

approaches using point-to-plane correspondences the method of choice. LOAM [58] is the base-
line algorithm that provides a real-time and low-drift solution based on two parallel registration
algorithms using planes and lines. Unfortunately, it is not open-source anymore. LOAM livox
extends the LOAM framework to the rotating prism scanner with small FoV [33]. Zhou, Wang,
and Kaess write that it also adopts parallel computing to achieve real-time global registration.
Parallel computing needs a powerful CPU, it may be not suitable for an embedded system that
has limited computational resources [59]. Thus, they extend their smoothing and mapping to
the LiDAR and planes case. In their experiments, they used a VLP-16 LiDAR to collect indoor
datasets. Further recent planar SLAM approaches include [24, 26, 27, 55, 59]. While Wei et al.
use only the ground plane in outdoor experiments. Indoors, Jung et al. used in 2015 several
Hokuyo laser scanners for their kinematic scanning system [27], while Grant used a single Velo-
dyne HDL-32E sensor with 32 rotating laser/receiver pairs mounted on a backpack and walked
through different environments [26]. The LIPS system [24] employes a so-called Closest Point
Plane Representation with an Anchor Plane Factor. RANSAC (RANdom SAmple Consensus) is
used to find the planes. Their system couples an eight-channel Quanergy M8 LiDAR operating
at 10Hz with a Microstrain 3DM-GX3-25 IMU attached to the bottom of the LiDAR operating
at 500Hz. This thesis extends the state-of-the-art by adding a robust, yet flexible algorithm,
especially designed for spherical robots with fully IMU-based pose estimation but also other
mobile mapping systems with various scanning patterns and motion profiles. Unlike other pre-
viously mentioned methods, the motion of the mobile mapping system is not required to be in
a stop-and-go fashion, but is also allowed to be continuous. The proposed algorithm is not yet
able to perform in real time.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

Chapter 3

Mathematical Fundamentals

This chapter introduces you to the math we need to model collections of 3D points, each one
having an x, y, and z value, called point clouds. Further, planar polygons are introduced, which
in this thesis arise from the convex hulls of similar point collections, called clusters. First, Section
3.1 sets up some basic terminology for 3D point representation and 6D transformations of point
clouds. Second, Section 3.2 introduces two distance models that are used for establishing point-
to-plane correspondences: the Hesse distance and the Polygon Projection distance (PPD). For
the latter, we want to calculate the inclusion of a point in a polygon, which is described in Section
3.2.3 and 3.2.4. The Hesse distance and PPD are not only used for establishing point-to-plane
correspondences, but also used in the next chapter to construct similarity criteria for polygons.
Additionally, the thesis proposes a computationally efficient algorithm for point segmentation
with region growing. The decrease in computational cost is achieved by an adaption of the well
known k-d tree, called a Bkd-tree. Therefore, Section 3.3 explains how a Bkd-tree is constructed
from multiple k-d trees.

3.1 Points and Transformations

We consider a sub-collection of a 3D point cloud as a scan. Further, we call a collection of scans
a linescan. A scan consists of the points {p0,p1, ...,pN−1}, which the laser scanner measures
in its own coordinate system (with the scanner located in the origin). To align multiple scans
together, 6D pose information is needed to transform the points into a global reference frame.
The transformation T (pk) of any point pk with respect to a 6 DoF motion is described in
homogeneous coordinates using the roll-pitch-yaw (ϕ − ϑ − ψ) Tait-Brian angles as in [12], as
well as the translation of the point tx, ty, and tz in x, y, and z direction respectively. Constructing
the result from these homogeneous coordinates and using Ck and Sk to denote the cosine and
sine of the angle in the subscript yields a left-handed transformation, applied to the point pk:

T (pk) =

xCϑCψ − yCϑSψ + zSϑ + tx

x(CϕSψ + CψSϕSϑ) + y(CϕCψ − SϕSϑSψ)− zCϑSϕ + ty

x(SϕSψ − CϕCψSϑ) + y(CψSϕ + CϕSϑSψ) + zCϕCϑ + tz

 (3.1)

11

12 Chapter 3. Mathematical Fundamentals

Point p Hesse distance Hesse distance
Point p

3D projection
Polygon projection distance

3D projection
Polygon projection distance

2D projection
2D projection

Figure 3.1: Illustration of the Hesse- and polygon projection distance. The point p (red) gets projected
onto the infinitley extending global plane. Both the point projection (green) and the global planes
convex hull (blue) get projected into 2D space (grey). The Hesse distance, i.e., the shortest distance
to the infinitley extending plane (red), is shown as well as the minimum distance from the 3D point
projection to the polygon (green).

3.2 Point to Plane Distance Models

The key to improving map quality is to find a model for each linescan, where each point is
correctly identified to belong to one of the extracted planes. Then, the sub-scan is optimized
in Section 4.6 by finding a 6D pose-transformation that minimizes the distance of each corre-
spondence. The following sections describe two key ideas, which are important later for finding
correspondences: the Hesse distance and the polygon projection distance (PPD).

3.2.1 Hesse Distance

The Hesse-normal form describes the distance Di,k
h from the k-th transformed point T (pk) to an

ever extending, infinetly large plane in 3D vector space with normal vector nPi and supporting
point aPi of the i-th plane:

Di,k
h = nPi · [T (pk)− aPi] , (3.2)

The distance Di,k
h of the k-th point to the i-th plane reflects the length of the line segment,

constructed from the k-th point to its projection on the i-th plane. It corresponds to the
distance shown in red in Figure 3.1. Therefore, the line segment is parallel to the normal vector
of the plane by definition. Thus, the k-th points projection T̃ (pk) onto the i-th plane, which is
required later, is easily calculated by shifting the point against normal direction:

T̃ (pk) = T (pk)−D
i,k
h · nPi (3.3)

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

3.2. Point to Plane Distance Models 13

3.2.2 Polygon Projection Distance

The simplicity of the Hesse distance in Section 3.2.1 is in contrast with its inability to represent
the extent of the plane. In reality, planes will never be infinelty large, thus it becomes obvious
that an additional distance model, based on the polygonic nature of the environments, is re-
quired. The convex hull is able of representing the expansion of the plane in all directions and
thus is utilized as a distance model. A convex hull is a polygon that fulfills the following criteria:

• It is a 2D plane, which itself is embedded in a 3D space.

• It is constructed with line segments si,j , connecting the edge points pi and pj .

• It is convex, meaning there are no self-intersections, and no ”curving into the polygon”.

First, the corresponding point gets projected onto the ever-extending, infinitely large plane
representation given by the Hesse form. Keeping track of the projection of the point T̃ (pk), i.e.,
the green point from Figure 3.1, is essential for calculating a point’s distance to a polygon in
3D. It represents the shadow of the point onto the same plane as the polygon. The projection
of the point is given from Equation (3.3). Then, the 3D polygon, i.e., the points that make up
the convex hull, as well as the corresponding 3D point projection, are projected again into a
2D vector space, using the direction of the plane. For example, in Figure 3.1, normal vector
of the blue polygon has its major component in the z-direction (upwards), thus the projection
polygon distance is calculated in the xy-plane. Using the maximum of the absolute magnitude
of the normal vector ensures that the most sensible 2D projection is used for every direction.
Considering the 2D projection has the advantage that algorithms exist in 2D space to check
whether a point lies in or outside a polygon. Sunday [52] presents two approaches to this:
the winding number (WN) algorithm, and the crossing number (CN) algorithm. The next two
sections cover both algorithms in detail. In this section we use Sunday’s algorithms to check
whether a point is inside or outside of a polygon in 2D space.

If the points 2D projection, i.e., the grey point in Figure 3.1, is inside the polygon projection,
the so called polygon projection distance (PPD) is set to zero. If, however, the point is outside the
polygon in Figure 3.1, the shortest distance of the green point to the blue polygon is calculated.
We look at the minimum distance of the query point pk to each line segment si,j , making up
the convex hull of the plane. The line segment consists of the points pi and pj . Note that for
an ordered point set, the iteration process becomes straightforward by choosing j and i to fulfill
j - i = 1, i.e., iterating the border points of the polygon.

Let t ∈ [0, 1], then the line segment is parameterized by

si,j(t) = pi + t · (pj − pi) . (3.4)

We set up a distance function di,j(t), which measures the distance from the query point pk to
an arbitrary point on the line segment:

di,j(t) = ‖si,j(t)− pk‖. (3.5)

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

14 Chapter 3. Mathematical Fundamentals

It is now possible to find the shortest distance to the line segment by finding the argument of
the function that minimizes this distance. Therefore, we set

∂ (di,j(t))2

∂t
!= 0, (3.6)

resulting in the argument t0 which minimizes Equation (3.5)

t0 = (pj − pi) · (pk − pi)
(pj − pi)2 . (3.7)

Note the possibility of t0 /∈ [0, 1]. In that case, the projection of the point pk onto the line given
by Equation (3.4) is not between pj and pi. Instead, its projection onto the line falls outside of
the segment. By constraining t0 to be between zero and one, we get t̂

t̂ = min (max (t0, 0) , 1) , (3.8)

which is the argument that gives the shortest distance to the line segment, when inserted into
Equation (3.5). If t0 was to be inserted into Equation (3.5), the resulting distance corresponds
to the shortest distance to the ever extending line, given by t ∈]−∞,∞[. By definition of the
line in Equation (3.4), the line segement corresponds to t ∈ [0, 1], which is why the constraint
in Equation (3.8) makes sense. Algorithm 1 computes the shortest distance Di,k

PPD from a point
pk to a polygon Pi, called PPD.

Algorithm 1: Calculates the shortest distance from a point to a polygon in 3D (PPD)
Data: Query point pk, polygon Pi as an ordered set of line segments
Result: Shortest distance Di,k

PPD between pk and Pi, the points p1 and p2
1 Di,k

PPD = ∞;
2 for si,j(t) ∈ P where j − i = 1 do
3 t0 = (pj−pi)·(pk−pi)

(pj−pi)2 . Find argument that minimizes squared distance function.;

4 t̂ = min (max (t0, 0) , 1) . Constrain it to be between 0 and 1.;
5 d̂ = ‖si,j(t̂)− pk‖ . Get minimum distance using distance function.;
6 if d̂ < dmin then
7 Di,k

PPD = d̂ . Store minimum distance along all line segments.;
8 p1 = pi . Save the points pi and pj ...;
9 p2 = pjthat make up the line segment.;

10 end
11 end
12 return Di,k

PPD, p1, p2

3.2.3 Crossing Number Algorithm

The crossing number (CN) algorithm checks if a point pk is inside a polygon Pi by counting
the intersections from a ray, starting from point pk, with the line segments of the polygon. The

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

3.2. Point to Plane Distance Models 15

+1
+1

-1 -1
-1+1 +1

wn = 0

wn = 1

cn = 2 cn = 2cn = 1
cn = 1

cn = 4
cn = 3

cn = 3

cn = 0

Figure 3.2: (Left) Illustration of the idea behind the CN algorithm. The CN value counts the intersec-
tions of the ray with the line segments that make up the polygon. (Right) Illustration of how the WN
algorithm computes the winding of the polygon around the point in the most efficient way.

algorithm is to straightforward loop all the line segments that Pi is made of and check if the
ray hits the line segment, and thus increment the corresponding CN value. At the end of the
process, if CN is even, the point is outside of Pi. Otherwise it is inside Pi. Any infinitely long ray
that is cast from pk must eventually end up outside the polygon. Therefore, if pk is inside Pi,
the sequence of crossings must start with ”inside to outside” and end with ”inside to outside”.
This occurs exactly when there is an odd number of crossings. On the other hand, if the point
is outside Pi, the sequence of crossings must start with “outside to inside” and, again, end with
“inside to outside”. This occurs exactly when there is an even number of crossings. Figure 3.2
illustrates this. Sunday [52] notes that this procedure only works with simple polygons, where
self-overlap and holes are not allowed. Since we only use simple polygons, as ensured by the
convex hull, the CN algorithm is always sufficient for our purpose. However, the presented
algorithm works with a different approach, since its output gives a better intuition, even when
applied to non-simple polygons.

3.2.4 Winding Number Algorithm

The winding number (WN) algorithm computes if a point pk is inside the polygon Pi by cal-
culating how many times Pi winds around the point. Let t ∈ [0, 1], then x(t) and y(t) describe
the x and y coordinates of a continuous, closed curve C, where C(0) = C(1), describing the full
polygon.

