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Abstract

In the field of autonomous motion and mapping, estimating the position and orientation of a
moving body is of high significance. This includes in particular the latest information about
acceleration, speed, traveled distance and orientation. A wide range of different technologies
exists that are applied for this purpose. In case the state determination requires the use of
inertial sensors, it is well known that these types of sensors tend to drift with time. This
leads to increasing errors in the calculated trajectory, which is unacceptable if precise position
information is required such as for mapping. This work presents a method to calibrate the
deterministic and stochastic error parameters of inertial sensors measuring linear acceleration
and angular velocity. No external equipment is necessary for this procedure, which simplifies its
usage. Using the methods presented in this thesis, the error of the acceleration measurement
will be reduced by a factor of 30.

Since remaining measurement errors continuously decrease the accuracy of position estimation by
IMU, additional positioning sensors are usually used to improve the accuracy of the estimation.
In the case of visual inertial odometry methods, a camera is used in addition to the inertial
sensors to improve the position estimation. To combine the position measurements of several
sensors, a transformation (i.e. translation and rotation) between the individual sensors should
be known as exact as possible. Methods that use only the data from a camera and an IMU for
position estimation, monocular visual inertial odometry methods, are especially dependent on
a well calibrated IMU and the exact translation between the two sensors to estimate the scale
as accurately as possible. The VIO software VINS-Mono used in the course of this thesis has
disadvantages in estimating these parameters, especially as the translation during initialization
is not taken into account.

In the second part of this thesis, methods are presented that improve the initialization of VINS-
Mono. The translation and rotation data from camera images and IMU measurements are used
to accurately determine the translation and rotation between a camera and an IMU. In the
same course, the biases of the accelerometer and the gyroscope are also determined, as well
as the direction of the gravity vector. The accurate estimation of these parameters allows the
exact determination of the visual scale, which leads to a more accurate pose estimation. Using
the methods presented in this thesis to initialize VINS-Mono, the accuracy of the resulting
trajectory is significantly improved. This is especially important for the UWSensor project,
which motivated the research on this topic. Here the accuracy of the estimated trajectory was
improved, which led to a better point cloud result. Furthermore, the use of these methods only
requires that there is enough structure in the environment of the camera for the detection of
features.





Zusammenfassung

Im Hinblick auf die autonome Bewegung und Kartierung ist die Schätzung der Position und
Orientierung eines sich fortbewegenden Systems von großer Bedeutung. Dazu gehören insbeson-
dere die aktuellen Informationen über Beschleunigung, Geschwindigkeit, zurückgelegte Strecke
und Orientierung. Es gibt eine Vielzahl von unterschiedlichen Technologien, die zu diesem
Zweck eingesetzt werden. Erfordert die Zustandsbestimmung den Einsatz von Inertialsensoren,
so ist bekannt, dass diese Art von Sensoren dazu neigen, mit der Zeit zu driften. Dies führt
zu zunehmenden Fehlern in der berechneten Trajektorie, was inakzeptabel ist, wenn präzise
Positionsinformationen benötigt werden, wie z.B. bei der Kartierung. In dieser Arbeit wird
eine Methode zur Kalibrierung der deterministischen und stochastischen Fehlerparameter von
Inertialsensoren vorgestellt, die lineare Beschleunigung und Winkelgeschwindigkeit messen. Für
dieses Verfahren ist keine externe Ausrüstung erforderlich, was seine Anwendung vereinfacht.
Mit den in dieser Arbeit vorgestellten Methoden wird der Fehler der Beschleunigungsmessung
um einen Faktor von 30 reduziert.

Da die verbleibenden Messfehler die Genauigkeit der Positionsschätzung durch die IMU kon-
tinuierlich verringern, werden in der Regel zusätzliche Positionssensoren eingesetzt, um die
Genauigkeit der Schätzung zu verbessern. Bei den Methoden der visuellen inertialen Odometrie
wird zusätzlich zu den Inertialsensoren eine Kamera verwendet, um die Positionsschätzung zu
verbessern. Um die Positionsmessungen mehrerer Sensoren zu kombinieren, muss eine Transfor-
mation (d.h. Translation und Rotation) zwischen den einzelnen Sensoren so genau wie möglich
bekannt sein. Methoden, die nur die Daten einer Kamera und einer IMU zur Positionsschätzung
verwenden, monokulare visuelle Inertial-Odometrie-Methoden, sind besonders auf eine gut kalib-
rierte IMU und die exakte Translation zwischen den beiden Sensoren angewiesen, um die visuelle
Skalierung so genau wie möglich zu schätzen. Die im Rahmen dieser Arbeit verwendete VIO
Software VINS-Mono hat Nachteile bei der Schätzung dieser Parameter, insbesondere da die
Translation während der Initialisierung nicht berücksichtigt wird.

Im zweiten Teil dieser Arbeit werden Methoden vorgestellt, die die Initialisierung von VINS-
Mono verbessern. Die Translations- und Rotationsdaten aus Kamerabildern und IMU-Messungen
werden verwendet, um die Translation und Rotation zwischen einer Kamera und einer IMU
präzise zu bestimmen. Im gleichen Zuge wird auch der Bias des Beschleunigungssensors und des
Gyroskops, sowie die Richtung des Gravitationsvektors bestimmt. Die genaue Schätzung dieser
Parameter ermöglicht die exakte Bestimmung der visuellen Skalierung, was zu einer genaueren
Posenschätzung führt. Mit den in dieser Arbeit vorgestellten Methoden zur Initialisierung von
VINS-Mono wird die Genauigkeit der resultierenden Trajektorie deutlich verbessert. Dies ist
besonders wichtig für das Projekt UWSensor, welches die Arbeiten an diesem Thema motiviert
hat. Hier konnte die Genauigkeit der geschätzten Trajektorie verbessert werden, was zu einem
besseren Punktwolkenergebnis führte. Darüber hinaus setzt die Anwendung dieser Methoden
lediglich voraus, dass in der Umgebung der Kamera genügend Struktur für die Erkennung von
Merkmalen vorhanden ist.





Contents

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Fundamentals and Background 5
2.1 Inertial Measurement Unit (IMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Allan Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 IMU Errors and Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Deterministic Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Stochastic Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Visual Inertial Odometry (VIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Roboter Operating System (ROS) . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7.1 Eigen’s Levenberg–Marquardt (LM) Algorithm . . . . . . . . . . . . . . . 15
2.7.2 Ceres Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 IMU Calibration 17
3.1 Deterministic Error Parameters Estimation . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Estimating Error Parameters of Accelerometer . . . . . . . . . . . . . . . 17
3.1.2 Estimating Error Parameters of Gyroscope . . . . . . . . . . . . . . . . . 18
3.1.3 Integrating Angular Velocity to get a Quaternion . . . . . . . . . . . . . . 18
3.1.4 Runge-Kutta Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Implementation Deterministic Error Parameter Estimation . . . . . . . . . . . . 23
3.3 Stochastic Error Coefficient Estimation . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Implementation Stochastic Error Parameter Estimation . . . . . . . . . . . . . . 28

4 Camera-IMU Extrinsic Calibration 33
4.1 IMU Pre-Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Rectify Pre-Integrated Results . . . . . . . . . . . . . . . . . . . . . . . . 35

ix



4.2 Gyroscope Bias and Rotation Estimation . . . . . . . . . . . . . . . . . . . . . . 36
4.2.1 Extrinsic Orientation Estimation . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 Gyroscope Bias Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Scale, Gravity and Translation Estimation . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Refinement and Accelerometer Bias Estimation . . . . . . . . . . . . . . . . . . . 42
4.5 Implementation Gyroscope Bias and Extrinsic Rotation Estimation . . . . . . . . 45
4.6 Implementation Scale, Gravity, Translation and Accelerometer Bias Estimation . 51

5 Evaluation of IMU Calibration 59
5.1 Evaluation of Accelerometer Calibration . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Evaluation of Gyroscope Calibration . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Evaluation of Camera-IMU Extrinsic Calibration 63
6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Choice of Minimization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3 Choice of Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.4 Evaluation of Gyroscope Bias and Extrinsic Rotation Estimation . . . . . . . . . 67

6.4.1 Extrinsic Rotation Estimation . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4.2 Gyroscope Bias Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.4.3 Evaluation of the Iterative Estimation Process . . . . . . . . . . . . . . . 80
6.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.5 Evaluation of Scale and Translation Estimation . . . . . . . . . . . . . . . . . . . 86
6.5.1 Scale Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.5.2 Accelerometer Bias Estimation . . . . . . . . . . . . . . . . . . . . . . . . 98
6.5.3 Evaluation of the Iterative Estimation Process . . . . . . . . . . . . . . . 101
6.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Evaluation of Pose Estimation 109
7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2 EuRoC MAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.3 UWSensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8 Summary and Outlook 117
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Chapter 1

Introduction

Nowadays, the use of autonomous systems is widespread in many aspects of life. Each moving
system relies on its exact position while navigating in its environment. A variety of different
sensors and measurement methods exist to acquire motion data, such as acceleration, velocity,
position and orientation data.

Imagine a drone that is supposed to move inside a building, e.g. to create a map of the sur-
roundings. In order to create a map and navigate, the drone relies on an accurate estimate of
its position, speed and orientation. Since a Global Navigation Satellite System (GNSS) receiver
only works accurately when there is sufficient radio reception, i.e. neither underground nor
indoors, this is not an option. As odometry is only suitable for a rolling system on a smooth
surface, another technology must be used. For this example, it is decided to equip the drone
with a camera and an IMU in order to estimate the necessary information.

Before using the measured values of the IMU, hence linear acceleration and angular velocity, the
sensors need to be calibrated. This ensures that the measured values correspond as precisely as
possible to the real values. For example, if the accelerometer suffers from a small measurement
error in the acceleration reading, the necessary double integration results in a position error that
cannot be neglected. To reduce this drift monocular visual inertial odometry is used to obtain
pose information of the drone by combining the IMU readings with the camera images.

At this point, another challenge arises. Any localization algorithm that combines the data of
several pose sensors requires the exact pose of the individual sensors to each other. The most
trivial method to obtain the rotation and translation between the two sensors is to simply
measure by hand the required transformation. Accuracy is limited here since, for example, the
positions of the two senors within the housing of the IMU are not exactly known. Better accuracy
is achieved by estimating the transformation with the given measured values of the camera and
the IMU. For this purpose, various algorithms are available, such as the work of [20]. Here, a
checkerboard pattern is used to determine the position and orientation change of the camera
from the captured images. Since the rigidly connected IMU is subject to the same motion, the
transformation between the two sensors is determined by aligning the trajectories of the camera
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2 Chapter 1. Introduction

Figure 1.1: This rendering illustrates a possible underwater factory in the future. In this case, it could
be a plant that produces crude oil.1

and the IMU. As described in [21], the use of external tools, such as checkerboard patterns or
april tags, can be omitted here as well. In this case, features are extracted from the camera
images to determine the poses of the camera. One advantage of this is that the transformation
is always determined, as long as enough features are available in the environment.

Since any monocular visual inertial odometry method needs to obtain scale information from
the IMU data in order to estimate the position, e.g. of the drone, it is essential to determine
the transformation as accurately as possible. An erroneous transformation inevitably leads to a
distorted scale and thus to poor localization. This thesis presents methods to calibrate the IMU
and to determine the transformation between a camera and an IMU without additional tools to
improve the pose estimation.

1.1 Problem Statement

For understanding the problem underlying this work, imagine an underwater factory in the
future. Fig. 1.1 shows an example of this, where a factory for the mining of crude oil is depicted.
If the necessary maintenance of this factory is to be carried out autonomously in the future, an
Remote Operated Vehicle (ROV) is used. This work is based on the project UWSensor 2, which
develops the sensor technology necessary for the ROV to carry out underwater surveying. A
possible design of the sensor platform is shown in Fig. 1.2. For position estimation it is equipped
with a color camera and an IMU with a Fibre-Optic Gyroscope (FOG). To build up a map of
the environment with the help of the installed 3D scanner technology, the exact position of the
sensor must be known at all times. The algorithm used to estimate the position, VINS-Mono, is
described in paper [27]. As explained earlier, this algorithm has to determine scale information

1https://www.ingenieur.de/technik/fachbereiche/verkehr/statoil-siemens-entwickeln-fabriken-oe
l-gasfoerderung-meeresgrund/

2https://www.searenergy.com/portfolio-item/r-d-project-3d-uw-sensor/
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Figure 1.2: Preliminary design of the sensor platform of the UWSensor project2. The two outer
housings each contain a 3D measurement camera and an additional light source. In the center housings,
an additional color camera is installed, which is used for the visual odometry, as well as the fringe projector
and the control unit of the sensors. One IMU is installed in each of the two lower housings, with the
second one serving as a redundancy. The device has a width of about 1m.

from camera and IMU data before the actual position estimation can be performed. Here,
the problem has been found that this initialization is not robust, depending on the data set
used. Therefore, if the scale is estimated incorrectly in the initialization, the subsequent pose
estimation does not work or the results are not satisfactory. This is mainly due to the fact that
VINS-Mono estimates the rotation between the camera and the IMU, but not the translation.
In the case of UWSensor, however, this must be taken into account, since the distance between
the camera and the IMU is not negligible due to the sensor design.

The purpose of this work is now to improve the initialization of VINS-Mono, or of any monocular
visual inertial odometry algorithm. This includes the calibration of the IMU and the estimation
of the translation between camera and IMU in order to determine an accurate scale.

1.2 Contributions

The scientific contribution of this work involves the development of two approaches for the
calibration of IMUs and the estimation of extrinsic parameters between a camera and an IMU.
In this work, algorithms from [21] for estimating extrinsic parameters were extended for methods
to find an optimal weighting of the datasets used. Experiments show that this strategy improves

IMU calibration and scale estimation improvement of existing VIO methods
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the accuracy of the estimates. Using this developed software, the initialization of VINS-Mono is
improved. This has the advantage, especially for the UWSensor project, that the trajectory is
estimated with a higher accuracy, which also improves the result of the resulting point clouds.
Also, by using the software developed in the course of this thesis, the trajectory of a drone flight
estimated by VINS-Mono is improved.

1.3 Structure of the thesis

In Chapter 2 following the introduction of this thesis, the necessary tools and methods used in
the course of this work are described. This includes general mathematical frameworks as well
as explanations of the sensors used.

Subsequently, Chapter 3 presents methods to estimate the deterministic and stochastic error
parameters necessary to calibrate an IMU, including the implementation of software to this
purpose.

The second part of this thesis follows in Chapter 4, which presents methods, the underlying
mathematics, and the final implementation of a software that determines the extrinsic calibration
parameters between an IMU and a camera without external tools.

In the two Chapters 5 and 6 the results of the two software packages are then evaluated and
explained.

In Chapter 8 the topic of this thesis is summarized and evaluated.

IMU calibration and scale estimation improvement of existing VIO methods



Chapter 2

Fundamentals and Background

In this chapter, the mathematical concepts, sensor techniques, software and algorithms used in
the course of this work are explained.

2.1 Inertial Measurement Unit (IMU)

An IMU is a combination of several inertial sensors. An inertial sensor can be e.g. an acceleration
sensor, a angular rate sensor or a magnetic field sensor. The IMUs, which are used in this work,
represent a combination of the mentioned sensors. For each sensor type they have three sensors
orthogonally arranged on top of each other, in order to be able to record translational and
rotational movements or the magnetic field strength for all three spatial directions [23, p. 4] [3].
In the following, the operating principle of the three types of sensors will be briefly explained:

Accelerometer
The acceleration sensor measures the acceleration acting on it in all three spatial directions.
Newton’s second law F = m · a forms the basis of the acceleration measurement. The
inertial force acting on a sample mass is measured. This is realized in a Microelectrome-

Figure 2.1: Operating principle of the angular rate sensor (source: [5])
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6 Chapter 2. Fundamentals and Background

chanical System (MEMS), a miniaturized acceleration sensor. The sample mass together
with a spring represents a spring-mass system in which both components are made of
silicon. To determine the deflection of the mass, the change in capacitance between the
sample mass and a fixed reference electrode is measured when an acceleration occurs. With
the knowledge of the deflection, the spring constant and the mass, the force acting on the
sample mass and from this the acceleration is calculated. The sensor cannot distinguish
between static and dynamic acceleration. On Earth, therefore, gravity must be subtracted
from the measured values to obtain the dynamic acceleration [23, p. 4ff.] [1].

Gyroscope
The rotation rate sensor measures the rotation speed around all three spatial directions.
This sensor is also implemented in a MEMS. The measuring principle is based on the Cori-
olis effect, whereby the Coriolis acceleration is measured. For each of the three directions
of rotation, there is a spring-loaded frame which can move in the direction of rotation. A
sample mass is attached within the frame, which oscillates orthogonally to the rotational
motion. Fig. 2.1 shows this sensor setup and the measuring principle. If the sample mass
moves towards the outside of the rotation, it experiences a Coriolis force opposite to the
direction of rotation. If it moves toward the center of rotation, it experiences a Coriolis
force in the direction of rotation. These forces move the frame in the direction, or against
the direction, of rotation. This movement is recorded via capacitive measuring elements
and the rotational speed is calculated from it [23, S. 9ff.] [5]. An alternative technology
is a so-called Fibre-Optic Gyroscope (FOG). This uses the Sagnac effect to determine
orientation changes. FOG technology is more expensive but more precise than MEMS
technology. For a detailed description of this technology, see Article [31].

Magnetic field sensor
The magnetic field sensor measures the magnetic flux density or the magnetic field strength
in all three spatial directions. The cardinal direction is determined by the relative orienta-
tion of the sensor to the magnetic field. The majority of magnetometers use the Hall effect
to determine the magnetic flux density. This is done by passing an electric current through
a conductive metal plate. The electrons flow directly through the plate. If the plate is
crossed by a magnetic field, the electrons are deflected to one side of the plate, depending
on the strength and direction of the magnetic field. Due to the resulting excess of electrons
on one of the plate sides, a voltage is measured. This voltage is directly dependent on the
strength of the magnetic field [6] [4].

2.2 Allan Variance

Allan Variance is a time domain analysis technique originally developed for characterizing noise
and stability in clock systems, which is used for detecting and determining the underlying noise
processes of gyroscopes and accelerometers. The Allan Variance analysis method is used in this
thesis because it is easier and more reliable to determine the coefficients of the underlying noise
processes compared to other techniques [34]. All formulas and descriptions in this section are
taken from [12], [18], [35] and [15].

IMU calibration and scale estimation improvement of existing VIO methods
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Figure 2.2: Exemplary representation of the Allan deviation σ(τ). The random processes recognizable
by their specific slopes in the plot are marked by name. (Source: [12])

Consider a long sequence of N gyroscope or accelerometer measures Ω(t) with a sample time of
t0. Since the measurements are made at discrete times t = kt0, k = 1, 2, 3 ..., N , the notation
is simplified as Ωk = Ω(kt0). These data points need to be divided into clusters of size n with
n < N/2, where each cluster has a length of τ = t0, 2t0, ..., nt0. As a result, there are a number
of K = N/n clusters. The average of a cluster is now given by

Ωk(τ) = θk+n − θk
τ

, (2.1)

and

Ωnext(τ) = θk+2n − θk+n
τ

, (2.2)

where the output angle or velocity is given by

θk = t0

k∑
i=1

Ωi. (2.3)

The Allan variance is now defined as

σ2(τ) = 1
2(K − 1)

K−1∑
k=1

(
Ωnext(τ)− Ωk(τ)

)2
(2.4)

= 1
2τ2(K − 1)

K−1∑
k=1

(
θk+2n − 2θk+n + θk

)2
. (2.5)
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Figure 2.3: This diagram shows an example of the axis to axis misalignment of an accelerometer or
gyroscope. Due to assembly inaccuracies, the angles between the individual sensor axes (ΦXY , ΦY Z and
ΦZX) deviate from 90 degrees. (Source: [24])

By plotting the Allan Deviation σ(τ), hence the square root of the Allan Variance, in a log-log
plot, the coefficients of the associated random processes are observed straightforwardly. A classic
Allan Deviation plot is exemplified in Fig. 2.2. The following unique relationship exists between
the Allan Variance and the Power spectral density (PSD) of the intrinsic random processes:

σ2(τ) = 4
∫ ∞

0
SΩ(f) · sin4(πfτ)

(πfτ)2 df. (2.6)

This relationship is used to find an expression for the Allan variance σ2(τ) as a function of
cluster length τ for the PSD SΩ(f) of a random process Q(τ). Eq. (2.6) can be interpreted as
the proportionality between the Allan variance and the total power output of the random process
when passed through a filter with a transfer function of the form sin4(x)/(x)2. This particular
transfer function is the result of the method used to create and operate on the clusters. A
detailed discussion of PSDs is not presented in this thesis, the interested reader can refer to
articles [25] and [18] for more information.