C(t) = C(x(t), y(t)) . (3.9)

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

16 Chapter 3. Mathematical Fundamentals

Keeping track of the normalized vector w(q, t), pointing from the query point pk to any point
C(t) on the polygon, we get

w(q, t) = C(t)− pk
‖C(t)− pk‖

. (3.10)

which performs a continuous, circular motion along the unit circle U(t) = (cos(Θ(t)), sin(Θ(t))),
where Θ is the current phase on the unit circle. We calculate the resulting rotation nw(pk, C)
of the vector w(q, t), by integrating over the unit circle:

nw(pk, C) = 1
2π

∮
U(t)

dΘ = 1
2π

∫ 1

0
Θ(t)dt , (3.11)

which is directly expressed as

nw(pk, C) = 1
2π

n−1∑
j=0

Θj , (3.12)

where Θj corresponds to the amount of winding that has happened in the j-th line segment.
However, the calculation of that angle yields a computationally expensive arccos function and is
therefore simplified. To do that, we abuse the fact that the polygon is an ordered set of points,
where each sub-sequent point constructs a line segment of the polygon with the point before.
Imagine casting a ray from the point pk, as in Figure 3.2. If a given line segment crosses the ray,
you observe its direction corresponding to the ray, since there is a start and an endpoint for each
line segment. Because of this, the direction is observed to be upwards or downwards with respect
to the ray cast from pk. Then, it is sufficient to replace Θj with 1 if the direction is upwards,
and −1 if the direction is downwards. Figure 3.2 gives an intuition on the working principle.
Even if the substitution does not correspond to the actual value of Equation (3.11), it preserves
correctness when we only seek to find if the point is inside the polygon or not: The point pk
is outside Pi if and only if the winding number is zero. The time complexity is O(n), where
n is the number of points in the polygon. Note that the given time complexity is valid for all
polygons, including non-simple ones. Sunday [52] points out that for convex-shaped polygons,
the time complexity can be reduced further to O(log(n)). Note that Sunday [52] further points
out that “the WN algorithm should always be preferred for determining the inclusion of a point
in a polygon”. The reason he gives for this is that the WN algorithm gives the correct result
for non-simple polygons, i.e., polygons that overlap with each other, or polygons with holes in
them. The CN algorithm sometimes gives a false result on these types of polygons. Since the
polygon we work with is always convex shaped both methods will be guaranteed to produce the
correct result. However, we leave further room for extension to concave polygons by using the
WN algorithm.

3.3 k-d Trees and the Bkd-Tree

In the next chapter, a novel point cloud segmentation method is introduced, which benefits from
a datastructure called Bkd-tree. To understand exactly how the proposed algorithm uses it, and
why this leads to a benefit regarding runtime, we must first discuss what properties Bkd-trees
have. A Bkd-tree, proposed by Procopiuc et al. [43], is an adaption of the well known k-d

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

3.3. k-d Trees and the Bkd-Tree 17

tree, which is able to unfold a k-dimensional space in a binary tree. Let us first discuss the
fundamentals of a k-d tree and show why an adaption is needed.

For the algorithms described in the next chapter, it is very beneficial to store a point cloud
in such a k-d tree. Starting at the root node, which represents the bounding box of the whole
point cloud, the tree subdivides the 3D space in one of the principal axis, i.e., x, y, or z-axis,
thus creating a hyperplane that is perpendicular to that axis. Each node has two children, the
first corresponding to one side, the second corresponding to the other side of the hyperplane.
The median method yields a consistent strategy for finding an optimal division point, i.e., a
division point that balances the tree. The 3D space is then subdivided further until each leaf
node has only B points in it, which is called the bucketsize of the tree. Building the tree this
way for N points costs O(N log(N)).

This tree structure is later exploited to search for the K-nearest neighbors (KNNs) of a
point, as it is perfectly suited for eliminating large portions of the search space fast. To find
the KNNs of a point, a recursive approach traverses the tree, where at each node the algorithm
has to make one comparison for the corresponding axis. If a leaf node is reached, the recursion
starts to unwind and explores the other branches of the tree. When KNNs have been selected
during the recursion, branches are eliminated if they can not have points closer to these K-
nearest. Therefore, the complexity of the KNN algorithm is O(K log(N)). In the next section,
we discuss a problem that k-d trees have with dynamic updates, and show how the Bkd-tree
solves this problem by maintaining multiple k-d trees, i.e., a k-d forest.

3.3.1 A Forest of Trees

Many approaches exist for extending the classical k-d tree structure in such a way that insertion
and deletion of points do not cause performance degradation. The classic k-d tree was designed
to be static, i.e., it is created once from a collection of points, but never updated afterwards.
Performance degradation happens because insertions of point leads to an unbalanced k-d tree
(worst case), thus a query on the data structure is processed with worse performance.

To illustrate performance degradation, imagine that a large number of points is sequentially
inserted into a k-d tree. For each point, we must split a leaf node, which adds another layer
to the tree. Now, imagine that for each point, the split always happens at the most left leaf.
This is the worst case, since the k-d tree now has a relativley long branch. Especially when
inserting many points, long branches occur more frequently, which means that many operations
performed on the k-d tree likely need to visit more nodes. If, on the other hand, the tree was
balanced, a maximium number of node traversals is given by the depth of the k-d tree.

Established adaptions of the k-d tree include the hB-tree [34] and the kdb-tree [44]. Pro-
copiuc et al. [43] introduce the Bkd-tree as another extension of the popular k-d tree. While
previous methods keep a single k-d tree balanced, a Bkd-tree uses the logarithmic method to
maintain multiple k-d trees and rebuild them at regular intervals as more points are inserted
into the data structure. This leads to ”[...] high space utilization and excellent query and update
performance regardless of the number of updates performed on it.” [43] For the purposes of this
thesis, a Bkd-tree will always start with no points in it. Instead of loading a collection of points
directly as with k-d trees, points are then added step-by-step. Nevertheless, query performance
degredation does not happen due to the internal structure of the k-d forest.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

18 Chapter 3. Mathematical Fundamentals

Buffer

Size M

. . .

Size M Size 2M Size 2nMSize 0
kd-tree index 0 kd-tree index 1 kd-tree index 2 kd-tree index n. . .

Figure 3.3: Internal structure of a Bkd-tree. Overall, n+1 k-d trees and an additional buffer are stored.
When the buffer is full, the trees get reorganized using the logarithmic method. Inspired by Procopiuc
et al. [43].

Figure 3.3 shows the internal structure of a Bkd-tree, i.e., its internal k-d forest. It consists
of multiple k-d trees, each one having a size which is a multiple of a power of two, multiplied by
M , where M denotes a predefined memory buffer size. In other words, the k-d forest starts with
the smallest tree of size M . Subsequent trees then double in size. Therefore, there are at most
log2(NM) k-d trees, where N denotes the total number of points inside the data structure. In this
thesis, a Bkd-tree is initially empty. Procopiuc et al. [43] introduce two methods to bulk load
a Bkd-tree from a given set of points. Note that in this particular implementation, a Bkd-tree
can be constructed from N points by creating a forest of dlog2(NB)e empty k-d trees, which costs
O(1), and then put all N points in an additional k-d tree, which costs O(N log(N)). However,
for the purposes of the proposed algorithm, points are only added sequentially from an initially
empty Bkd-tree.

3.3.2 Dynamic Updates

At first, it might seem unintuitive how the previously mentioned k-d forest prevents performance
degradation. To exemplify this, consider the insertion of a point into the k-d forest, which
works as follows: First, insert the point into the buffer. If the buffer is full, iterate the k-d trees
(beginning with the smallest one) until you find an empty k-d tree at index i. Then, extract
all the points from the previous, non-empty k-d trees and also the points from the buffer, and
construct a new k-d tree with all collected points at index i. Therefore, all previous k-d trees
which have an index smaller than i are now empty, so the next time the buffer becomes full, the
reorganization of the k-d trees naturally is less expensive. The amortized cost of an insertion
into the Bkd-tree is O(B−1 log M

B
(NB) log2(NM)) (see [43] for details).

To delete a point from the Bkd-tree, simply do the following: Query every internal k-d tree
with the point pk, which is to be removed. If pk is found somewhere in the k-d forest, remove it.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

3.3. k-d Trees and the Bkd-Tree 19

The implementation in this thesis does that by swapping the element, which is to be removed,
with the last element in the current leaf. Then, leaf size is decremented by one, or, the leaf is
removed completly if no points remain. Since log2(NM) is the maximum number of non-empty
trees, and pk is found after logB(NB) traversals, the cost of removing a point from a Bkd-tree is
O(logB(NB) log2(NM)).

3.3.3 Queries

A Bkd-tree performs any other query that is likely to be executed on a classical k-d tree, e.g.,
a K nearest neighbor (KNN) search, by querying all internal non-empty trees, collecting the
resulting points, and filtering them if needed. Therefore, the time complexity is nearly the
same as with classical k-d trees but with more computational overhead, since a query searches
multiple trees and the buffer, instead of just one tree. For example, the KNN query for a point
pk is an O(K log(N)) operation for a k-d tree on average [21]. Querying a maximum of log2(NM)
non-empty k-d trees with pk leads to an overall cost for the KNN query of O(K log(N) log2(NM)).

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

Chapter 4

Registration Procedure

The presented algorithm is especially designed to work with mobile scanning platforms in human-
made environments with different motion- and scanning- profiles, where only error-prone IMU
data is available. Thus, we make the following assumptions:

• Pose data is heavily influenced by noise, drift, and accumulation of errors

• Point cloud data comes in packages of chronologically ordered scans

• Time differences between scans stay sufficiently constant

• In a sufficiently small number of subsequent scans IMU related errors are insignificant

• Point density and scan size might vary in subsequent scans

• Planar areas, e.g., walls, ceiling, floor, etc. are abundantly available in the environment

Figure 4.1 gives a rough outline of the presented algorithm.

Segmentation Registration

Globally Improved
Map

Improved 6D path

Global
Plane Model
of the Scene

Point cloud data

Pose data

Local
Clusters

Figure 4.1: Outline of the presented algorithm. Point cloud and pose data are needed for segmentation.
The resulting local planar clusters are used for registration.

21

22 Chapter 4. Registration Procedure

4.1 Working Pipeline

We subdivide the presented algorithm into three main parts: preprocessing steps, local planar
segmentation (clustering) of the point cloud, and global optimization. Figure 4.2 outlines pre-
processing and clustering. Note that preprocessing is an optional step that works as follows:
First, the point cloud data, which consists of multiple scans, condense, i.e., a predefined number
of single scans are put together into one large scan, called a linescan. The single scans, therefore,
transform into the coordinate system of a reference scan, which is the median of the single scans.
Voxel-based reduction of the linescans ensures that point density is evened out when necessary
and decreases computational cost. After preprocessing there are two options when calculating
normal vectors for each point in the linescans: SRI based, which is faster, and KNN based, which
is more accurate. Section 4.3 describe these methods in detail. Finally, the clustering algorithm
segments each linescan using the previously calculated normals, into local planar regions.

Figure 4.3 outlines the third part, i.e., global optimization. The global plane model initializes
with the local plane model of the first linescan, i.e., the linescan with index j = 0. Then, each
subsequent linescan applies the previous pose optimization to itself before finding point-to-plane
correspondences. A matching algorithm finds correspondences between points from the local
model of the current linescan index j and the global model. Using these correspondences,
an optimizer minimizes point-to-plane distances, resulting in an improved pose estimate for
index j. The matching algorithm finds correspondences again, using the optimized pose. These
correspondences are now used to update the global plane model as follows: Merge the local
model with the global model where correspondences arise and extend the global model where
correspondences did not arise from the local model.

In the next sections, we introduce each process of Figure 4.2 and 4.3 in detail. Further, these
sections clarify the direct interactions with foregoing and following processes, which eventually
explains how the proposed algorithm works as a whole.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

4.1. Working Pipeline 23

. . .

Plane Model
for Linescan 2

. . .
Linescan 2 Normals

. . .

. . .

Linescan 2
(Scan k+1 ... 2k)

Linescan 2 Points

Scan n

. . .

Scan 2

Scan 1

Point Cloud
Data LinescansCondense*

Reduced Linescans

Reduce*

Normal
Calculation

KNN based
(Adaptive /

Approximate)

SRI based
(Panorama
derivatives)

Preprocessing*

Clustering

Linescan 1 Points Linescan 1 Normals

Plane Model
for Linescan 1

Linescan 1
(Scan 1 ... k)

Process

Input / Output

Optional*

Legend:

Figure 4.2: Outline of the preprocessing and local planar segmentation (clustering) pipeline of the
presented algorithm. Inputs/Ouputs are stacked on top of each other, indicating that the pipeline is
parallelizable.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

24 Chapter 4. Registration Procedure

. . .

Local Plane Model
for Linescan k-1

Local Plane Model
for Linescan k

Apply Tk-1 to Tk

6 DoF Pose
Transformation

k-1

6 DoF Pose
Transformation

k

Global Plane Model

. . .