Section 3.3 describes how Eq. (2.6) is applied to determine the noise coefficients of the various
random processes from Fig. 2.2, for given PSDs, listed in Section 2.3.2.

2.3 IMU Errors and Characteristics

The MEMS accelerometers and gyroscopes used for this work suffer from measurement errors in
the uncalibrated case. These measurement errors, which consist of deterministic and stochastic
errors, are described in the following sections.

IMU calibration and scale estimation improvement of existing VIO methods
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Figure 2.4: This diagram shows an example of an orthogonal three axis accelerometer or gyroscope, with
alignment errors. The green orthogonal coordinate system defines a body frame, which is e.g. aligned to
the IMU’s chassis. The blue orthogonal coordinate system defines the accelerometers frame, respectively
the gyroscopes frame. Due to assembly inaccuracies, the misalignment errors (ΨX , ΨY and ΨZ) between
the body frame and the sensor’s axes (accelerometer or gyroscope) deviate from 0 degrees. (Source: [24])

2.3.1 Deterministic Errors

Due to the imperfect manufacturing process, IMUs suffer from deterministically quantifiable er-
rors: constant biases, scale-factor errors and misalignment errors. These errors can be calibrated
out and the interpretation of them is as follows.

In this thesis, the raw measurements of acceleration are referred to as Saâ and the raw measure-
ments of angular velocity are referred to as Sω ω̂.

Misalignments

In the ideal case, the three sensor axes of the accelerometer, respectively the gyroscope, will
each form an orthogonal coordinate system and coincides with the body frame {S}. The body
frame can be aligned e.g. to the IMU’s chassis.
Due to assembly inaccuracies, both the accelerometer frame {Sa} and the gyroscope frame {Sω}
form two distinct (i.e., misaligned), non-orthogonal, frames, as demonstrated in Fig. 2.3.
In addition, the sensor coordinate systems of the accelerometer and the gyroscope differ from
the body frame, as demonstrated in Fig. 2.4.
A detailed description of the background to these misalignments can be found in [24].

The purpose is to orthogonalize both sensor coordinate systems on one side and to ensure that
both sensor coordinate systems refer to the same reference frame on the other side. Here, the
ortogonalized coordinate frame of the accelerometer defines the reference coordinate frame, e.g.
the body frame. As described in [22], for small angles, a measurement As in a non-orthogonal

IMU calibration and scale estimation improvement of existing VIO methods
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frame A is converted into an orthogonal frame B as follows, where βij is the rotation angle of
the i-th sensor axis around the j-th axis of the body frame:

Bs = T As , T =


1 −βyz βzy

βxz 1 −βzx
−βxy βyx 1

 . (2.7)

Continuing, the body frame S is defined as follows:

• The x-axis of Sa coincides with that of S, it follows: βxz = βxy = 0

• The y-axis of Sa lies in the plane which is spanned by the x- and y-axis of S, it follows:
βyx = 0.

For the accelerometer Eq. (2.7) is simplified to:

Sâ = T a Saâ , T a =


1 −αyz αzy

0 1 −αzx
0 0 1

 , (2.8)

where β has been substituted with α for the case of the accelerometer.

For the Gyroscope Eq. (2.7) becomes:

Sω̂ = T ω Sω ω̂ , T ω =


1 −γyz γzy

γxz 1 −γzx
−γxy γyx 1

 (2.9)

where β has been substituted with γ for the case of the gyroscope.

In summary, Eq. (2.8) and Eq. (2.9) are used to orthogonalize the non-orthogonal sensor co-
ordinate systems of the accelerometer and the gyroscope and rotate them to the same body
frame.

Scale Factor Errors

The scaling factors for converting the digital measured value of the sensors into the physical
value acceleration, respectively angular velocity, vary for different instances of the same sensors.
To minimize the measurement errors the scaling factors for each IMU must be determined. For
this purpose, the following scaling matrices for the accelerometer and the gyroscope, respectively,
are introduced:

Ka =


sax 0 0
0 say 0
0 0 saz

 , Kω =


sωx 0 0
0 sωy 0
0 0 sωz

 . (2.10)

Here sai , or sωi , is the scaling factor for the i-th sensor axis of the accelerometer, or gyroscope.
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In summary, the individual sensor axes of the accelerometer and the gyroscope can now be
scaled with the help of the matrices (2.10), so that the digital measured value of the sensors are
converted into the correct physical value.

Constant Bias Error

Both the accelerometers and the gyroscopes are affected by biases which are the offsets in the
measurement provided by the inertial sensor. The bias of each sensor is generally composed of
two components: one deterministic part called bias offset and a random part [15, p. 21]. The
random part of the bias is discussed later in Section 2.3.2. The biases for each IMU must be
determined to minimize the measurement errors. For this purpose, we introduce the following
bias vectors for the accelerometer and the gyroscope, respectively:

ba =


bax
bay
baz

 , bω =


bωx
bωy
bωz

 (2.11)

Here bai , or bωi , is the bias for the i-th sensor axis of the accelerometer, or gyroscope.

In summary, the individual sensor axes of the accelerometer and the gyroscope can now be
corrected of their bias using the vectors (2.11).

Deterministic Sensor Error Model

The following sensor error models for the accelerometer and gyroscope are determined from the
previous sections and allow the corrected measurements for the acceleration (Sa) and angular
velocity (Sω) in the reference frame S to be determined.

Sa = T aKa(Saâ+ ba) (2.12)
Sω = T ωKω(Sω ω̂ + bω) (2.13)

2.3.2 Stochastic Errors

After the deterministic errors are removed from the accelerometer and gyroscope measurements,
the stochastic errors remain. These errors cannot be removed and must be modeled as a stochas-
tic processes. The prevailing errors are explained below, with all formulas and descriptions in
this section taken from [12] if not otherwise indicated.

Bias Instability
The bias stability provides information on how stable the bias of a gyroscope or accelerom-
eter is over a period of time. The rate Power spectral density (PSD) associated with this
noise, also known as 1/f or pink noise, is

SΩ(f) =
{
B2

2π
1
f f ≤ f0

0 f > f0
, (2.14)

where B is the bias instability coefficient and f0 the 3dB cutoff frequency.
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Angle Random Walk (ANRW) / Velocity Random Walk (VRW)
Due to thermo-mechanical noise disturbed gyroscopes and accelerometers, the discrete
measurements of these sensors are disturbed by a white noise sequence. This noise is
composed of a sequence of zero-mean uncorrelated random variables, where each random
variable is identically distributed with a finite variance. If this white noise signal is inte-
grated, which is the case when calculating the angle or velocity from the sensor readings,
this leads to zero-mean ANRW or VRW errors in the integrated signals. Thereby the
standard deviation of the noise increases with the squared root of time. [35]
The associated rate noise PSD is represented by

SΩ(f) = Q2, (2.15)

where Q is the ANRW or VRW coefficient.

Rate Random Walk (RRW) / Acceleration Random Walk (ACRW)
These two random processes have an unknown origin and the associated rate PSD from
this noise, also known as 1/f2 or Brownian noise, is

SΩ(f) =
(
K

2π

)2
1
f2 , (2.16)

where K is the RRW or ACRW coefficient.

Quantization Noise
Due to the quantization in the Analog-to-digital converter (ADC), there is a rounding
error between the analog input voltage and the digitized output value. The quantization
noise is a model of this quantization error with a rate PSD of

SΩ(f) =
{4Q2

t0
sin2(πft0)

≈ (2πf)2t0Q
2 f < 1

2t0
, (2.17)

where Q is the quantization noise coefficient.

2.4 Camera Calibration

In the course of this work, the images captured by a camera are used to obtain information about
the position of the camera. For this purpose, the positions of the features to be recognized in
the image are determined by the positions of the respective pixels. If the radial and tangential
distortion parameters of the camera are not known or only with large error, this has a negative
effect on the position estimated by the camera images. Therefore, in this work we are dependent
on calibration parameters that are as exact as possible, which are assumed to be given in this
case, since the calibration of cameras would exceed the scope of this work. For a detailed
description of methods for calibrating cameras, reference is made to relevant literature such
as [17]. If the reader is interested in performing the camera calibration on his own, the ROS
package camera calibration 1 is recommended.

1http://wiki.ros.org/camera calibration
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2.5 Visual Inertial Odometry (VIO)

As already explained, this thesis deals with VIO methods. So-called Visual Odometry methods
focus on the determination of the position and orientation of a moving system equipped with a
camera. If an IMU is also used to support the position estimation, it is called a VIO method.
This work is limited to the VIO software package VINS-Mono. Details about the functionality
are described in [27]. A detailed mathematical explanation of VIO methods would exceed the
scope of this thesis, so please refer to literature like [32].

2.6 Roboter Operating System (ROS)

2.6.1 Basic Concepts

ROS is a flexible general-purpose framework for a wide variety of autonomous systems. Among
other things, it provides the following services:

• Hardware abstraction

• Device driver

• Libraries

• Visualization

• Communication

• Package management

The objective behind the development work started in 2007 under the name Switchyard is the
simplification of complex and stable tasks to different robot systems. The development of a
general-purpose robot software by a single person, or an institution would be effortful. The
open-source software ROS has since been developed by a community of scientists, laboratories
and institutions. Anyone can contribute their expertise in a particular area. The five basic ideas
on which the design philosophy is based are:

Peer-to-Peer
This enables the use of multiple computers in the same robot system. In addition, data
can be transferred to external computers for computationally intensive processing.

Tool-based
In favor of low complexity, ROS is implemented in a micro kernel design.

Multi-language
ROS features connections for the programming languages C++, Python and Lisp. In
addition, there are modules for JAVA, Haskell and Lua, among others.

Slim
Algorithms are developed as a library independent of concrete hardware. This facilitates
porting to other hardware platforms and the re-usability of the algorithms.

IMU calibration and scale estimation improvement of existing VIO methods



14 Chapter 2. Fundamentals and Background

Open Source
ROS is under the BSD license and can therefore be used for both commercial and non-
commercial projects without restrictions.

[2][11][7][8][9]

2.6.2 Architecture

The main task of a robot operating system is the simultaneous processing of different jobs. The
information can be exchanged synchronously or asynchronously depending on the requirements.
The individual components of the ROS system are presented below:

Node
A node is a process that performs calculations. It can refer to a sensor, a motor, a
processing algorithm or a monitoring algorithm. Several nodes can run in parallel and
declare themselves to the master.

Master
The master is the declaration and storage service of the individual nodes and enables them
to know each other. It has the following tasks:

• Storage of information about which nodes publish or subscribe to which topics.

• Management of the services provided.

• Provision of services for finding communication partners at run time.

Topics
ROS enables asynchronous information exchange through Topics and synchronous infor-
mation exchange through Services. A Topic is an information movement based on a
Subscribe/Publish system. Nodes send and receive Topic messages.

Messages
A message consists of typecast entries, which can be different basic data types, fields or
nestings.

Bags
Bags can be used to store all messages from the ROS system for later use or evaluation.

The ability to divide different computational processes among individual nodes simplifies soft-
ware development for complex autonomous systems and their modeling [2][10].

2.7 Optimization Algorithms

Since in the course of this work some non-linear least squares problems have to be solved nu-
merically, two possible C++ software libraries are presented in the following, which carry out
this task for this thesis. To ensure that the optimization algorithms work correctly, two libraries
are used and compared to each other.

IMU calibration and scale estimation improvement of existing VIO methods



2.7. Optimization Algorithms 15

2.7.1 Eigen’s Levenberg–Marquardt (LM) Algorithm

The Levenberg-Marquardt algorithm was developed to solve non-linear least squares problems
and it combines two numerical minimization algorithms: the gradient descent method and the
Gauss-Newton method. A detailed description of the algorithm can be found in paper [19].
Instructions for using the C++ implementation of Eigen’s 2 LM algorithm can be found online 3.

The implementation of the methods presented in this thesis mainly uses this library. However, it
has been found that this optimization algorithm sometimes does not converge in the estimation
of the translation between the IMU and the camera, which will be explained later. For this
reason, the optimization algorithm presented in the next section is also used.

2.7.2 Ceres Solver

Ceres Solver is an open source C++ library for modeling and solving large, complicated op-
timization problems. It can be used to solve non-linear least squares problems with bounds
constraints and general unconstrained optimization problems. It is a mature, feature rich, and
performant library that has been used in production at Google since 2010 [13].

This optimization algorithm is used in the implementation of Chapter 4 to get a comparison to
the results of Eigen’s Levenberg–Marquardt (LM) algorithm.

2https://eigen.tuxfamily.org/dox/unsupported/classEigen 1 1LevenbergMarquardt.html
3https://medium.com/@sarvagya.vaish/levenberg-marquardt-optimization-part-2-5a71f7db27a0
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Chapter 3

IMU Calibration

In this chapter the procedure for calibration of IMUs is explained, regarding the mathematical
background followed by the implementation of the calibration algorithms. This allows to correct
the measured values of the IMU before these are further processed. The underlying sources of
error were explained in Section 2.3. As will be shown later, the error of acceleration measurement
is reduced by a factor of 30 (cf. Section 5), which reveals the importance of calibration.

3.1 Deterministic Error Parameters Estimation

To minimize the deterministic errors described in Section 2.3.1, the techniques developed by [29]
are used. These allow to eliminate the above-mentioned sources of error relating to the IMU
without the need for external equipment. In the following, the underlying mathematics are
explained.

3.1.1 Estimating Error Parameters of Accelerometer

To calibrate the accelerometer, the matrices T a and Ka and the vector ba must be determined,
hence the following vector with the unknown parameters:

θa =
[
αyz αzy αzx sax say saz bax bay baz

]
. (3.1)

The purpose of the calibration is to estimate the parameters in θa such that the sensor measures
|Sa| = |g| at a standstill regardless of the orientation to the gravitational vector g. To estimate
these unknown parameters we use the following cost function:

L(θa) =
M∑
k=1

(
|g|2 − |Sa|2

)
=

M∑
k=1

(
|g|2 − |T aKa(Saâ+ ba)|2

)
(3.2)

Where M is the number of acceleration vectors Saâ measured at different orientations. In
order to estimate the parameters precisely, the cost function (3.2) is minimized using the Lev-
enberg–Marquardt (LM) algorithm, explained in Section 2.7.1. At least M = 9 data sets must

17
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be provided for this. However, it has been observed that the results are better when about
M = 30 data sets are used for minimization. A more detailed description of the procedure and
implementation follows in Section 3.2.

3.1.2 Estimating Error Parameters of Gyroscope

To calibrate the gyroscope, the matrices T ω and Kω and the vector bω must be determined.
The bias bω can be determined by averaging the measurement of the rotational speed Sω ω̂ at
standstill over a suitable time period. Typically, a duration of a few seconds is sufficient. The
remaining unknown parameters are combined into the following vector:

θω =
[
γyz γzy γxz γzx γxy γyx sωx sωy sωz

]
. (3.3)

The purpose of the calibration is to estimate the parameters in θω such that the temporal
integration of the measured angular velocities corresponds to the same change in orientation as
determined by the accelerometer. The following function is defined, which uses a sequence of
bias-corrected gyroscope measurements Sω ω̂k−bω = Sω ω̄k and an initial orientation to determine
the final orientation:

uωm = Ψ
[
Sω ω̄k,u

a
m−1

]
(3.4)

Here uam−1 is the initial orientation determined by the accelerometer at the (m − 1)-th stand-
still. The operator Ψ represents here an arbitrary integration algorithm, which calculates the
final orientation uωm at the m-th standstill with the help of the initial orientation uam−1 and
the gyroscope measurements between the (m − 1)-th and m-th standstill. The orientation is
defined with u as the direction of the gravitational acceleration vector. A possible approach for
integration is explained in the following sections.

To estimate the unknown parameters θω in the case of the gyroscope the following cost function
is used:

L(θω) =
M∑
m=2
|uam − uωm|2 (3.5)

where M represents the number of standstills and uam the final orientation measured by the
accelerometer at the m-th standstill. In order to estimate the parameters precisely, the cost
function (3.5) is minimized using the LM algorithm, explained in Section 2.7.1. A more detailed
description of the procedure and implementation follows in Section 3.2.

3.1.3 Integrating Angular Velocity to get a Quaternion

In this work quaternions are used for the representation of rotations, since they do not lead to
ambiguous results and no singularity problems arise. This section will give an overview of how to
properly integrate the angular velocities measured by the gyroscope to obtain a quaternion. The
following mathematical backgrounds were acquired online 1 2 and from the approach developed
by [33].

1https://www.ashwinnarayan.com/post/how-to-integrate-quaternions/
2https://mathepedia.de/Quaternionen.html
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Multiplication of two quaternions is defined as follows:

q1 ⊗ q2 =


w1w2 − x1x2 − y1y2 − z1z2

w1x2 + w2x1 + y1z2 − y2z1

w1y2 + w2y1 − x1z2 + x2z1

w1z2 + w2z1 + x1y2 − x2y1

 . (3.6)

This can be written as a matrix product:

q1 ⊗ q2 =


w2 −x2 −y2 −z2

x2 w2 z2 −y2

y2 −z2 w2 x2

z2 y2 −x2 w2




w1

x1

y1

z1

 , (3.7)

where a quaternion is represented as a tuple of 4 numbers:

q =
[
w x y z

]T
=
[
w v

]T
. (3.8)

Here S(q) = w is called scalar part and V (q) = v is called vector part. A conjugate quaternion
is defined as follows:

q∗ =
[
w −x −y −z

]T
(3.9)

and has the property

(q1 ⊗ q2)∗ = q∗2 ⊗ q∗1 (3.10)

Any 3D vector r can be written as a pure quaternion:

rq =
[

0 r
]T

=
[

0 rx ry rz
]T

(3.11)

Unit quaternions, i.e. ||q|| = 1, can be used to rotate a vector Ar, expressed with respect to the
frame A, to a vector Br, expressed with respect to the frame B as follows:

Brq = B
Aq ⊗ Arq ⊗ B

Aq
∗, (3.12)

where B
Aq represents any arbitrary orientation in the 3D space of a frame A with respect to a

frame B.