Local Plane Model
for Linescan k-i

6 DoF Pose
Transformation

k-i

Merge Plane Models

Matching

Point-to-Plane
Correspondences

6 DoF Optimizer

Optimized 6 DoF Pose
Transformation k

Matching

Point-to-Plane
Correspondences Mismatches

Update Global Plane Model
using Correspondences

and Mismatches

Figure 4.3: Outline of the global optimization pipeline of the presented algorithm. The greyed out part
in the top left corner represents the same pipeline, but simplified. This indicates that this pipeline is
sequentially applied to all subsequent linescans, and thus is not parallelizable.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

4.2. Preprocessing 25

Figure 4.4: Example of condensing a point cloud. (Left) A scan from a 2D line scanner. (Right) Twenty
scans from a 2D line scanner captured in 1 s, making up a 3D scan.

4.2 Preprocessing

Note that condensing and reduction is optional, as these steps are not always necessary. However,
in many cases, they improve the quality of resulting normals. The next section introduces the
preprocessing steps in detail. Section 4.2.1 introduces condensing of point clouds, which is
used later to increase both point density and the number of locally available polygons in the
environment. Then, Section 4.2.2 explains reduction of point clouds. It is used later as a
powerfull tool for noise supression, but also for data compression.

4.2.1 Condensing

Condensing a point cloud refers to the operation where S scans are put together in one reference
coordinate system, without actually altering their relative pose to the other scans. In this thesis,
the reference frame is always the coordinate system of the median scan. Condensing a point
cloud is especially useful for certain scanning patterns, e.g., a 2D line scanner (which creates 3D
point clouds when rotated). Figure 4.4 illustrates this with the aforementioned example of a 2D
line scanner with S = 20. With the assumptions stated in Chapter 4, it is obvious that S must
not be too large, because IMU-based errors then distort the linescan. As condensing increases
local point density, the calculation of point normals becomes more accurate and less sensitive
with outliers if S is chosen well. Currently, S must be set manually. However, the parameter
is easy to deduce with the naked eye. When a sensible S is chosen, condensing makes normal
calculation (cf. Section 4.3) easier due to increased point density and a potentially higher field
of view (FoV).

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

26 Chapter 4. Registration Procedure

Figure 4.5: Example of reducing a point cloud. (Left) Point cloud data from a 3D scanner, rolled around
in a spherical shell. Many reflections off the shell are visible, resulting in outliers. (Right) Reduced point
cloud with voxel based octree reduction. Any 10 cm voxel with less than 50 points is deleted.

4.2.2 Reduction

When reducing a scan, points are removed from the point cloud in such a way that the remaining
points still correspond to the overall structure of the environment. In this thesis, the reduction
is done by distributing the points into voxels of predefined size V using an octree, as in [40].
There are now multiple options for defining constraints for the voxels, e.g., a maximum number
of points that shall be inside that voxel. Or, delete any voxel that has more points than another
number of points. Many other options exist, making reduction a powerful tool for outlier removal
and noise suppression. Figure 4.5 shows an example where any voxel of size V = 10 cm that
includes less than 50 points is deleted. As reducing the point cloud decreases point density,
all succeeding components of the algorithm, i.e., normal calculation, clustering, matching, and
optimization, benefit from the decrease in computational cost.

4.3 Normals Calculation

The presented clustering algorithm in Section 4.4 uses normal vectors (normals), as they rep-
resent the local planarity of a point cloud well. This means that points that are on the same
plane have normals pointing in the same direction. Normals are calculated in a relatively small
neighborhood of a point. To calculate a normal vector for a point in the scan, the points K-
nearest neighbors (KNN) are required. We find the KNNs efficiently using a k-d tree, described
in Section 3.3. Then, a normal vector is calculated by fitting a plane through the KNNs, us-

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

4.3. Normals Calculation 27

Figure 4.6: Illustration of KNNs for a critical case, where point density is low. (Left) A scene from a
3D point cloud. (Center) Bounding box of the resulting KNNs with low value of K. (Right) Bounding
box of resulting KNNs with high value of K. Source: [41]

ing principal component analysis (PCA) or other plane fitting methods like least squares. The
normal vector of the point corresponds to the normal vector of the plane fit. We apply this
method for every point to obtain the normals for the whole point cloud. Especially for mobile
mapping systems, datasets become noisier and less dense with increasing scanning range. Figure
4.6 illustrates the problem with low point density: The resulting KNNs do not represent the
planarity of the scene. This indicates that, for those areas of a scan, a higher value of K must
be chosen. Typically, this is done by adaptively increasing K until the bounding box around
the KNNs fulfills a certain criterion, which is that the smallest eigenvalue of the PCA must
be very small compared to the other two, and the other two eigenvalues must be of the same
order. Figure 4.7 shows that the resulting normal vectors better resemble the corresponding
plane when using K-adaption. The adaptive KNN method is by far the most accurate normal
calculation method. However, it is also the most computationally expensive one. The next
section introduces approximate methods, which make KNN calculation less expensive.

4.3.1 Approximate Methods

Often, 3D point clouds are large and densely populated with points. In those cases it is a
good strategy to choose a large value of K, because it results in averaging a normal vector
around the neighborhood of the scan, thus representing a planar feature. Large values for
K, however, result in a longer runtime. This runtime is sought to be decreased by making a
tradeoff with the accuracy of the algorithm. To do this, the traversal of the k-d tree for obtaining
KNNs is modified. The most straightforward way to speed this up is to just stop the recursive
backtracking process once K neighbors have been found, even if those are not necessarily the
nearest ones. Or, you set a threshold for how many points you consider before abort. However,
a disadvantage comes with that, which is the inefficiency of backtracking. The order of traversal
is according to the tree structure, thus does not consider the distance to the query point itself.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

28 Chapter 4. Registration Procedure

Figure 4.7: Results of K-adaption for normal calculation. (Left:) Resulting normal vectors in a low
density scene without K-adaption. Normals point in many different directions, despite beeing on the
same plane. (Right:) Resulting normal vectors in the same scene with K-adaption. All normals point in
the same, correct direction. Source: [41]

Beis & Lowe [2] propose the best bin first (BBF) approach, where points are searched in bins,
ordered increasingly according to the distance from the query point. When searching these
ordered bins, the first K points that the algorithm examines are the K-nearest neighbors with
high probability. The BBF search, therefore, stops after finding K points. The distance to
the bin is defined as the minimum distance between the query point and any point on the bin
boundary. Furthermore, they employ a priority queue, where an entry is stored for any branch
option not taken. After reaching a leaf node, the top of the priority queue is removed. The
removed element contains the branch where the search for the next closest bin is continued.
Approximate KNN methods might be a fast way for normal calculation, but there is an even
faster way, which is described in the next section.

4.3.2 Panorama Images

The previous two sections introduced normal calculation methods that utilize k-d trees for KNN
estimation. However, the usage of panorama images yields another fast method for normal
calculation. First, the 3D point cloud obtained by the laser scanner is converted into a spherical
range image (SRI), i.e., a panorama image. The equirectangular projection, or any other 3D to
2D projection of your choice, maps the point cloud to a panorama image. Figure 4.8 shows such
a SRI. In these images, the local neighborhood of a point corresponds to the neighboring pixels
of the panorama. Since the SRI has to be created only once for a scan, this method estimates
the nearest neighbors of a point in constant O(1) time. From here, the KNN based methods
described above calculate normals for every point using least-squares methods. Note that the

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

4.4. Clustering Algorithm 29

Figure 4.8: Spherical range image (SRI) obtained from a 3D point cloud. Source: [41]

number of neighbors varies for each point, depending on point density (which, again, depends
on range). Badino et al. [1] introduce another method, based on SRI derivatives, to eliminate
the computationally rather expensive least-squares-part, which includes solving a third-degree
polynomial for every point. Figure 4.9 compares the resulting normals generated with the least-
squares method with the resulting normals generated with the SRI derivative method. The SRI
derivative method is, without doubt, the fastest of normal calculation methods. However, on
real-world datasets, the estimated normal vectors are less accurate on the edges, when compared
to least-squares methods. For the clustering algorithm, which is described in the next section,
it does not matter whether the normals originated from a panorama-based or k-d tree based
method.

4.4 Clustering Algorithm

The previous sections described how to obtain normal vectors for each point in the point cloud.
The purpose of the clustering algorithm is to encapsulate points in a local neighborhood that
have similar normals, for each linescan. Note that a points normal vector n corresponds to a
plane representation, thus n and −n, which make up an angle of π, actually correspond to the
same plane, i.e., the angle between them should be zero. The angle between two normalized
vectors is

α(n1,n2) = arccos(n1 · n2) . (4.1)
However, the smallest angle between two normalized normal vectors is

α̂(n1,n2) =

2π − α(n1,n2) if α(n1,n2) > 3

2π

α(n1,n2)− π if α(n1,n2) > π

π − α(n1,n2) if α(n1,n2) > π
2

, (4.2)

because the opposing normals −n1 and −n2 have to be considered since they correspond to the
same plane. We say that two normal vectors are similar if the angle α̂ from Equation (4.2) is
smaller than a threshold εα.

Using this similarity criterion, the algorithm is able to segment the point cloud with a region
growing approach. The full algorithm is outlined in Figure 4.10. It consists of two parts:
region growing and filter. The next subsection deals in detail with the implementation of the
region-growing, which is one of the major scientific contributions of this work.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

30 Chapter 4. Registration Procedure

(a) Resulting normals using the SRI derivative method.

(b) Resulting normals using the least-squares method.

(c) Difference image between (a) and (b).

Figure 4.9: Comparison between least-squares and derivative method for normal calculation on spherical
range images (SRIs). They differ especially at the edges of the scene. Source for all three images: [41]

4.4.1 Region Growing with Trees

The region growing implemented in the presented algorithm uses a novel technique that utilizes
a dynamically scalable tree structure, i.e., the Bkd-tree (see Section 3.3), as well as a modified
version of a static k-d tree, for optimal segmentation runtime. The strategy of the algorithm
is to grow only one cluster at a time until it is finished, i.e., the cluster does no longer grow.
Then, another random point from the point cloud is selected, and region growing starts again
until each point belongs to a cluster.

The modified version of the static k-d tree supports deletion of points, but not insertion.
It performs a K-nearest neighbor (KNN) search around a given point pk (which is the point
that currently grows). Once a point has been grown this way, the algorithm removes it from
the modified k-d tree. All points that have been found with the KNN search operation are

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

4.4. Clustering Algorithm 31

Region Growing Filter

Region Growing Algorithm

1. Initialize first cluster with first point.

2. Grow a region around that point.

3. Check if these points fit into
the current cluster.

4. If a point does not fit into a cluster,
remove it temporarily from the point
cloud. Otherwise, put it into the current
growing cluster.

5. When current cluster is finished, put
add the removed points again.

6. Pick new random point in the point
cloud and repeat from 2. until no
points are left.

Planar
Clusters

Points

Normals

Filtering Algorithm

1. Apply PCA to all clusters.

2. Apply the following filters to all
clusters and delete them, if they dont
pass one of the filters:

2a. Size Filter

2b. Eigenvalue Filter

Figure 4.10: Outline of the local clustering algorithm. Inputs are points and corresponding point
normals. When the algorithm is finished, each point has a label assigned to itself, representing the local
planar cluster it belongs to.

then put into a queue. The queue represents the iteration order of points that the algorithm
considers next for region growing. Points that are already in the queue get temporarily marked
as long as they are inside the queue, hence the algorithm does not visit a point twice. Now, the
algorithm decides if pk should belong to the cluster C, which is currently growing. If pk does
not belong to C, it is marked temporarily as a visited point that has not yet been assigned to
any cluster. Once C is not able to grow anymore, these marks are reset. The point pk belongs
to C if they have similar normals, and pk has a distance to C which is smaller than a predefined
growth radius threshold dgrowth. The growth radius dgrowth is adapted quadratically depending
on the distance from pk to the origin of the local coordinate system, i.e., its distance to the laser
scanner. This means that, for points with a small distance to the sensor (where point density
usually is high), the growth radius is also small. However, when points have a larger distance
to the sensor (where point density usually is low), the growth radius must naturally be larger,
too. Figure 4.11 shows the result of growth radius adaption on an indoor, real-world dataset.

Any region growing based segmentation method must inevitably face the following problem:

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

32 Chapter 4. Registration Procedure

Figure 4.11: Output of the clustering algorithm, using different grow radii dgrowth. A scan from a real
world dataset (see Section 5.2.2) gets clustered. (Left) Using dgrowth = 5 cm. Only point with a small
distance to the sensor get clustered. (Center) Using dgrowth = 50 cm. Only point with a high distance to
the sensor get clustered. (Right) Using linear growth adaptation with 5 cm ≤ dgrowth ≤ 50 cm. Points
with any distance to the sensor get clustered.