In addition, zero rotation is defined as follows:

q0 =
[

1 0 0 0
]T
. (3.13)

In the following the relationship between quaternions and angular velocity will be described.
The physical law relating the tangential velocity of a circularly moving particle with position
vector r(t) and the associated vector ω(t) of angular velocity is defined as follows:

dr
dt = ω × r (3.14)
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Since a representation in quaternion form is required, Eq. (3.11) is used to obtain the two pure
quaternions rq and ωq. In the multiplication of two pure quaternions qa and qb the vector part
V (q) of the resulting quaternion q corresponds to the cross product of the vector parts of qa
and qb. Furthermore, the scalar part S(q) corresponds to the scalar product of the vector parts
of qa and qb except for the sign. Since the angular velocity ω is perpendicular to the position
vector r, it follows with:

S(q) = −qa · qb = −ωq · rq = S
(drq

dt
)

= 0 (3.15)

V (q) = qa × qb = ωq × rq = V
(drq

dt
)

(3.16)

that Eq. (3.14) can also be written in quaternion form:

drq
dt = ωq ⊗ rq. (3.17)

In addition, the quaternion commutator for the two pure quaternions qa and qb is defined as
follows:

[qa, qb] = 2(qa × qb) = 2(qa ⊗ qb). (3.18)

Now imagine that the position vector rq(t) of the moving particle can be described as follows:

rq = q ⊗ rq,0 ⊗ q∗ (3.19)
⇔ rq,0 = q∗ ⊗ rq ⊗ q (3.20)

drq
dt = d

dt [q ⊗ rq,0 ⊗ q
∗] (3.21)

where the constant vector rq,0 is rotated to rq using the quaternion q. To solve Eq. (3.21), the
product rule can be applied, since it is also valid for unit quaternions 3:

drq
dt = q̇ ⊗ rq,0 ⊗ q∗ + q ⊗ rq,0 ⊗ q̇∗ (3.22)

Since q is a unit quaternion the following relationship can be established:

d
dt(q ⊗ q

∗) = d
dt1 (3.23)

q̇ ⊗ q∗ + q ⊗ q̇∗ = 0 (3.24)
⇔ q ⊗ q̇∗ = −q̇ ⊗ q∗ (3.25)

⇔ q∗ ⊗ q ⊗ q̇∗ = −q∗ ⊗ q̇ ⊗ q∗ (3.26)
⇔ q0 ⊗ q̇∗ = −q∗ ⊗ q̇ ⊗ q∗ (3.27)

⇔ q̇∗ = −q∗ ⊗ q̇ ⊗ q∗ (3.28)

3https://fgiesen.wordpress.com/2012/08/24/quaternion-differentiation/
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Now the relationships (3.28) and (3.20) are used to substitute q̇∗ and rq,0 in Eq. (3.22).

drq
dt = q̇ ⊗ q∗ ⊗ rq ⊗ q ⊗ q∗ − q ⊗ q∗ ⊗ rq ⊗ q ⊗ q∗ ⊗ q̇ ⊗ q∗ (3.29)

⇔ drq
dt = q̇ ⊗ q∗ ⊗ rq ⊗ q0 − q0 ⊗ rq ⊗ q0 ⊗ q̇ ⊗ q∗ (3.30)

⇔ drq
dt = q̇ ⊗ q∗ ⊗ rq − rq ⊗ q̇ ⊗ q∗ (3.31)

From Eq. (3.24), the following relationship can be derived with the help of property (3.10):

q̇ ⊗ q∗ + q ⊗ q̇∗ = 0 (3.32)
⇔ q̇ ⊗ q∗ = −q ⊗ q̇∗ (3.33)
⇔ q̇ ⊗ q∗ = −(q̇ ⊗ q∗)∗ (3.34)

The expression (3.34) is in the form of q = −q∗, which is equivalent to w = −w. Consequently,
it can be concluded that the scalar part is zero, therefore S(q̇ ⊗ q∗) = 0, and that the product
q̇ ⊗ q∗ is a pure quaternion.

With this knowledge, the quaternion commutator from Eq. (3.18) and Eq. (3.17), Eq. (3.31) is
simplified as follows:

q̇ ⊗ q∗ ⊗ rq − rq ⊗ q̇ ⊗ q∗ = ωq ⊗ rq (3.35)
⇔ [q̇ ⊗ q∗, rq] = ωq ⊗ rq (3.36)
⇔ 2q̇ ⊗ q∗ ⊗ rq = ωq ⊗ rq (3.37)

⇔ q̇ = 1
2ωq ⊗ q (3.38)

Here the angular velocity ωq refers to the global fixed frame. However, the gyroscope measures
the uncorrected angular velocities in its sensor coordinate system Sω, so the relationship ωq =
q ⊗ Sω ω̂q ⊗ q∗ can be used to substitute ωq in Eq. (3.38):

q̇ = 1
2q ⊗

Sω ω̂q ⊗ q∗ ⊗ q (3.39)

q̇ = 1
2q ⊗

Sω ω̂q (3.40)

With the help of Eq. (3.7) the following final equation that allows to calculate the change of the
quaternion is obtained: 

ẇ

ẋ

ẏ

ż

 = 1
2


0 −ω̂x −ω̂y −ω̂z
ω̂x 0 ω̂z −ω̂y
ω̂y −ω̂z 0 ω̂x

ω̂z ω̂y −ω̂x 0




w

x

y

z

 (3.41)
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3.1.4 Runge-Kutta Integration

The gyroscope provides us with discrete measurements of angular velocity at timestamps tk
with a sampling interval ∆t. As the authors of [29], the Runge-Kutta 4th order normalized
(RK4n) method is used, since this provides sufficient accuracy. A detailed description of the
Runge-Kutta procedures can be obtained from [14]. The RK4n algorithm is given as follows:

qk+1 = qk + h

6 (k1 + 2k2 + 2k3 + k4) (3.42)

k1 = f(qk, tk) (3.43)

k2 = f

(
qk + h

2k1, tk + h

2

)
(3.44)

k3 = f

(
qk + h

2k2, tk + h

2

)
(3.45)

k4 = f

(
qk + hk3, tk + h

)
(3.46)

Where qk is the orientation quaternion at timestamp tk, h the step size and from the quaternion
kinematics Eq. (3.40), let

f(q, tk) = 1
2q ⊗

Sω ω̂q,k. (3.47)

In our case, f(q, tk) can only be evaluated at the discrete measuring times tk, since the angular
velocity is only determined or measured there. Accordingly, h = 2∆t is set. Hence, the following
is obtained from Eqs. (3.42) - (3.46):

qk+2 = qk + ∆t
3 (k1 + 2k2 + 2k3 + k4) (3.48)

k1 = f(qk, tk) (3.49)

k2 = f

(
qk + ∆tk1, tk + ∆t

)
= f

(
qk + ∆tk1, tk+1

)
(3.50)

k3 = f

(
qk + ∆tk2, tk + ∆t

)
= f

(
qk + ∆tk2, tk+1

)
(3.51)

k4 = f

(
qk + 2∆tk3, tk + 2∆t

)
= f

(
qk + 2∆tk3, tk+2

)
(3.52)

Finally, each recalculated qk+2 must be normalized to ensure that the orientation quaternion
remains a unit quaternion:

qk+2 →
qk+2
||qk+2||

(3.53)

In this work, the final orientation from Eq. (3.4) is determined as follows. As already mentioned
above, the n bias-corrected angular velocities Sω ω̄k measured between two successive standstills
need to be numerically integrated to obtain the orientation determined by the gyroscope. Start-
ing with an initial orientation q0 =

[
1 0 0 0

]T
, which represents the null rotation, the
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Eqs. (3.48) - (3.53) are now applied iteratively to obtain the quaternion qn, which describes
the rotation since the previous standstill. If n is odd, the last measured value (Sω ω̂n − bω) is
integrated as follows:

qn = qn−1 + ∆t · f(qn−1, tn) = qn−1 + ∆t
2 · qn−1 ⊗

(
Sω ω̂n − bω

)
q

(3.54)

In the next step, qn has to be normalized according Eq. (3.53). Finally, the final orientation
from Eq. (3.4) is obtained as follows:

uωq,m = qn ⊗ uaq,m−1 ⊗ q∗n (3.55)

3.2 Implementation Deterministic Error Parameter Estimation

This section presents a possible approach to implement a system that estimates the calibration
parameters (T a,Ka, ba) of the accelerometer and (T ω,Kω, bω) of the gyroscope, explained in
Section 3.1, using the raw measurements of an IMU.

For this work, the software that performs the calibration was written in C++, using ROS as
the underlying system (cf. Section 2.6). The advantage of ROS here is that for many IMU
models drivers are already available, which send the measured values via topics, which can be
used directly by this calibration software. For exact implementation details, please refer to the
appendix.

Fig. 3.1 is intended to give a rough overview of the calibration procedures. The flow of the
different data and the order of the steps are shown. In addition, algorithms 1 - 4 present some
more complex procedures in more detail in the form of pseudo-code. The following is a brief
introduction to the procedure.

1. Accelerometer Calibration Parameter Estimation
To estimate the parameters, solely the raw measurement data of the acceleration are used.
The procedure, which appears in Fig. 3.1 on the left and is shown in algorithm 2, is divided
into the following two steps:

(a) First, the median of the measured values is determined per standstill phase. Here,
algorithm 1 is used to detect the standstills by checking whether the acceleration
measurements remain constant over a certain period of time.

(b) If sufficient medians (≥ 9) have been obtained, the calibration parameters are now
estimated using Eq. (3.2).

2. Correction of Acceleration Measurements
Using the estimated calibration parameters, the measurements of the accelerometer are
now corrected using Eq. (2.12). The procedure appears in Fig. 3.1 at the center.

3. Gyroscope Calibration Parameter Estimation
To estimate the calibration parameters, the corrected acceleration measurements and the
raw measurement data of the angular velocity are used. The procedure, which appears in
Fig. 3.1 on the left and is shown in algorithm 4, is divided into the following three steps:
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IMUAccelerometer Gyroscope

Standstill?

Store data(Saâ)
Yes

Standstill duration
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Calculate median(Saã)
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)
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)
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)
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)
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(
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)
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No
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No

Yes
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Figure 3.1: This diagram shows the structure of the procedure for calibrating the accelerometer and
the gyroscope. The links between the individual blocks indicate the flow of the data and the order of the
individual actions.
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Algorithm 1: CheckForStillstand().
This algorithm uses a sequence of raw acceleration measurements

(
Saâ (t0:N )

)
to deter-

mine whether the latest measurement belongs to a standstill phase. It checks whether
the past measured values of all sensor axes are within a defined tolerance band.

Input: Saâ(t0:N )
Output: Returns true if Saâ(tN ) belongs to a standstill, false otherwise.