For a given point pk from the point cloud, what is its distance to the cluster C? In other words,
which point from C is pk’s the nearest neighbor (NN)? When we don’t order the points inside
C in a tree structure, a naive solution is to calculate the distance from pk to any point q ∈ C
with brute force (BF). However, this leads to unacceptable segmentation runtime for large point
clouds, as the distance calculation is an O(N) operation, where N is the number of points in
the cluster. Therefore, the presented algorithm uses a novel strategy for this problem: We store
the points inside C using a Bkd-tree, as it supports insertion of points, as well as NN searching
with logarithmic amortized cost (see Section 3.3). This admittedly raises the time complexity
of insertion from constant O(1) to O(B−1 log M

B
(NB) log2(NM)), where B is the bucketsize of the

trees, and M is a memory buffer size. However, it decreases the time complexity of the NN query
from linear O(N) to O(log(N) log2(NM)). Overall, this yields a faster runtime when compared
to the BF approach. Figure 5.1 also shows this empirically. We filter the result of the region
growing in the next section, as we seek only planar clusters.

4.4.2 Filter

Applying the region growing algorithm from the previous section to a point cloud with n points
consequently results in n points being labeled. However, this unavoidably means that clusters get
constructed also in non-planar or sharp parts of the point cloud, where local normal direction
differences are large. Planar areas like walls will therefore always be connected in one large
cluster, while non-feature parts, i.e., non-planar or detached parts of the scan will have their
own, smaller cluster. The histogram in Figure 4.12 illustrates this. It shows the number of
points in the clusters, sorted in descending order, found for an artificially generated, fully noise-
free dataset, also shown in Figure 4.12. Note that even if the dataset is free from pose- or
range-noise, the algorithm finds many small clusters at the edges of the room, simply due to the
nature of point normals in that area. Hence putting a threshold ncmin on the minimum cluster

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

4.5. Finding Matches 33

1 2 3 4 5 6 7 8 9 10 50 100 1000
Cluster index

100

101

102

103

104

105

N
u
m

b
e
r

o
f

p
o
in

ts

Cluster size histogram (logscale)

Figure 4.12: Histogram showing cluster size after region growing (before filtering) in an artificially
generated dataset with six perfect walls. The colors in the dataset correspond to the biggest six clusters.
The other clusters correspond to the sharp edge regions.

size successfully filters edge regions. The filtering operation consists not only of a minimum size
threshold but also an additional eigenvalue ratio filter. It puts a maximum threshold εe on the
ratio between the smallest eigenvalue and the sum of all eigenvalues, where the eigenvalues are
a result of a principal component analysis (PCA) that fits a plane to the points in the cluster.
The geometric interpretation of this is that the extent in normal direction must be relatively
small compared to the extent in the other directions. Figure 4.12 also shows the result after
applying both thresholds. The filter successfully removes all the small, non-planar clusters. In
the next section, we want to find matches between those filtered clusters in subsequent scans.

4.5 Finding Matches

The previous two sections addressed the creation of local planar clusters (LPCs), using region
growing and filtering. Now, the goal of the matching algorithm is to find a corresponding plane
in the global model for each point in a local planar cluster (LPC). Hence, we compare each LPC
with each other global cluster to find similarities. Five properties have been selected to check
if two clusters are similar, which are described in detail below. Note that the global model is
sequentially updated for each scan, using the LPCs as indicated in Figure 4.3. Therefore, the
global planes share all properties that the LPCs have, like eigenvalues or convex hulls. Figure

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

34 Chapter 4. Registration Procedure

Match Point-2-Plane
Correspondences

Planar
Local

Clusters

Global
Planes

Matching Algorithm

1. Consider each possible cluster-plane pair:

2a. Calculate overlap ratio by spanning a band around the plane, then count how many points in the cluster
 fall into the band.

2b. Calculate minimum Hesse distance from the cluster to the plane.

2c. Calculate minimum point projection distance (PPD) from the cluster to the plane.

2d. Calculate L1 norm of cluster-plane-eigenvalue-difference.

2e. Calculate angle between mean cluster normal and plane normal.

3. Find maximum values of 2b. - 2d. (We don't need 2a or 2e. as their maxima are already defined by definition)

4. For each cluster, setup a score for every plane, using the maxima from 3. and the values from 2a. - 2e.

5. Establish a match between a cluster and the plane with the best score, if the values from 2. are good enough.

Figure 4.13: Outline of the matching algorithm. Inputs are the local planar clusters (LPC) and the
planes from the global model. The output is point-to-plane correspondences.

4.13 outlines the matching algorithm. First, we set up a score function to calculate the likeliness
of a cluster to belong to a certain plane. However, such a cluster-plane score (CPS) must not
be interpreted as a probability, as its value only matters when being compared to other CPS’s.
What is true, though, is that a higher score corresponds to a higher similarity, which is sufficient
for our purpose.

To calculate the CPS of a local cluster C and global plane P , the matching algorithm first
calculates and stores the following properties for any possible pair of C and P :

• The angle between normals αC,P according to Equation (4.2) between C and P .

• The ratio rC,P of all pk ∈ C that fall inside a 3D bounding box around P .

• The minimum hesse distance DC,P
H,min from any point pk ∈ C to P .

• The minimum PPD DC,P
PPD,min from any point pk ∈ C to P .

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

4.5. Finding Matches 35

• The L1 norm of eigenvalue differences ∆eC,P between the eigenvalues of C and P .

Secondly, the matching algorithm finds the maximum possible values for these quantities. Note
that this is not necessary for the angle between C and P , as the maximum angle two planes
potentially span is π

2 . It is also not necessary for the ratio of overlap, as the maximum overlapping
portion assumably is 100%. We denote the maximum of the remaining quantities as follows:

DH,max = max
(
DC,P

H,min

)
∀ (C,P) , (4.3)

DPPD,max = max
(
DC,P

PPD,min

)
∀ (C,P) , (4.4)

∆emax = max
(
∆eC,P

)
∀ (C,P) . (4.5)

The next step of the matching algorithm is to calculate a score s for each attribute of a cluster-
plane pair (C,P) individually, using the following score functions:

sα(C,P) = 1− 2αC,P

π
, (4.6)

sr(C,P) = rC,P , (4.7)

sH(C,P) = 1−
DC,P

H,min
DH,max

, (4.8)

sPPD(C,P) = 1−
DC,P

PPD,min
DPPD,max

, (4.9)

s∆e(C,P) = 1− ∆eC,P

∆emax
. (4.10)

Finally, the CPS incorporates these score functions by computing their weighted sum:

s(C,P) = wα · sα(C,P)
+ wr · sr(C,P)
+ wH · sH(C,P)
+ wPPD · sPPD(C,P)
+ w∆e · s∆e(C,P) .

(4.11)

The weights correspond to the importance of an attribute for matching. For example, the angle
between two planes should be more important than their L1 norm eigenvalue difference. The
latter should be the least important factor, as it is only meaningful in a few special edge cases.
The authors recommendation on all weights are wα = 1.0, wr = 1.0, wH = 0.5, wPPD = 0.1,
and w∆e = 0.1, indicating that the angle between a pair, as well as their overlap ratio, are most
important for finding matches. They were found empirically and used for creating all presented
results that this thesis shows.

To establish point-to-plane correspondences, the matching algorithm looks at each cluster C
and computes the score from Equation (4.11) for each global plane P . The (C,P)-pair having the
highest score is considered a match. Then, point to plane correspondences arise for each point

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

36 Chapter 4. Registration Procedure

in C to P , if the following criteria are fulfilled: The minimum Hesse distance for a pair DC,P
H,min

is smaller than a threshold εH. And, the minimum PPD for a pair DC,P
PPD,min is smaller than a

threshold εPPD. And, the angle between a pair αC,P is smaller than a threshold εα. If any of these
criteria fail, the algorithm discards the (C,P)-match, i.e., no point-to-plane correspondences are
established. Once the matching algorithm established point-to-plane correspondences, we seek
to minimize the total distance these points have to their respective planes, which we do in the
next section.

4.6 Optimization

In the previous section, point-to-plane correspondences arised using a matching algorithm. Now,
we want to minimize the distance that each point has to its corresponding plane by optimizing
the pose of the laserscanner. Therefore, the optimization is the process of finding a 6 DoF pose
transformation that minimizes the distance of all points to their respective planes. Section 3.2.1
and 3.2.2 provide two distance models: the Hesse distance and the polygon projection distance
(PPD). The PPD is useful to establish point-to-plane correspondences, indeed. However, it is
excluded from the optimization, as minimizing the Hesse distance is sufficient as long as there
are three or more in the local plane model, i.e., three or more planes are present in an individual
scan (which is ensured by condensing, see Section 4.2.1). Furthermore, minimizing the PPD is
not always reasonable, since it constrains the growth of a plane in a senseless way.

On the other hand, imagine the Hesse distance minimization as attaching springs for all
corresponding points to their respective planes orthogonally. Imagine the optimization as the
springs retracting, and therefore pulling the points onto their corresponding planes. When
there are springs attached for each point of only one plane, the optimization potentially fails to
align the edges of a scene. When there are springs attached for two planes, the optimization
potentially fails to align the corners of a scene. However, attaching those springs to each point
of three planes is sufficient for aligning edges and corners. In the next section, we model the
point-to-plane distances using an error function. Then, we use the derivatives of that function
for gradient descent, which is described in Section 4.6.2.

4.6.1 Error function

We set up the error function as a sum of the squared Hesse distances over all point-to-plane
correspondences

E =
∑
∀Pi

∑
pk∈Pi

‖nPi · [T (pk)− aPi] ‖2 =
∑
∀Pi

∑
pk∈Pi

‖Di,k
h (Π,pk) ‖2 , (4.12)

where Π = [ϕ, ϑ, ψ, tx, ty, tz]τ . Its gradient follows then immediately through differentiation:

∇E =
∑
∀Pi

∑
pk∈Pi

[
∂
∂ϕE

∂
∂ϑE

∂
∂ψE

∂
∂tx
E ∂

∂ty
E ∂

∂tz
E
]τ

(4.13)

⇒ ∇E =
∑
∀Pi

∑
pk∈Pi

2 ·Di,k
h ·

[
∇Eϕ ∇Eϑ ∇Eψ nxPi

nyPi
nzPi

]τ
(4.14)

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

4.6. Optimization 37

The derivates in Equation (4.14) are

∇Eϕ = nyPi
(xk[−SϕSψ + CϕCψSϑ] + yk[−SϕCψ − CϕSϑSψ]− zkCϕCϑ)

+nzPi
(xk[CϕSψ + CϕCψSϑ] + yk[CϕCψ − SϕSϑSψ]− zkSϕCϑ)

, (4.15)

∇Eϑ = nxPi
(−xkSϑCψ + ykSϑSψ + zkCϑ)

+ nyPi
(xkCψSϕCϑ − ykSϕCϑSψ + zkSϑSϕ)

+ nzPi
(−xkCϕCψCϑ + ykCϕCϑSψ − zkCϕ

, (4.16)

and

∇Eψ = nxPi
(−xkCϑSψ − ykCϑCψ)

+ nyPi
(xk[CϕCψ − SϕSϑSψ] + yk[−CϕSψ − SϕSθCψ])

+ nzPi
(xk[SϕCψ + CϕSψSθ] + yk[−SψSϕ + CϕSϑCψ]) .

(4.17)

As the error gradient is well-defined we minimize the error function with a gradient descent
based method.

4.6.2 Gradient Descent with AdaDelta

This section explains how the error function, which was introduced in the previous section, is
minimized with gradient descent. The commonly used, well-known stochastic gradient descent
(SDG) algorithm computes

Πj+1 = Πj − α∇E (4.18)

where α is the learning rate. To accelerate convergence and to improve the found solution further
modifications are made.

Since we have vastly different effects on the error function by each dimension, the first
consideration for improving the SDG is the following: Typically, orientation changes, i.e., the
first three elements of the gradient vector ∂

∂ϕE, ∂
∂ϑE, and ∂

∂ψE, have much more impact on the
error function than a change in position. This is intuitively explained since translating the scan
makes the error grow linearly for all points. However, when rotating the scan, points with a
larger distance to the robot are moved drastically, leading to a higher sensibility on the error
function. For this reason, the α applied on orientation has to be much smaller than the α applied
on the position. It becomes evident that α needs to be extended into vector form, α, therefore
weighting each dimension differently.