1 StillstandThreshold ← 0.2 // Values must be within this range for detection of standstill.

/* Amount of last measurements to be used for detection of standstill. Depending on the sampling rate and the desired time

interval. */

2 AmountNewestData ← 70
/* Returns the AmountNewestData newest acceleration measurements. */

3 Function GetNewestData(allMeasurments):
4 newestMeasurements ← 0
5 for i← (lenght(allMeasurments) - AmountNewestData) to lenght(allMeasurments)

do
6 newestMeasurements.append(allMeasurments[i])
7 return newestMeasurements

/* Returns the maximum and minimum measured acceleration in newestMeasurements for each sensor axis (x,y,z). */

8 Function FindMinMaxValues(newestMeasurements):
9 minV alue ← 100

10 maxV alue ← 0
11 for i← 1 to length(newestMeasurements) do
12 if newestMeasurements[i] > maxV alue then
13 maxV alue = newestMeasurements[i]
14 if newestMeasurements[i] < minV alue then
15 minV alue = newestMeasurements[i]

16 return minV alue, maxV alue
/* Returns true if the newest measurement

(
Sa â (tN )

)
is within a standstill phase, false otherwise. */

17 Function CheckForStillstand(Saâ (t0:N )):
18 if length

(
Saâ (t0:N )

)
< AmountNewestData then

19 return false // Too few measurements for evaluation.

20 newestMeasurements = GetNewestData
(
Saâ (t0:N )

)
21 minV alue, maxV alue = FindMinMaxValues(newestMeasurements)
22 if (maxV alue−minV alue) > StillstandThreshold then
23 return false // Sensor is moving.

24 else
25 return true // Stillstand detected.
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Figure 3.2: Plot for σB(τ). The bias instability coefficient B can be determined in the flat region.
(Source: [12])

(a) First, the bias of the gyroscope is determined by averaging the measured angular
velocity during a standstill.

(b) Now, data sets are generated, each containing the bias corrected measured angular
velocities per motion phase together with the initial and final orientation, determined
using the acceleration data. This procedure is shown in algorithm 3. Here, algorithm 1
is used to detect the standstills, respectively motion phases.

(c) If sufficient data sets have been obtained, the calibration parameters are now esti-
mated using Eq. (3.5).

4. Correction of Gyroscope Measurements
Using the estimated calibration parameters, the measurements of the gyroscope are now
corrected using Eq. (2.13). The procedure appears in Fig. 3.1 at the center.

3.3 Stochastic Error Coefficient Estimation

To estimate the stochastic error coefficients described in Section 2.3.2, the Allan Variance anal-
ysis technique mentioned in Section 2.2 is used. Note that these error parameters are not
evaluated in the course of this work, since they are not used in the final software. For the sake
of completeness, however, methods for determining these parameters will be discussed in the
following.

Bias Instability
Substituting Eq. (2.14) into Eq. (2.6) and performing the integration yields

σ2
B(τ) = 2B2

π

[
ln 2− sin3 x

2x2 (sin x+ 4x cosx) + Ci(2x)− Ci(4x)
]

(3.56)

=
(

B

0.6648

)2

for τ � 1
f0
, (3.57)
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Figure 3.3: Plot for σANRW(τ) or σVRW(τ). The ANRW or VRW coefficients Q can be determined at
τ = 1. (Source: [12])

Figure 3.4: Plot for σRRW(τ) or σACRW(τ). The RRW or ACRW coefficients K can be determined at
τ = 3. (Source: [12])

where x = πf0τ and Ci is the cosine-integral function. Fig. 3.2 shows a log-log plot of the
square root of Eq. (3.56) vs τ for f0 = 1. As shown by Eq. (3.57), the function reaches a
plateau for τ much longer than the inverse cut off frequency. This flat region is now used
to estimate the limit of B. [26]

ANRW / VRW
Substituting Eq. (2.15) into Eq. (2.6) and performing the integration yields

σ2
ANRW/VRW(τ) = Q2

τ
. (3.58)

Fig. 3.3 shows a log-log plot of the square root of Eq. (3.58) vs τ , having an associated
slope of −1/2. The coefficient Q can now be obtained for τ = 1 directly from the plot.

RRW / ACRW
Substituting Eq. (2.16) into Eq. (2.6) and performing the integration yields

σ2
RRW/ACRW(τ) = K2τ

3 . (3.59)
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Figure 3.5: Plot for σQ(τ). The quantization noise coefficient Q is determined at τ =
√

3. (Source: [12])

Fig. 3.4 shows a log-log plot of the square root of Eq. (3.59) vs τ , having an associated
slope of 1/2. The coefficient K is now obtained for τ = 3 directly from the plot.

Quantization Noise
Substituting Eq. (2.17) into Eq. (2.6) and performing the integration yields

σ2
Q(τ) = 3Q2

τ2 . (3.60)

Fig. 3.5 shows a log-log plot of the square root of Eq. (3.60) vs τ , having an associated
slope of −1. The coefficient Q is now obtained for τ =

√
3 directly from the plot.

3.4 Implementation Stochastic Error Parameter Estimation

As mentioned before, no evaluation of the stochastic error parameters will be done in the course
of this work. Interested readers, who are nevertheless interested in a software for the estimation
of these parameters, are recommended to use the ROS package Allan Variance ROS 4.

4https://github.com/ori-drs/allan variance ros
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Algorithm 2: MainAccelerometerCalibration().
This algorithm uses raw accelerometer measurements

(
Saâ (tk)

)
to determine the cali-

bration parameters (T a,Ka, ba) of the accelerometer. For this purpose, the median of
the measured values of each standstill phase is determined.

Input: Saâ(tk)
Output: T a,Ka, ba

1 StillstandData ← 0 // Stores acceleration data used for calculation of median.

/* Stores medians of acceleration data acquired during standstills, used for calibration parameter estimation. */

2 Medians ← 0
/* Stores acceleration measurements if they belong to a standstill phase, calculates median of measurements from previous standstill

phase if orientation is changed. */

3 Function ProcessData(measurements):
/* Method CheckForStillstand is explained in algorithm 1. */

4 if CheckForStillstand(measurements) then // Store data for parameter estimation.

5 StillstandData.append
(
Saâ (tk)

)
6 else if length(StillstandData) > 500 then// Standstill phase was long enough.

7 Medians.append(CalculateMedian(StillstandData))
8 StillstandData = 0
9 else // Standstill phase was too short.

10 StillstandData = 0
/* Returns the calibration parameters calculated using Eq. (3.2). */

11 Function PerformCalibration(medians):
12 EstimateParameters(T a,Ka, ba, medians)
13 return T a,Ka, ba

/* Main function of calibration of the accelerometer. Triggers the calculation of calibration parameters once enough data has been

collected. */

14 Function MainAccelerometerCalibration:
15 i ← 0
16 measurements ← 0 // Stores accelerometer data used for standstill detection.

17 while length(Medians) < 9 do
18 if isNewMeasurementArrived then
19 measurements[i] = Saâ(tk)
20 i = i+ 1
21 ProcessData(measurements)

22 return PerformCalibration(Medians)
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Algorithm 3: ProcessData().
This algorithm creates data sets which are used for the calibration of the gyroscope.
The angular velocities of each motion phase are stored together with the corresponding
initial and final orientation.

Input: Sω ω̂(tk), Sa(tk), bω
Output: Returns true if a new dataset for gyroscope calibration was stored, false

otherwise.
1 OrientationData ← 0 // Stores acceleration data used for calculation of orientation.

2 GyroData ← 0 // Stores gyroscope data between successive standstills.

3 InitialOrientation ← 0 // Stores initial attitude before movement.

4 FinalOrientation ← 0 // Stores final attitude after movement.

5 Function ProcessData(accelerometerMeasurements, GyroDatasets):
/* Method CheckForStillstand is explained in algorithm 1. */

6 if CheckForStillstand(accelerometerMeasurements) then
/* Store acceleration data for attitude estimation. */

7 OrientationData.append
(
Sa (tk)

)
8 else if length(OrientationData) > 500 then

/* Enough data for attitude estimation was stored. */

9 if isInitialOrientationSet then
10 FinalOrientation = CalculateOrientation(OrientationData)
11 if length(GyroData) > 500 then

/* Enough gyroscope data was stored between successive standstills. */

12 GyroDatasets.append(Initial/F inalOrientation,GyroData)
13 InitialOrientation = FinalOrientation
14 FinalOrientation = 0
15 GyroData = 0
16 else
17 InitialOrientation = CalculateOrientation(OrientationData)
18 OrientationData = 0
19 GyroData.append

(
Sω ω̂ (tk)− bω

)
20 else if isInitialOrientationSet and OrientationData == 0 then

/* Store gyroscope data between successive standstills. */

21 GyroData.append
(
Sω ω̂ (tk)− bω

)
22 else

/* Too less data to estimate final or initial attitude. */

23 OrientationData = 0
24 InitialOrientation = 0
25 GyroData = 0
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Algorithm 4: MainGyroscopeCalibration().
This algorithm uses the angular velocity raw measurements

(
Sω ω̂ (tk)

)
to determine

the calibration parameters of the gyroscope. First the bias (bω) is determined and then
the remaining parameters (T ω,Kω).

Input: Sω ω̂(tk), Sa(tk)
Output: T ω,Kω, bω

/* Stores data sets consisting of measured angular velocities and corresponding initial and final orientation. */

1 GyroDatasets ← 0
/* Returns the calibration parameters calculated using Eq. (3.5). */

2 Function PerformCalibration(GyroDatasets):
3 EstimateParameters(T ω,Kω, GyroDatasets)
4 return T ω,Kω

/* Main function of calibration of the gyroscope. Triggers the calculation of calibration parameters once enough data has been

collected and the bias of gyroscope is estimated. */

5 Function MainGyroscopeCalibration:
6 i ← 0
7 gyroscopeMeasurements ← 0 // Stores gyroscope data used for bias estimation.

8 accelerometerMeasurements ← 0 // Stores accelerometer data used for standstill detection.

9 bω ← 0 // Stores estimated bias of gyroscope.