Another consideration to speed up SDG is to adaptively recalculate α for each iteration. We
employ and modify AdaDelta as a technique to do so, which is described in detail in [56]. The
main idea is the following: It extends the SDG algorithm by two terms. First, an exponentially
decaying average of past gradients Gj which is recursively defined as

Gj+1 = ζGj + (1− ζ)∇E2 (4.19)

and second, an exponentially decaying average of past changes Xk which is defined as

Xj+1 = ζXj + (1− ζ)α∇E2 (4.20)

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

38 Chapter 4. Registration Procedure

where ζ ≤ 1 is a decay constant, typically close to 1. The root mean squared (RMS) of these
quantities are

RMS[G]j =
√
Gj + ε (4.21)

and

RMS[X]j =
√
Xj + ε (4.22)

where ε > 0 is a very small constant, typically close to 0. It will prevent dividing by zero in the
recalculation of α which is as follows:

αj = RMS[X]j−1
RMS[G]j

(4.23)

For our particular application, AdaDelta behaves a little too aggressively. Despite giving a
good measure on how to adapt α, the algorithm sometimes overshoots and does not converge.
Therefore, we employ another scaling factor, typically not found in AdaDelta, extending Equa-
tion (4.23) to:

αj = α0 ·
RMS[X]j−1
RMS[G]j

(4.24)

where α0 holds the scaling factors for each dimension. Finally, the SDG model is improved
using Equation (4.24) and extends to

Πj+1 = Πj −α0
RMS[X]j−1
RMS[G]j

· ∇E . (4.25)

Note that α0 is set manually, depending on the motion profile of the mobile scanning plat-
form. This introduces the possibility to lock dimensions from being optimized or even weighting
dimensions based on their expected noise level. Although 6 DoF optimization generally works,
reducing the optimization space is particularly useful if the source of error in the system is
known and a model exists. That way, as we expect a spherical robot to move on a plane, the
position along the axis perpendicular to the plane is constant and should not be used for opti-
mization. Using this algorithm once, after finding correspondences from points to planes, leads
to convergence to a local minimum which is often not an optimal solution. Even if we increase
the number of iterations dramatically, no better solution than the local minimum is found. That
is unless you consider updating the correspondence model after I iterations of gradient descent.
Re-assigning point-to-plane correspondences this way J times, with a large enough J , leads to
an optimal solution after maximum I · J iterations of gradient descent. The intuition behind
this is to force the algorithm after I iterations to see if new correspondences arise, based on the
current transformation. This way, we allow the algorithm to converge into a final set of matches
before updating the global model, i.e., merging the planes.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

Chapter 5

Results

This chapter evaluates the two major scientific contributions mentioned in Section 1.3, namely
a novel point cloud segmentation method based on region growing with Bkd-trees, and a novel
point cloud registration procedure based on scoring pairs of planar polygons. Therefore, the
following presents the results in two distinct sections: The first one shows the results of the
point cloud segmentation. It presents the resulting point cloud regions qualitatively, as well
as an extensive runtime evaluation for both an artificial and a real-world dataset. The second
shows the results of the registration procedure, i.e., improved map, improved 6 DoF path, and
global plane model, on an artificial dataset, as well as on three real-world datasets with different
motion profiles. A quantitative evaluation compares ground truth point clouds with the artificial
dataset, as well as two of the real-world datasets. Furthermore, we make a comparison with a
state-of-the-art semi-rigid registration (SRR) in terms of their accuracy and runtime, for one
real-world dataset. Any results presented in this chapter have been gathered on a single thread
by an Intel Core i7-10750H processor with a frequency of 2.6 GHz, with no running background
processes except for the operating system (Ubuntu 18.04 LTS) ones. For the artificial dataset
creation, we use a simulator developed at the University of Wuerzburg by Anton Bredenbeck (see
source files at https://github.com/fallow24/SphereTDP/tree/master/tdp/DataSetSim). It
provides the interfaces to define a robot consisting of an arbitrary sensor and mover. The sensor
determines the elevation and azimuth of all rays of measurement, and the mover defines which
movement the robot executes in a given timestep. Both components are equipped with an error
model that models errors of a real measuring system. The robot is then placed in an artificial
environment where the robot is simulated for a given amount of time.

5.1 Segmentation

5.1.1 Artificial Dataset

The previously mentioned simulator created this dataset by rolling a 3D laser scanner for 30 s
inside a cube-shaped room with a side length of 3 m, free from any pose- or range noise. The
simulated sensor is a Livox Mid-100 3D laser scanner. It has a non-repeating, flower-shaped
scanning pattern, thus point coverage increases with time. Its horizontal field of view (FOV)
is 98.4◦, whereas its vertical FOV is 38.4◦. The sensor produces about 300, 000 pts/s and has a

39

https://github.com/fallow24/SphereTDP/tree/master/tdp/DataSetSim

40 Chapter 5. Results

	0.1

	1

	10

	100

	1000

	10000

	100000

55756 274593 539898 1051991 2373810 6016242

Ti
m
e	
[s
]

Number	of	points

Comparison	between	two	point	cloud	segmentation	methods

Bkd
BF

Figure 5.1: Runtime comparison for region growing between bruteforce method and Bkd-tree method,
on reduced versions of the artificial dataset. The Bkd-tree method is able to reduce the time complexity
for point-to-cluster distance calculation by orders of magnitude, resulting in overall less runtime.

minimum scan range of 1 m. The region growing parameters used were dgrowth = 5 cm, εα = 5◦,
ncmin = 2000, and K = 20. Figure 5.1 shows a runtime comparison between the Bkd-tree-based
method and the brute force (BF) method for segmentation. The red line corresponds to the
runtimes recorded for the BF method, while the blue line corresponds to the runtimes of the
Bkd-tree method. Note that for a small number of points, in particular 55756 points for this
dataset, the computational overhead created by the Bkd-tree makes the runtime worse than with
the BF method. However, when increasing the number of points, the new method outperforms
the BF approach by orders of magnitude due to its improved time complexity. Figure 5.2 shows
the result of the segmentation. There seems to be a hole at one side of the cube. Yet this
results only from the restricted FOV of the sensor. All six sides of the cube get segmented in
the correct way, whereas potetial problematic regions at the edges and corners of the cube are
correctly identified as non-planar areas.

5.1.2 Real World Dataset

In this section, a highly precise terrestrial Riegl VZ-400 laser scanner collected the point cloud
on the market square in Wuerzburg, Germany. It is a rotating line scanner with a vertical (line)
FOV of 100◦, horizontal FOV of 360◦, and angular resolution of 0.0005◦, that produces highly
precise point clouds. The dataset is available for public use on the homepage of 3DTK.1 The
region growing parameters used are dgrowth = 50 cm, εα = 10◦, ncmin = 500, and K = 40. Figure

1http://kos.informatik.uni-osnabrueck.de/3Dscans/wue_city.tar.xz

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

http://kos.informatik.uni-osnabrueck.de/3Dscans/wue_city.tar.xz

5.1. Segmentation 41

Figure 5.2: Result of the clustering algorihtm on an artificial dataset. (Left) Artificial, noise free,
cube shaped point cloud. (Right) Resulting point cloud segmentation using dgrowth = 5 cm, εα = 5◦,
ncmin = 2000, and K = 20. In the right image, points with the same color belong to the same cluster.

5.3 shows the runtime comparison between the Bkd-tree-based method and the BF method for
calculating point-to-cluster distances during point cloud segmentation. For this dataset, the
time differences between the former (red line) and the latter method (blue line) are smaller than
in the artificial dataset from the previous section (cf. Figure 5.1). This is because in the real
dataset there are planes in abundance, while in the artificial dataset there are only six of them.
Therefore many individual clusters in the real world dataset contain fewer points, making the
computational overhead by the Bkd-tree method more impactful. Nonetheless, the difference
between the two methods increases perceptibly as the number of points increases. For example,
clustering 7821724 points in this dataset takes approx. 150 min using the BF method. Doing the
same with the Bkd-tree method takes only approx. 40 min, which is less than half the time that
BF needs. Figure 5.4 shows the result of the segmentation. The clustering algorithm correctly
omits sharp, non-planar features like the church spires and identifies planar regions like the floor,
exterior walls, or rooftops.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

42 Chapter 5. Results

	10

	100

	1000

	10000

650975 1206481 2629496 4603893 7821724

Ti
m

e	
[s

]

Number	of	points

Comparison	between	two	point	cloud	segmentation	methods

Bkd
BF

Figure 5.3: Runtime comparison for region growing between bruteforce method and Bkd-tree method,
on reduced verions of a real world, market square dataset. The Bkd-tree method is able to reduce the
time complexity for point-to-cluster distance calculation by orders of magnitude, resulting in overall less
runtime.

Figure 5.4: Result of the clustering algorithm on a real world, market square dataset from Wuerzburg.
(Left) Point cloud before applying clustering algorithm. (Right) Resulting point cloud segmentation using
dgrowth = 50 cm, εα = 10◦, ncmin = 500, and K = 40. In the right image, points with the same color
belong to the same cluster.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

5.2. Registration 43

P90 P95 P98

Uncorrected 372.1 cm 553.4 cm 827.9 cm
Corrected 35.9 cm 64.1 cm 122.8 cm

Table 5.1: Comparison of point-distances in the uncorrected and corrected simulated dataset. To be
read as follows: “For 90% of all points in the uncorrected dataset, the corresponding distance to their
ground truth match is less than or equal to 372.1 cm.”

5.2 Registration

5.2.1 Artificial Dataset

The artificial dataset used in this section was created by simulating the previously mentioned
rolling Livox Mid 100 sensor (see Section 5.1.1) in a rectangular corridor of length 100 m, with
3 m height and 4 m width. Both range- as well as pose-measurements, underly the influence of
simulated noise. The presented registration algorithm is applied to the simulated dataset without
further preprocessing. Assuming this represents a coarsely pre-registered 3D point cloud, the
distances to the ground truth are evaluated before and after the registration. Figure 5.5 shows
the different point-to-point distances. Before the registration, the corridor is only represented
acceptably in the front part. The further into the corridor, i.e., the longer the robot accumulates
errors, the more imprecise the data becomes. Finally, we see that many points exceed the
threshold of 1 m and thus being mapped to the same color value. After registration, we see
that, qualitatively, the ideal corridor was nearly restored from the noisy data. In particular, a
very large part of the points (90%) has a distance of less than 35.9 cm. Table 5.1 shows the
comparison of further percentiles of both datasets. Further, the square and straight shape of
the corridor is restored well, and especially a large amount of points with an error of greater
than 1 m is removed. Any such errors tend to occur at the back and the front of the corridor
where the measured range is the largest hence has the largest contribution of the range error.

5.2.2 Real World Datasets

There are three real-world datasets with different motion profiles and/or scanning patterns.
All of the following experiments have been executed with spherical robots. This is due to
recent developments within the context of “Descent And Exploration in Deep Autonomy of
Lava Underground Structures” (DAEDALUS) [45], which also was a Concurrent Design Facility
(CDF) study by the European Space Agency (ESA). In the study, the authors proposed a
spherical robot for mobile mapping due to many advantages regarding locomotion and sensor
protection.

• A dataset collected with a 2D line scanner inside a floating sphere, allowing only for 3D
rotation, but not translation. The line scanner is a Sick LMS141 laser scanner, which
has a vertical FOV of 270◦, scanning range from 0.5 m up to 40 m, a minimum angular
resolution of 0.25◦, and a maximum scanning frequency of 50 Hz. The hardware setup was
designed and built by the Cylon team (Ignacio Dorado Llamas, Timothy Randolph, and

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

44 Chapter 5. Results

Camilo Andres Reyes Mantilla) at the University of Wuerzburg. The dataset was acquired
by Timo Burger on the floating desk table, as shown in Figure 5.6 in a sequence of images.

• A dataset collected with a 3D laser scanner inside a rolling sphere, where a 2D trans-
lation on the ground plane is also possible. The 3D laser scanner in this dataset is a
Livox Mid 100, as previously described in Section 5.1.1. The robot estimates the dis-
tance traversed with a recent IMU-only based approach for spherical robots [57], using
the spheres radius and its angular velocity to obtain the covered distance on the ground
plane. The dataset was acquired in an indoor living environment (a bedroom) by rolling
the sphere manually with a controlled, constant rotation. The prototype, which is shown
in Figure 5.7, was built by students at the University of Wuerzburg (Jasper Zevering,
Anton Bredenbeck, and Fabian Arzberger) in the context of DAEDALUS [45].

• A dataset collected with a 3D laser scanner mounted to a crane. The 3D laser scanner in
this dataset is, again, a Livox Mid 100, as previously described in Section 5.1.1. The sensor
unrestrictedly rotates around the descending axis, corresponding to the cable direction.
Let’s call this direction the z-direction. The descending laser scanner, therefore, traverses
only in the z-direction, while the cable introduced non-linear rotations around the z-axis.
We connected the laser scanner to an outsourced processing machine via a 50 m tear-
resistant tether cable (Fathom ROV Tether by BlueRobotics) which was rolled around a
coil in order to perform the descending and ascending movement of the sphere, as shown in
Figure 5.8. A spin encoder measures the rotation of the coil which directly corresponds to
the height of the sphere according to the helix arc length formula. That way, we estimate
the position (only in the z-direction) of the laser scanner. The descent of the sphere
covered a distance of 22 m (see Figure 5.8) and was performed within a duration of 402 s.

For the estimation of orientation in all three setups, we use at least one PhidgetSpatial Pre-
cision 3/3/3 1044 0 inertial measurement unit (IMU). The following sections present the raw,
unprocessed datasets, as well as the resulting point cloud, path, and global plane model after
applying the presented algorithm. The accuracy of the results is evaluated by comparing them
with ground truth point clouds, obtained with the previously described terrestrial Riegl VZ 400
laser scanner (see Section 5.1.2). Unfortunately, a ground truth dataset is not available for the
first setup (floating sphere), as the room has been refurbished since the first data acquisition.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

5.2. Registration 45

	0

	200

	400

	600

	800

	1000

	1200

	1400

	1600

	0 	600 	1200 	1800 	2400 	3000

Nu
m
be

r	o
f	O

cc
ur
re
nc
es

Distance	[cm]

	0

	200

	400

	600

	800

	1000

	1200

	1400

	1600

	0 	50 	100 	150

0 20 40 60 80 100

	0

	200

	400

	600

	800

	1000

	1200

	1400

	1600

	0 	600 	1200 	1800 	2400 	3000

Nu
m
be

r	o
f	O

cc
ur
re
nc
es

Distance	[cm]

	0

	200

	400

	600

	800

	1000

	1200

	1400

	1600

	0 	50 	100 	150

0 20 40 60 80 100

Figure 5.5: Evaluation of point distances before (left) and after (right) the plane-based registration
on a simulated dataset. Lateral images always have the same orientation. A maximal distance of 30 m
is set, such that all points that display a higher distance value are excluded from the analysis. Both
point-clouds were reduced before evaluating point-to-point distances to the ground-truth. Further, the
color-space maps all values with a distance greater than 1 m to the same color. The top two columns show
a heat map of distances, while the bottom shows the corresponding histogram. The color mapping is
equivalent in both. An animation of the matching process is given at https://youtu.be/hFx2uGkUdXw.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

https://youtu.be/hFx2uGkUdXw

46 Chapter 5. Results

Figure 5.6: Sphere rotating on a floating table. Inside the sphere is a 2D line scanner (Sick LMS141)
and IMU, creating a 3D point cloud while rotating.

Figure 5.7: Prototype used for data acquisition with the rolling sphere. The main payload is the Livox
Mid-100 laser scanner. For pose-estimation, three IMUs of the manufacturer Phidget are placed inside
and a Raspberry Pi 4 for the calculations. On the top are two batteries, and on the bottom one voltage
stabilizer and the breakout box of the laser scanner.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

5.2. Registration 47

Figure 5.8: Hardware and setup of the crane descent experiment. (Left:) Experimental setup showing
the connection of the Livox Mid 100 laser scanner with the tether cable that is rolled around a cable reel.
(Right:) Image showing the test sphere as it gets descended 7 floors of a firestation building. Inside the
sphere, three IMUs of the manufacturer Phidget are placed. The height of the sphere is measured by a
spin encoder at the cable reel.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

48 Chapter 5. Results

Floating Sphere

This section shows the results of the first dataset, which has been acquired as described in
the previous section. The pre-registration is obtained by determining the orientation of the
sphere via Madgwick filtered [35] IMU measurements. Note that for this dataset, a 2D laser
scanner is used instead of a 3D laser scanner. To increase the number of possible point-to-
plane correspondences we condense twenty temporally successive 2D scans into one 3D linescan,
which is then globally registered. We always use the scan at the median index as a reference
coordinate system. This does not only speed up convergence due to the proportional effect
on the error function but also decreases the risk of transforming a single line scan incorrectly.
Transformations like these happen in particular for a small collection of points as outliers have
more influence. The following parameters were used for optimization: S = 20, εH = 50,
εPPD = 200, εα = π

4 , K = 20, dgrowth = 50, ncmin = 200, α0 = [0.01, 0.01, 0.01, 0, 0, 0]τ , I = 8,
and J = 100. Figure 5.9 shows the results obtained before and after employing the plane-based
registration on the dataset acquired by the floating sphere. After the registration, the walls
of the room are significantly more prominent in the point cloud. Further, the deviation of
points around the walls is notably smaller as the points are moved on their respective plane.
Some outliers remain after the registration, especially with increasing distance from the laser
scanner. This is because point density is lower there, resulting in fewer points. Hence their
influence on the optimization gradient is also small. The proposed solution to this problem is to
consider the point density in a local neighborhood of points and weigh their effect on the gradient
accordingly. Points that have less local density should therefore be weighted more. Figure 5.10
shows the convex hulls of the planes that have been found by the clustering algorithm during
segmentation. Multiple convex hulls represent the same plane. This is due to the faulty behavior
of the matching algorithm (see Section 4.5), as it is not able to properly update the global plane
model with the individual linescans. One conceivable solution to this problem is to implement
a loop closing technique. Without such, the global planes do not merge with already existing
planes after they have been registered. However, two initially unconnected planes potentially
connect when a third plane is introduced, which overlaps with both. Despite that, the presented
algorithm was able to improve the map quality of the environment, even if some outliers remain.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

5.2. Registration 49

Figure 5.9: Comparison between the unprocessed and resulting point cloud for the floating sphere
dataset. (Above) Birds-eye view of the unprocessed point cloud from the floating sphere. (Below)
Birds-eye view of the resulting point cloud after applying the presented algorithm. An animation of the
registration process is given at https://youtu.be//ov5Xjgyl9wA

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

https://youtu.be//ov5Xjgyl9wA

50 Chapter 5. Results

Figure 5.10: Resulting global plane model for the floating sphere dataset. (Above:) The resulting
point cloud after applying the presented registration algorithm. (Below:) Resulting convex hulls from
the segmentation, which happend during registration. Many clusters corresponding to the same plane
are visible.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

5.2. Registration 51

P90 P95 P98

Uncorrected 61.3 cm 74.3 cm 88.9 cm
Corrected 17.4 cm 22.0 cm 26.0 cm

Table 5.2: Comparison of point-distances in the uncorrected and corrected indoor real world dataset
for the rolling sphere. To be read as follows: “For 90% of all points in the uncorrected dataset, the
corresponding distance to their ground truth match is less than or equal to 61.3 cm.”

Rolling Sphere

This section shows the results of the second dataset, which has been acquired as described in
Section 5.2.2. Figure 5.11 shows a comparison between the unprocessed point cloud, pre-aligned
only with the IMU measurements [57], and the resulting point cloud after applying the presented
algorithm. For a better view, the ceiling has been cropped in the following images. The presented
algorithm used the following parameters for registration: S = 25, εH = 200, εPPD = 300,
εα = π

4 , K = 200, 50 cm ≤ dgrowth ≤ 100 cm, ncmin = 800, α0 = [0.001, 0.001, 0.001, 1, 0, 1]τ ,
I = 1500, and J = 1. Before registration, the walls of the environment are present multiple
times in the point cloud but displaced with an offset of more than 120 cm. After we apply
the presented registration algorithm, the displaced walls are globally aligned. However, the
alignment is still not perfect. In particular, a wall’s thickness increases when comparing it with
individual scans of the same wall. The same Figure also shows the path which results from the
IMU measurements, with the optimized path. Looking at the above image, it appears that the
robot crashes through the wall, which, of course, did not happen during the experiment. With
the optimized path (below image), this does not happen anymore, as it is globally consistent
with the map. However, the resulting path looks more distorted than before. This is because,
for some individual linescans, only a senseless transformation is found due to the faulty behavior
of the matching algorithm, which happens especially for linescans that have only a few points.
Ideas exist for solving this problem, e.g., excluding small linescans from the optimization and use
path interpolation for them instead. Figure 5.12 directly compares the resulting point cloud after
registration with the ground truth point cloud. Note that the dataset acquired with the rolling
robot does not have points on the floor due to the minimum scanning distance of the sensor,
which is 1 m. Figure 5.13 shows an evaluation of point-to-point distances to ground truth. The
coloring of the images represents the distance each point in the cloud has to its corresponding
point in the ground truth point cloud. Any distance that is larger than 30 cm gets mapped to the
same color (red). The left column corresponds to the unprocessed point cloud, whereas the right
column corresponds to the point cloud after applying the presented algorithm. The histograms
show that before application of the registration algorithm, the majority of points (98%) have
distances to ground truth of 88.9 cm or less. After applying the presented algorithm, the same
percentage of points have distances of only 26.0 cm. Table 5.2 shows the comparison for further
percentiles between the uncorrected and corrected dataset. Furthermore, in the histograms, the
peak for points that have distances less than or equal to 0.3 cm has more than doubled in size.
Figure 5.14 shows the extracted convex hulls of the clusters which the segmentation algorithm
found during registration. Unlike with the dataset in the previous section, where a 2D scanner

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

52 Chapter 5. Results

was rotated, the vertical FOV is now higher for each linescan. Therefore, clusters are more likely
to overlap, which is why the matching algorithm merges more clusters. The bottom right image
shows an exterior view of the resulting plane model. The walls and ceiling each belong to distinct
clusters. Since the ground is barely populated with points, there are multiple smaller clusters,
as shown in the upper right image. Note that there are even clusters for the window- and door
frames. In general, the improved map and exported plane model resemble the environment well.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

5.2. Registration 53

Figure 5.11: Comparison between the unprocessed point cloud obtained by the rolling sphere, pre-
registered only using IMU measurements (above) and the resulting point cloud after applying the pre-
sented registration algorithm (below). For a better view, the ceiling has been cropped. Both images were
captured from the same pose. The contrast between black and white corresponds to reflectivity of the
point cloud. The traversed path is shown with the red line in both images.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

54 Chapter 5. Results

Figure 5.12: Comparison between the resulting point cloud after applying the presented registration
algorithm (left column) and the ground truth point cloud (right column) for the rolling sphere dataset.
The above images show an indoor view of the scene, captured from the same pose. The below images
show a birds-eye view of the scene, also captured from the same pose. For a better view, the ceiling has
been cropped. The contrast between black and white corresponds to reflectivity of the point cloud.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

5.2. Registration 55

	0

	20000

	40000

	60000

	80000

	100000

	120000

	140000

	0 	24 	48 	72 	96 	120
Distance	[cm]

0 6 12 18 24 30

	0

	20000

	40000

	60000

	80000

	100000

	120000

	140000

	0 	24 	48 	72 	96 	120
Distance	[cm]

0 6 12 18 24 30

Figure 5.13: Evaluation of point distances before (left) and after (right) the plane-based registration
on the rolling sphere dataset. Lateral images always have the same orientation. A maximal distance of
120 cm is set, such that all points that display a higher distance value are excluded from the analysis.
Further, the color-space maps all values with a distance greater than 50 cm to the same color. The top
two columns show a heat map of distances, while the bottom shows the corresponding histogram. The
color mapping is equivalent in both. For the birds-eye view, the ceiling has been cropped to get a better
view. An animation of the matching process is given at https://youtu.be/Mkil0vLk8f8.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

https://youtu.be/Mkil0vLk8f8

56 Chapter 5. Results

Figure 5.14: Resulting global plane model for the rolling sphere dataset. (Left column) The resulting
point cloud after applying the presented algorithm. The above image shows an indoor view of the scene.
The below image shows an exterior view of the scene. Black / White contrast corresponds to reflectivity
of the point cloud. (Right column) Extracted convex hulls of the global point clusters, which are built up
during segmentation and merged during registration. Lateral images always have the same orientation.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

5.2. Registration 57

P90 P95 P98

Uncorrected 621 cm 806.3 cm 1369.9 cm
Corrected 321.9 cm 433.8 cm 617.2 cm

Table 5.3: Comparison of point-distances in the uncorrected and corrected indoor real world dataset
for the descending sphere. To be read as follows: “For 90% of all points in uncorrected dataset, the
corresponding distance to their ground truth match is less than or equal to 621 cm.”