10 while length(GyroDatasets) < 9 do
11 if isNewMeasurementArrived then
12 if isBiasEstimated then
13 accelerometerMeasurements[i] = Sa(tk)

/* Method ProcessData is explained in algorithm 3. */

14 ProcessData(accelerometerMeasurements, GyroDatasets)
15 i = i+ 1
16 else
17 gyroscopeMeasurements[i] = Sω ω̂k(tk)
18 i = i+ 1
19 if length(gyroscopeMeasurements) > 500 then

/* Calculates the bias of gyroscope by averaging the measurement. */

20 bω= EstimateBias(gyroscopeMeasurements)
21 i ← 0

22 return PerformCalibration(GyroDatasets)
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Chapter 4

Camera-IMU Extrinsic Calibration

This chapter explains the procedure for determining the extrinsic parameters for calibrating a
system consisting of a camera and an IMU. Therefore, the estimation of the visual scale, the
rotation and translation between camera and IMU, as well as the gravity vector is described. The
mathematical background is discussed, followed by a possible implementation of the calibration
algorithms. Unless otherwise stated, the following methods for the estimation of the mentioned
parameters are taken from the work [21].

4.1 IMU Pre-Integration

This section describes the preprocessing of IMU data, since later the non bias corrected IMU
data (ã, ω̃) will be used to propagate position (p), velocity (v) and orientation (q) states during
the time interval [tk, tk+1] between two consecutive frames {bk} and {bk+1}. As follows the states
are propagated in the world frame {w}:

pwbk+1 = pwbk + vwbk∆tk +
∫ ∫

t∈[tk,tk+1]

(
Rw
t (ãt − bat − na)− gw

)
dt2 (4.1)

vwbk+1 = vwbk +
∫
t∈[tk,tk+1]

(
Rw
t (ãt − bat − na)− gw

)
dt (4.2)

qwbk+1 = qwbk ⊗
∫
t∈[tk,tk+1]

(1
2Ω(ω̃t − bωt − nω)qbkt

)
dt, (4.3)

where

Ω(ω) =
[
−bωc× ω

−ωT 0

]
, bωc× =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 . (4.4)

∆tk is the duration of the time interval [tk, tk+1]. Rw
t defines the rotation from the IMU frame

to {w} at time t. qbkt defines the rotation, represented as quaternion, from the IMU frame to
{bk} at time t. Note that the additive noise terms, which affect accelerometer measurements
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34 Chapter 4. Camera-IMU Extrinsic Calibration

(na) and gyroscope measurements (nω), are unknown and treated as zero in the following.
The accelerometer bias (bat) and the gyroscope bias (bωt) are modeled as random walk, whose
derivatives are assumed to be Gaussian:

ḃat = nba

ḃωt = nbω ,

where nba ∼ N (0,σ2
ba

) and nbω ∼ N (0,σ2
bω

).

In summary, using Eqs. (4.1) - (4.3), the states (pwbk+1
,vwbk+1

,qwbk+1
) can be estimated using the

measurements of the IMU and the previous states (pwbk ,vwbk ,qwbk). Later, these states are used to
formulate a minimization problem. For this reason, the IMU measurements are pre-integrated
to save computing power required to find the solution. Furthermore, since only the states at the
time of image acquisition are relevant, memory is saved, as not all IMU measurements have to
be stored. In order to calculate the integrals in advance, the states are now considered in the
body frame {bk} by applying the rotation Rbk

w , respectively qbkw , as follows:

Rbk
w p

w
bk+1 = Rbk

w (pwbk + vwbk∆tk) +
∫ ∫

t∈[tk,tk+1]
Rbk
w

(
Rw
t (ãt − bat)− gw

)
dt2

⇔ pbkbk+1
= pbkbk + vbkbk∆tk +

∫ ∫
t∈[tk,tk+1]

(
Rbk
t (ãt − bat)− gbk

)
dt2

⇔ pbkbk+1
= pbkbk + vbkbk∆tk −

1
2g

bk∆t2k +
∫ ∫

t∈[tk,tk+1]

(
Rbk
t (ãt − bat)

)
dt2

⇔ pbkbk+1
= pbkbk + vbkbk∆tk −

1
2g

bk∆t2k +αbkbk+1
(4.5)

Rbk
w v

w
bk+1 = Rbk

w v
w
bk

+
∫
t∈[tk,tk+1]

Rbk
w

(
Rw
t (ãt − bat)− gw

)
dt

⇔ vbkbk+1
= vbkbk +

∫
t∈[tk,tk+1]

(
Rbk
t (ãt − bat)− gbk

)
dt

⇔ vbkbk+1
= vbkbk − g

bk∆tk +
∫
t∈[tk,tk+1]

(
Rbk
t (ãt − bat)

)
dt

⇔ vbkbk+1
= vbkbk − g

bk∆tk + βbkbk+1
(4.6)

qbkw ⊗ qwbk+1 = qbkw ⊗ qwbk ⊗
∫
t∈[tk,tk+1]

(1
2Ω(ω̃t − bωt)q

bk
t

)
dt

⇔ qbkbk+1
= qbkbk ⊗

∫
t∈[tk,tk+1]

(1
2Ω(ω̃t − bωt)q

bk
t

)
dt

⇔ qbkbk+1
= γbkbk+1

(4.7)

Following these transformations, it is possible to calculate the integrals, hence the integration
of the raw IMU readings, in advance, since they are now independent of the rotation Rw

t and
the gravity vector gw. Pre-integration terms follow, which are calculated using solely the IMU
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measurements:

αbkbk+1
=
∫ ∫

t∈[tk,tk+1]

(
Rbk
t (ãt − bat)

)
dt2 (4.8)

βbkbk+1
=
∫
t∈[tk,tk+1]

(
Rbk
t (ãt − bat)

)
dt (4.9)

γbkbk+1
=
∫
t∈[tk,tk+1]

(1
2Ω(ω̃t − bωt)γ

bk
t

)
dt (4.10)

Since we obtain the IMU measurements at discrete time points, we apply a numerical integration
method in the following. In this case we apply the Euler method to estimate (̂·) the values of
the pre-integration terms (4.8) - (4.10) as follows:

α̂bki+1 = α̂bki + β̂bki δt+ 1
2R(γ̂bki )(ãi − bai)δt2 (4.11)

β̂
bk
i+1 = β̂

bk
i +R(γ̂bki )(ãi − bai)δt (4.12)

γ̂bki+1 = γ̂bki ⊗
[

1
1
2(ω̃i − bωi)δt

]
, (4.13)

where i is the discrete instant of time corresponding to a IMU measurement within the time
interval [tk, tk+1]. Furthermore, the operator R(·) converts an orientation quaternion into a
rotation matrix and δt defines the time interval between two consecutive IMU measurements i
and i+ 1.

In summary, the estimated pre-integrations (α̂bkbk+1
,β̂bkbk+1 ,γ̂bkbk+1

) between two consecutive frames
{bk} and {bk+1} are calculated directly from the output of the IMU, which saves computation
time and memory.

Later, the pre-integration results should be correctable using the estimated bias of the gyroscope,
respectively the accelerometer, avoiding to recalculate the pre-integration (Eqs. (4.11) - (4.13)).
In the next section, a procedure for this purpose is explained.

4.1.1 Rectify Pre-Integrated Results

If a new estimate of the bias is given, the non bias corrected pre-integrations (α̃bkbk+1
, β̃bkbk+1 , γ̃bkbk+1

)
are recalculated with the help of the new bias estimate. Since this would result in a large
computational effort, they can alternatively be corrected for a given bias update b ← b̄ + δb,
where b̄ represents the previously estimated bias and δb the change, respectively the update.
In the following δba denotes the bias update for the accelerometer and δbω denotes the bias
update for the gyroscope. In addition, the error terms δαbk (position), δβbk (velocity) and δθbk
(orientation) are introduced. The error term for the orientation is defined as a perturbation as
follows:

γ̂bkbk+1
≈ γ̃bkbk+1

⊗
[

1
1
2δθ

bk
t

]
. (4.14)
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Now the continuous-time linearized dynamics of error terms of Eqs. (4.8) - (4.10) can be derived:

δα̇bkt

δβ̇
bk
t

δθ̇
bk
t

δḃat
δḃωt


=



0 I 0 0 0
0 0 −Rbk

t bα̃t − batc× −Rbk
t 0

0 0 −bω̃t − bωtc× 0 −I
0 0 0 0 0
0 0 0 0 0





δαbkt
δβbkt
δθbkt
δbat
δbωt


(4.15)

= F tδz
bk
t (4.16)

Next, the first-order Jacobian matrix J bk+1 of δzbkbk+1
with respect to δzbkbk is computed recursively

as follows:

J t+δt = (I + F tδt)J t, t ∈ [k, k + 1]. (4.17)

Now J bk+1 is used to correct the pre-integration terms for a bias update δbk as follows:

α̂bkbk+1
≈ ᾱbkbk+1

+ Jαbak+1
δbak = α̃bkbk+1

+ Jαbak+1
δbak + Jαbωk+1

δbωk (4.18)

β̂
bk
bk+1 ≈ β̄

bk
bk+1 + Jβbak+1

δbak = β̃
bk
bk+1 + Jβbak+1

δbak + Jβbωk+1
δbωk (4.19)

γ̂bkbk+1
≈ γ̃bkbk+1

⊗

 1
1
2J

γ
bωk+1

δbωk

 . (4.20)

Here Jαbak+1
is the sub-block 3× 3 matrix in J bk+1 , where the starting row is equivalent to the

position of δαbkt in Eq. (4.15) (here 1) and the starting column is equivalent to the position of
δbat in Eq. (4.15) (here 10). The positions of Jαbωk+1

, Jβbak+1
, Jβbωk+1

and Jγbωk+1
in J bk+1 can be

determined in the same way.

In summary, the Eqs. (4.18) - (4.20) can now be used to correct the pre-integrations when the
bias changes, instead of recalculating them completely.

4.2 Gyroscope Bias and Rotation Estimation

This section describes how to use the IMU pre-integrations and the up-to-scale determined
camera poses to find the rotation between the camera and the IMU. This is then used to
determine the bias of the gyroscope. Using the estimate of the bias, the rotation between the
camera and IMU is then refined and thus the estimate of the bias. This process is repeated until
the values of the estimates remain stable.