Crane Descent

This section shows the results of the third dataset, which has been acquired as described in
Section 5.2.2. The following parameters were used for optimization: S = 20, εH = 50, εPPD = 50,
εα = 5◦, K = 200, 50 cm ≤ dgrowth ≤ 200 cm, ncmin = 200, α0 = [0, 0.01, 0, 0, 1, 0]τ , I = 5000,
and J = 1. The above image in Figure 5.15 shows the 6 DoF pose estimates, as collected directly
from the IMU and the spin encoder. Further, you see the resulting point cloud when applying
these estimates to their corresponding scans. The image below shows the 6 DoF pose estimates
after the presented registration algorithm has been applied. Figure 5.16 compares the resulting
point cloud after applying the optimized pose estimates (above image) with a ground truth point
cloud, which was obtained by the previously mentioned Riegl VZ 400 terrestrial laser scanner
(below image). Note that in the above image, even non-planar details like the lights on the wall
are recreated well. This is because, in this environment, planes are excessively available in each
linescan thus optimization leaves no room for ambiguities. Figure 5.17 evaluates the distances
of the points in the cloud to ground truth before and after applying the presented registration
algorithm. The left column corresponds to the point cloud before registration, whereas the right
column corresponds to the point cloud after the registration has been applied. Note that in
the left column, the images look oversaturated, since the initial orientation estimates underly
large errors. The histogram in the left column shows that before registration, the majority
of points (98%) have distances smaller than or equal to 1369 cm to their ground truth match.
After registration, the same amount of points have distances smaller than or equal to 617 cm to
their ground truth match. Table 5.3 shows the comparison for further percentiles between the
uncorrected and corrected point cloud. Figure 5.18 shows the extracted convex hulls which were
found during the segmentation and merged during registration. Some clusters still correspond
to the same plane due to the lack of a loop closing technique. Section 5.2.2 describes this
problem in more detail. However, the extracted global planes, as well as the improved point
cloud, reproduce the overall structure of the environment well.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

58 Chapter 5. Results

Figure 5.15: Comparison between the unprocessed and resulting point cloud and path for the crane
descent dataset. (Above:) 6 DoF pose estimations of the descending robot, before application of the
presented algorithm. (Below:) 6 DoF pose estimations of the descending robot after application of the
presented algorihtm.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

5.2. Registration 59

Figure 5.16: Comparison between the resulting point cloud after applying the presented registration
algorithm (above) and the ground truth point cloud (below) for the crane descent dataset. In both
images, an indoor view of the scene, captured from the same pose, is shown. The contrast between black
and white corresponds to reflectivity of the point cloud.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

60 Chapter 5. Results

	0

	2000

	4000

	6000

	8000

	10000

	12000

	14000

	16000

	0 	500 	1000 	1500 	2000 	2500

Nu
m
be

r	o
f	O

cc
ur
re
nc
es

Distance	[cm]

0 60 120 180 240 300

	0

	2000

	4000

	6000

	8000

	10000

	12000

	14000

	16000

	0 	500 	1000 	1500 	2000 	2500

Nu
m
be

r	o
f	O

cc
ur
re
nc
es

Distance	[cm]

0 60 120 180 240 300

Figure 5.17: Evaluation of point distances before (left) and after (right) the presented registration on
the crane descent dataset. Lateral images always have the same orientation. The color-space maps all
values with a distance greater than 300 cm to the same color. The top two columns show a heat map
of distances, while the bottom shows the corresponding histogram. The color mapping is equivalent in
both. For the birds-eye view, the ceiling has been cropped to get a better view.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

5.2. Registration 61

Figure 5.18: Resulting global plane model for the crane descent dataset. (Left column:) The resulting
point cloud plus extracted planes after applying the presented algorithm. Black / White contrast cor-
responds to reflectivity of the point cloud. (Right column:) Extracted convex hulls of the global point
clusters, which are built up during segmentation and merged during registration. The above images shows
a side view of the scene, which was sliced to gain a better view. The below images shows an indoor view
of the scene. Lateral images always have the same orientation.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

62 Chapter 5. Results

5.2.3 Comparison with Semi-Rigid Registration

This section uses the dataset from the previous section to compare the novel, polygon-based reg-
istration method with an existing state-of-the-art, semi-rigid registration (SRR) [15] method.
SRR uses iterative closest point (ICP) based registration as a preregistration method. The
algorithm then establishes a correspondence graph between points in all linescans to perform
semi-rigid SLAM. Therefore, SRR simultaneously corrects the 6 DoF path and improves map
quality for a mobile system globally. Let us first discuss the accuracy that both algorithms
achieved. Unlike the previous section, we directly compare their distances to ground truth.
Note that the evaluation on this section happens on a reduced version of the previous dataset,
thus the histogram in Figure 5.19 looks different than in Figure 5.17 from Section 5.2.2, despite
corresponding to the same optimization. Figure 5.19 shows the evaluation of the point distances
to ground truth after SRR and after the presented method has been applied to the same dataset.
The results look very similar, i.e., both methods achieve a good approximation to ground truth.
In particular, the majority of points (98%) have distances less than or equal to 240.6 cm after
the application of SRR, and 250.7 cm after the application of the presented method. However,
Table 5.4 shows for lower percentiles, the presented method achieves even better results than
SRR. The histograms in Figure 5.19 show the highest peak at approximately the same location.
However, the peak for the presented method is higher and located more towards the left, indi-
cating that there are more points with less distance to ground truth, hence a higher accuracy
for the presented method. An exact interpretation of this is difficult, though, when considering
the above two images in Figure 5.19. Since SRR uses ICP based correspondences, it performs
better in non-planar areas, e.g., at the turntable ladder and basket, or the details on the ground.
The presented method is not designed for an explicit alignment of these parts of the point cloud.
Rather, their alignment inherently results from the plane-based registration. Furthermore, both
histograms in Figure 5.19 show a second peak, located to the right of the first peak. The second
peak makes an interpretation even more difficult since the presented method has its peak located
more to the right this time when compared to SRR. This means that there are more points with
higher distances to ground truth, indicating less accuracy for the presented method. While a
trained eye would likely suggest that SRR has higher accuracy, the presented results support
this suggestion only partly.

The runtime evaluation yields a more distinctive result, though. Both methods combine 25
successive scans into one linescan, which is then globally registered. Further, both methods
process only a reduced version of the point cloud, where each voxel of size 10 cm is allowed
to have only one point. The runtime for SRR is significantly higher. Overall, SRR needs
6069.04 min (approx. 4.2 days) to achive the result shown in Figure 5.19 (left column). The
presented method achieves comparable accuracy in only 60.63 min. This includes the runtimes
needed for all steps described in Chapter 4, except for preprocessing steps.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

5.2. Registration 63

	0

	10000

	20000

	30000

	40000

	50000

	60000

	70000

	80000

	90000

	100000

	0 	60 	120 	180 	240 	300
Distance	[cm]

0 60 120 180 240 300

	0

	10000

	20000

	30000

	40000

	50000

	60000

	70000

	80000

	90000

	100000

	0 	60 	120 	180 	240 	300
Distance	[cm]

0 60 120 180 240 300

Figure 5.19: Evaluation of point distances after SRR (left) and after the presented method (right) on
the crane descent dataset. Lateral images always have the same orientation. The color-space maps all
values with a distance greater than 300 cm to the same color. Further, unlike in the previous section,
points that have distances larger than 300 cm are excluded from the analysis. The top two columns show
a heat map of distances, while the bottom shows the corresponding histogram. The color mapping is
equivalent in both. For the birds-eye view, the ceiling has been cropped to get a better view.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

64 Chapter 5. Results

P90 P95 P98 Runtime

Uncorrected 621 cm 806.3 cm 1369.9 cm 0 min
SRR 159.7 cm 196.6 cm 240.6 cm 6069.04 min
presented method 150.0 cm 192.2 cm 250.7 cm 60.63 min

Table 5.4: Comparison of point-distances and runtimes after SRR and after the presented method, in
an indoor real world dataset for the descending sphere. SRR used voxel based point cloud reduction,
where any voxel of size 10 cm is allowed to only have one point. The presented method does not use
reduction. The percentiles are to be read as follows: “For 90% of all points in SRR corrected dataset,
the corresponding distance to their ground truth match is less than or equal to 159.7 cm.”

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

Chapter 6

Conclusions

This thesis proposes a novel registration algorithm based on polygon matching and point-to-
plane-based optimization, which corrects a 6 DoF path of a mobile mapping system to improve
map quality. Further, the algorithm outputs a global planar model of the environment. The
algorithm deals with a high amount of outliers, high noise levels, and coarse, IMU-based pose
measurements. It is therefore perfectly suited for the application of mobile mapping of manmade
environments with 6 DoF, in particular, spherical robot systems.

Another important contribution is the region growing based point cloud segmentation al-
gorithm, which is also used by the registration procedure. The region growing algorithm also
shows novelty utilizing the Bkd-tree [43] data structure - an adaption to the k-d tree which
allows for dynamic updates without query performance degradation. The proposed algorithm
recreates simulated as well as real world datasets well, using only IMU-based pose estimations.

In all examples, the corrected point clouds better resemble the structure of the environment.
As the results show, the algorithm utilizes a robust clustering method and a reliable gradient
descent procedure. The clustering algorithm is robust, since its not sensitive to outliers, noise, or
uneven point density. Further, the gradient descent reliable, as it is fast and converges to a global
minimum. Yet the results on two real world datasets also show that the polygon-to-polygon
matching, using a score function, leaves room for improvement, as false correspondences arise
in some situations. Other SOTA algorithms solve this problem in a more resiliant way, like [18]
with random forest (RF) classifiers. However, their method needs some pre-labled training data
and, once trained, behaves like an untunable black box. Furthermore, the presented matching
procedure has to consider each point that the polygons are originally construced with. Currently,
this is the main computational bottleneck of the proposed algorithm. Despite that bottleneck,
its runtime is a huge advantage compared to other SOTA methods.

An extensive evaluation shows the huge potential of the presented algorithm, as it achieves
nearly the same accuracy as a SOTA semi-rigid registration (SRR) [15] method in only a fraction
of its runtime. For one dataset specifically, the new method needs only about an hour, whereas
SRR needs more than four days, yet the precision that both methods achieve is almost indis-
tinguishable. The presented method needs at least a coarse pose estimate, whereas SRR could
do it without such. On the other hand, SRRs performance depends on the overlap between
subsequent scans, which is not guaranteed for many mobile systems, especially spherical ones.

65

66 Chapter 6. Conclusions

In other examples, the exported global clusters reveal difficulties with plane matching (cf.
Section 5.2.2), especially for 2D line scanners, where overlap between subsequent scans is not
always ensured. A potential proposed solution to the problem is the implementation of a loop
closing technique, e.g., similar to [50]. To increase the autonomy of the system, further research
shall reduce the number of input parameters by reworking parts of the algorithm, and automat-
ing a tuning method for optimal parameter estimates. Furthermore, an extensive comparison
between the presented planar segmentation method must be done with other SOTA methods.
A goal for future studies is to see if other SOTA algorithms benefit from the Bkd-tree method.
Needless to say, a lot of work remains to be done. However, the presented algorithm brings 6
DoF SLAM to spherical robots, and the results imply relevance for many other types of robotic
mobile mapping systems.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

Bibliography

[1] H. Badino, D. Huber, Y. Park, and T. Kanade. Fast and accurate computation of sur-
face normals from range images. In 2011 IEEE International Conference on Robotics and
Automation, pages 3084–3091, 2011.

[2] Jeffrey S. Beis and David G. Lowe. Shape indexing using approximate nearest-neighbour
search in high-dimensional spaces. CVPR ’97. IEEE Computer Society, 1997.

[3] P. J. Besl and N. D. McKay. A method for registration of 3-d shapes. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 14(2):239–256, 1992.

[4] P.J. Besl and R.C. Jain. Segmentation through variable-order surface fitting. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 10(2):167–192, 1988.

[5] B. Bhanu, S.K. Lee, C.C. Ho, and T.C. Henderson. Range data processing: Representation
of surfaces by edges. Department of Computer Science, Univerity of Utah, 1985.

[6] Josep Biosca and José Lerma. Unsupervised robust planar segmentation of terrestrial laser
scanner point clouds based on fuzzy clustering methods. ISPRS Journal of Photogrammetry
and Remote Sensing, 63:84–98, 04 2008.

[7] Dorit Borrmann, Jan Elseberg, Kai Lingemann, Andreas Nüchter, and Joachim Hertzberg.
Globally consistent 3D mapping with scan matching. Robotics and Autonomous Systems,
56:130–142, 02 2008.

[8] Dorit Borrmann, Sven Jörissen, and Andreas Nuchter. RADLER – A RADial LasER
scanning device. In Proceedings of the International Symposium on Experimental Research,
pages 655–664, Buenos Aires, Argentina, 01 2020.

[9] Michael Bosse, Robert Zlot, and Paul Flick. Zebedee: Design of a Spring-Mounted 3-
D Range Sensor with Application to Mobile Mapping. IEEE Transactions on Robotics,
28(5):1104–1119, 2012.

[10] Boston Dynamics. Spot robot. https://www.bostondynamics.com/spot, 2021.

[11] Jie Chen and Baoquan Chen. Architectural modeling from sparsely scanned range data.
International Journal of Computer Vision, 78:223–236, 07 2008.

67

https://www.bostondynamics.com/spot

68 Bibliography

[12] James Diebel. Representing attitude: Euler angles, unit quaternions, and rotation vectors.
Matrix, 58(15-16):1–35, 2006.

[13] P. Dorninger and Clemens Nothegger. 3d segmentation of unstructured point clouds for
building modelling. International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, 36, 01 2007.

[14] David Droeschel and Sven Behnke. Efficient continuous-time slam for 3d lidar-based online
mapping. 2018 IEEE International Conference on Robotics and Automation (ICRA), May
2018.

[15] Jan Elseberg, Dorit Borrmann, and Andreas Nüchter. 6DOF semi-rigid SLAM for mobile
scanning. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1865–1870, 2012.

[16] Péter Fankhauser, Michael Bloesch, and Marco Hutter. Probabilistic Terrain Mapping
for Mobile Robots With Uncertain Localization. IEEE Robotics and Automation Letters,
3(4):3019–3026, 05 2018.

[17] Ketty Favre, Muriel Pressigout, Eric Marchand, and Luce Morin. A Plane-based Approach
for Indoor Point Clouds Registration. In ICPR 2020 - 25th International Conference on
Pattern Recognition, Milan (Virtual), Italy, January 2021.

[18] Ketty Favre, Muriel Pressigout, Eric Marchand, and Luce Morin. Plane-based Accurate
Registration of Real-world Point Clouds. In SMC 2021 - IEEE International Conference
on Systems, Man, and Cybernetics, Melbourne / Virtual, Australia, October 2021.

[19] Pedro Felzenszwalb and Daniel Huttenlocher. Efficient graph-based image segmentation.
International Journal of Computer Vision, 59:167–181, 09 2004.

[20] Sagi Filin and Norbert Pfeifer. Segmentation of airborne laser scanning data using a slope
adaptive neighborhood. isprs journal of photogrammetry and remote sensing 60 (2). ISPRS
Journal of Photogrammetry and Remote Sensing, 60:71–80, 04 2006.

[21] Jerome Friedman, Jon Bentley, and Raphael Finkel. An Algorithm for Finding Best Matches
in Logarithmic Expected Time. ACM Trans. Math. Softw., 3:209–226, 09 1977.

[22] W. Förstner and K. Khoshelham. Efficient and accurate registration of point clouds with
plane to plane correspondences. In 2017 IEEE International Conference on Computer
Vision Workshops (ICCVW), pages 2165–2173, 2017.

[23] Natasha Gelfand and Leonidas J. Guibas. Shape segmentation using local slippage analy-
sis. In Proceedings of the 2004 Eurographics, ACM SIGGRAPH Symposium on Geometry
Processing, SGP 04, page 214–223, New York, NY, USA, 2004. Association for Computing
Machinery.

[24] Patrick Geneva, Kevin Eckenhoff, Yulin Yang, and Guoquan Huang. LIPS: LiDAR-Inertial
3D Plane SLAM. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS ’18), pages 123–130, 2018.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

Bibliography 69

[25] A. Golovinskiy and T. Funkhouser. Min-cut based segmentation of point clouds. In 2009
IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops,
pages 39–46, Los Alamitos, CA, USA, oct 2009. IEEE Computer Society.

[26] W. Shane Grant, Randolph C. Voorhies, and Laurent Itti. Efficient Velodyne SLAM with
point and plane features. Autonomous Robots, 43:1207–1224, 2019.

[27] Jaehoon Jung, Sanghyun Yoon, Sungha Ju, and Joon Heo. Development of kinematic
3D laser scanning system for indoor mapping and as-built BIM using constrained SLAM.
Sensors, 15(10):26430–26456, October 2015.

[28] R. Kindermann and J.L. Snell. Markov Random Fields and Their Applications. American
Mathematical Society, 06 1980.

[29] Helge A. Lauterbach, Dorit Borrmann, Robin Heß, Daniel Eck, Klaus Schilling, and Andreas
Nüchter. Evaluation of a Backpack-Mounted 3D Mobile Scanning System. Remote Sensing,
7(10):13753–13781, 2015.

[30] V. V. Lehtola, J.-P. Virtanen, M. T. Vaaja, H. Hyyppä, and A. Nüchter. Localization of a
Mobile Laser Scanner via Dimensional Reduction. ISPRS Journal of Photogrammetry and
Remote Sensing (JPRS), 121:48–59, November 2016.

[31] Leica. Leica pegasus:backpack. www.leica-geosystems.com/de/Leica-PegasusBackpack_
106730.htm, May 2015.

[32] Yangyan Li, Xiaokun Wu, Yiorgos Chrysanthou, Andrei Sharf, Daniel Cohen-Or, and
Niloy J. Mitra. Globfit: Consistently fitting primitives by discovering global relations.
ACM Transactions on Graphics, 30(4):52:1–52:12, 2011.

[33] Jiarong Lin and Fu Zhang. Loam livox: A fast, robust, high-precision LiDAR odometry
and mapping package for LiDARs of small FoV. In proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 3126–3131, 2020.

[34] David B. Lomet and Betty Salzberg. The hB-Tree: A Multiattribute Indexing Method with
Good Guaranteed Performance. ACM Trans. Database Syst., 15(4):625–658, December
1990.

[35] Sebastian Madgwick. An efficient orientation filter for inertial and inertial/magnetic sensor
arrays. Report x-io and University of Bristol (UK), 25:113–118, 2010.

[36] NavVis. The NavVis VLX mobile mapping system. https://www.navvis.com. Accessed
on 05.07.2021.

[37] Anh Nguyen and Bac Le. 3d point cloud segmentation: A survey. In 2013 6th IEEE
Conference on Robotics, Automation and Mechatronics (RAM), pages 225–230, 2013.

[38] Xiaojuan Ning, Xiaopeng Zhang, Yinghui Wang, and Marc Jaeger. Segmentation of archi-
tecture shape information from 3d point cloud. 12 2009.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

www.leica-geosystems.com/de/Leica-PegasusBackpack_106730.htm
www.leica-geosystems.com/de/Leica-PegasusBackpack_106730.htm
https://www.navvis.com

70 Bibliography

[39] Andreas Nuchter, Kai Lingemann, Joachim Hertzberg, and Hartmut Surmann. 6D SLAM
- 3D mapping outdoor environments. Fraunhofer IAIS, 24, 11 2006.

[40] Andreas Nüchter, Johannes Schauer, and Dorit Borrmann. Technical report: Reduction
and compression using octrees — 3DTK’s entry to the ICIP 2019 challenge on point cloud
coding. 2019.

[41] Nüchter, Andreas. Lecture notes in 3D Point Cloud Processing, July 2014.

[42] Kaustubh Pathak, Andreas Birk, Narunas Vaskevicius, and Jann Poppinga. Fast Reg-
istration Based on Noisy Planeswith Unknown Correspondences for 3D Mapping. IEEE
Transactions on Robotics, 26(3):424–441, 2010.

[43] Octavian Procopiuc, Pankaj K. Agarwal, Lars Arge, and Jeffrey Scott Vitter. Bkd-tree:
A dynamic scalable kd-tree. In Thanasis Hadzilacos, Yannis Manolopoulos, John Roddick,
and Yannis Theodoridis, editors, Advances in Spatial and Temporal Databases, pages 46–65,
Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[44] John T. Robinson. The K-D-B-Tree: A Search Structure for Large Multidimensional Dy-
namic Indexes. In Proceedings of the 1981 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’81, page 10–18, New York, NY, USA, 1981. Association
for Computing Machinery.

[45] Angelo Pio Rossi, Francesco Maurelli, Vikram Unnithan, Hendrik Dreger, Kedus Mathewos,
Nayan Pradhan, Dan-Andrei Corbeanu, Riccardo Pozzobon, Matteo Massironi, Sabrina
Ferrari, Claudia Pernechele, Lorenzo Paoletti, Emanuele Simioni, Pajola Maurizio, Tom-
maso Santagata, Dorit Borrmann, Andreas Nüchter, Anton Bredenbeck, Jasper Zevering,
Fabian Arzberger, and Camilo Andres Reyes Mantilla. DAEDALUS - Descent And Explo-
ration in Deep Autonomy of Lava Underground Structures. Technical Report 21, Institut
für Informatik, 2021.

[46] Radu Rusu, Andreas Holzbach, Nico Blodow, and Michael Beetz. Fast geometric point
labeling using conditional random fields. pages 7–12, 12 2009.

[47] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature histograms (fpfh)
for 3d registration. In 2009 IEEE International Conference on Robotics and Automation,
pages 3212–3217, 2009.

[48] A.D. Sappa and M. Devy. Fast range image segmentation by an edge detection strategy.
In Proceedings Third International Conference on 3-D Digital Imaging and Modeling, pages
292–299, 2001.

[49] Jonathan R. Schoenberg, Aaron Nathan, and M. Campbell. Segmentation of dense range
information in complex urban scenes. 2010 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 2033–2038, 2010.

[50] Jochen Sprickerhof, Andreas Nuchter, Kai Lingemann, and Joachim Hertzberg. An explicit
loop closing technique for 6d SLAM. pages 229–234, 01 2009.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

Bibliography 71

[51] Johannes Strom, Andrew Richardson, and Edwin Olson. Graph-based segmentation for
colored 3d laser point clouds. In 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2131–2136, 2010.

[52] Daniel Sunday. Practical Geometry Algorithms - With C++ Code. Amazon Digital Services
LLC - KDP Print US, Fishers, Indiana 46038, USA, 2021.

[53] Fayez Tarsha-Kurdi. Hough-transform and extended ransac algorithms for automatic de-
tection of 3d building roof planes from lidar data. 09 2007.

[54] Aparna Tatavarti, John Papadakis, and Andrew Willis. Towards real-time segmentation of
3d point cloud data into local planar regions. pages 1–6, 03 2017.

[55] Xin Wei, Jixin Lv, Jie Sun, and Shiliang Pu. Ground-SLAM: Ground Constrained LiDAR
SLAM for Structured Multi-Floor Environments, 2021.

[56] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[57] Jasper Zevering, Anton Bredenbeck, Fabian Arzberger, Dorit Borrmann, and Andreas
Nüchter. IMU-based pose-estimation for spherical robots with limited resources. In 2021
IEEE International Conference on Multisensor Fusion and Integration for Intelligent Sys-
tems (MFI), 2021. [Manuscript accepted for publication].

[58] Ji Zhang and Sanjiv Singh. Loam: Lidar odometry and mapping in real-time. In Robotics:
Science and Systems Conference (RSS), 07 2014.

[59] L. Zhou, S. Wang, and M. Kaess. π-LSAM: LiDAR smoothing and mapping with planes.
In Proceedings of IEEE International Conference on Robotics and Automation (ICRA ’21),
Xi’an, China, May 2021. To appear.

An optimized polygon based SLAM algorithm for mobile mapping using efficient
planar clustering and enhanced 6D gradient descent

Proclamation

Hereby I confirm that I wrote this thesis independently and that I have not made use of any
other resources or means than those indicated.

Würzburg, September 2021

	Introduction
	Mobile 3D Mapping with Spherical Robots
	Problem Definition
	Scientific Contribution
	Thesis Outline

	State of the Art
	Planar Segmentation Algorithms
	6D SLAM Algorithms For Mobile Mapping
	Point Cloud Registration With Plane Based Correspondences

	Mathematical Fundamentals
	Points and Transformations
	Point to Plane Distance Models
	Hesse Distance
	Polygon Projection Distance
	Crossing Number Algorithm
	Winding Number Algorithm

	k-d Trees and the Bkd-Tree
	A Forest of Trees
	Dynamic Updates
	Queries

	Registration Procedure
	Working Pipeline
	Preprocessing
	Condensing
	Reduction

	Normals Calculation
	Approximate Methods
	Panorama Images

	Clustering Algorithm
	Region Growing with Trees
	Filter

	Finding Matches
	Optimization
	Error function
	Gradient Descent with AdaDelta

	Results
	Segmentation
	Artificial Dataset
	Real World Dataset

	Registration
	Artificial Dataset
	Real World Datasets
	Comparison with Semi-Rigid Registration

	Conclusions