4.2.1 Extrinsic Orientation Estimation

To estimate the rotation (Rb
c) between the camera frame {c} and the IMU frame {b}, the fact

that both the camera and the IMU are subject to the same rotation during a movement is used.
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Thus, the following notations are defined:

R
ck+1
ck = R

ck+1
w Rw

ck
(4.21)

R
bk+1
bk

= R
bk+1
w Rw

bk
, (4.22)

where Rck+1
ck is the rotation from camera frame {ck} to the subsequent frame {ck+1}, obtained

from camera data, and Rbk+1
bk

is the rotation from IMU frame {bk} to the subsequent frame
{bk+1}, obtained from IMU data. As follows, we use Rb

c to make the Eqs. (4.21) and (4.22)
represent the same rotation, namely from camera frame {ck} to IMU frame {bk+1}:

Rb
cR

ck+1
ck = Rb

cR
ck+1
w Rw

ck

⇔ R
bk+1
ck = Rb

cR
ck+1
w Rw

ck
(4.23)

R
bk+1
bk

Rb
c = R

bk+1
w Rw

bk
Rb
c

⇔ R
bk+1
ck = R

bk+1
w Rw

bk
Rb
c . (4.24)

Now the Eqs. (4.23) and (4.24) are equated as follows:

Rb
cR

ck+1
w Rw

ck
= R

bk+1
w Rw

bk
Rb
c. (4.25)

Since there is no knowledge about the world frame {w} yet, the Eqs. (4.21) and (4.22) are used
as follows:

Rb
cR

ck+1
ck = R

bk+1
bk

Rb
c. (4.26)

Note that Rck+1
ck is calculated based on only the camera data and Rbk+1

bk
is calculated using

only IMU data, since both rotations represent relative rotation increments and are therefore
independent of {w}. Now Eq. (4.26) is transferred into quaternion notation as follows:

qbc ⊗ q
ck+1
ck = q

bk+1
bk
⊗ qbc

⇔ qbc ⊗ q
ck+1
ck − qbk+1

bk
⊗ qbc = 0

⇔
([
q
ck+1
ck

]
R
−
[
q
bk+1
bk

]
L

)
· qbc = 0 (4.27)

Since the poses in the camera frame are given as qc0
ck

with respect to the frame {c0} of the first
image, Eq. (4.27) changes as follows:([

q
ck+1
c0 ⊗ qc0

ck

]
R
−
[
q
bk+1
bk

]
L

)
· qbc = 0 (4.28)

⇔
([(

qc0
ck+1

)−1
⊗ qc0

ck

]
R
−
[
q
bk+1
bk

]
L

)
· qbc = 0 (4.29)

Furthermore, the rotational increment qbk+1
bk

is already given as gyroscope bias corrected (pre-
sumed that was already estimated) pre-integration (γ̂bkbk+1

), thus the equation is now transformed
as follows: ([

qc0
ck+1

−1 ⊗ qc0
ck

]
R
−
[
γ̂bkbk+1

]
L

)
· qbc = Qk,k+1 · qbc = 0 (4.30)
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If N datesets are given, based on Eq. (4.30) the following system of equations is formed:
w1,2 ·Q1,2
w2,3 ·Q2,3

...
wN−1,N ·QN−1,N

 · qbc = A · qbc = 0. (4.31)

At this point, the weight wk,k+1 is introduced. This allows incorrect data sets to have less
influence on the estimation of qbc. The calculation of the weights will be discussed later. To lower
the DOFs of qbc in the minimization problem below, the following parameterization, described
in [30] is used:

qbc =
[

cos
(
v
2
)

sin
(
v
2
)
· u1
v sin

(
v
2
)
· u2
v sin

(
v
2
)
· u3
v

]T
, (4.32)

u =
[
u1 u2 u3

]T
, (4.33)

v =
√
u12 + u22 + u32, (4.34)

where u is the rotation axis vector and v is the norm of u. Note that during optimization, there
is no need to normalize the estimated quaternion, because the norm of Eq. (4.32) is always 1.
Using Eq.(4.31), the following minimization problem is established, with the solution being an
estimate of u, respectively qbc.

min
u

{∣∣∣∣∣∣A · qbc∣∣∣∣∣∣} (4.35)

An iterative strategy is applied here, where after each minimization, using the estimated q̂bc, the
weights in Eq.(4.31) are calculated as follows:

ek,k+1 = Qk,k+1 · q̂bc (4.36)
wk,k+1 = exp(−||ek,k+1|| ·K0) (4.37)

As a result, we obtain an estimate of the rotation q̂bc, respectively R̂b
c, between camera frame

{c} and IMU frame {b}. This allows the estimation of the bias of the gyroscope as described in
the next section.

4.2.2 Gyroscope Bias Estimation

Using the previously estimated rotation q̂bc, the poses determined by the camera is now rotated
into the frame of the IMU as follows:

qc0
bk

= qc0
ck
⊗
(
q̂bc

)−1
(4.38)

qc0
bk+1

= qc0
ck+1 ⊗

(
q̂bc

)−1
(4.39)

⇔ q
bk+1
bk

=
(
qc0
bk+1

)−1
⊗ qc0

bk
(4.40)
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Since the bias corrected rotational increment γ̂bkbk+1
(Eq. (4.20)) represents the same rotation as

the rotational increment of the camera (qbk+1
bk

), the following relation is established:

q
bk+1
bk

= γ̃bkbk+1
⊗

 1
1
2J

γ
bωk+1

δbω

 (4.41)

⇔ q
bk+1
bk

= γ̂bkbk+1
(4.42)

⇔ q
bk+1
bk
− γ̂bkbk+1

= 0. (4.43)

Here δbωk = δbω is assumed, hence that the bias remains constant during initialization. With
the help of Eq. (4.43), the following minimization problem is established:

min
δbω

N−1∑
k=0

∣∣∣∣∣∣(qbk+1
bk
− γ̂bkbk+1

)
wk,k+1

∣∣∣∣∣∣2 , (4.44)

where N is the amount of datasets. An iterative strategy is applied here, where after each
minimization, using the estimated δb̂ω, the weights in Eq.(4.44) are calculated as follows:

ek,k+1 = q
bk+1
bk
− γ̃bkbk+1

⊗

 1
1
2J

γ
bωk+1

δb̂ω

 (4.45)

wk,k+1 = exp(−||ek,k+1|| ·K1) (4.46)

If there is no prior estimate of the bias (b̄ω),

bω = b̄ω + δbω = 0 + δbω = δbω (4.47)

holds, otherwise

bω = b̄ω + δbω (4.48)

applies. Using the estimated bias bω, the pre-integration terms
(
α̃bkbk+1

, β̃
bk
bk+1 , γ̃

bk
bk+1

)
are re-

propagated, to obtain the gyroscope bias corrected pre-integrations
(
ᾱbkbk+1

, β̄
bk
bk+1 , γ̄

bk
bk+1

)
.

4.3 Scale, Gravity and Translation Estimation

This section deals with a method to estimate the scale s, the gravity gc0 and the translation
pbc between camera and IMU. Here note that an estimation of the bias of the gyroscope bω and
the rotation qbc between camera and IMU is given as explained in the previous sections. In the
following, the fact is used that the position increment registered by the IMU must correspond
to the position increment registered by the camera.

The up-to-scale determined poses (p̄c0
ck

) are transformed from the camera into the IMU frame
with respect to {c0}:

pc0
bk

= sp̄c0
bk

= sp̄c0
ck
−Rc0

bk
pbc (4.49)

pc0
bk+1

= sp̄c0
bk+1

= sp̄c0
ck+1 −R

c0
bk+1

pbc, (4.50)
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where Rc0
bk

is the rotation calculated with Eq. (4.38) in rotation matrix form and s the scaling
parameter that aligns the visual structure to the metric scale. Continuing now the reference
frame of Eq. (4.5) is changed from {bk} to {c0} as follows:

Rc0
bk
pbkbk+1

= Rc0
bk

(
pbkbk + vbkbk∆tk −

1
2g

bk∆t2k + α̂bkbk+1

)
(4.51)

⇔ pc0
bk+1

= pc0
bk

+ vc0
bk

∆tk −
1
2g

c0∆t2k +Rc0
bk
α̂bkbk+1

. (4.52)

Here α̂bkbk+1
is the pre-integration α̃bkbk+1

corrected for the bias of the gyroscope and the bias
of the accelerometer (presumed that was already estimated). With the help of Eq. (4.49) and
Eq. (4.50) the position terms in Eq. (4.52) are replaced and a relation for the velocity is obtained
as follows:

sp̄c0
ck+1 −R

c0
bk+1

pbc = sp̄c0
ck
−Rc0

bk
pbc + vc0

bk
∆tk −

1
2g

c0∆t2k +Rc0
bk
α̂bkbk+1

(4.53)

⇔ vc0
bk

∆tk = sp̄c0
ck+1 −R

c0
bk+1

pbc − sp̄c0
ck

+Rc0
bk
pbc + 1

2g
c0∆t2k −Rc0

bk
α̂bkbk+1

(4.54)

⇔ vc0
bk

∆tk =
(
p̄c0
ck+1 − p̄

c0
ck

)
s+

(
Rc0
bk
−Rc0

bk+1

)
pbc + 1

2g
c0∆t2k −Rc0

bk
α̂bkbk+1

(4.55)

⇔ vc0
bk

=
(
p̄c0
ck+1 − p̄

c0
ck

) s

∆tk
+
(
Rc0
bk
−Rc0

bk+1

) pbc
∆tk

+ 1
2g

c0∆tk −
1

∆tk
Rc0
bk
α̂bkbk+1

(4.56)

Using this equation, the velocity of frame {bk}, hence the velocity of the IMU at the moment
when the k-th image is captured, is determined with reference to the {c0} frame. Now the
reference frame of Eq. (4.6) is also changed to {c0}:

Rc0
bk
vbkbk+1

= Rc0
bk

(
vbkbk − g

bk∆tk + β̂bkbk+1

)
(4.57)

⇔ vc0
bk+1

= vc0
bk
− gc0∆tk +Rc0

bk
β̂
bk
bk+1 (4.58)

Here β̂bkbk+1 is the pre-integration α̃bkbk+1
corrected for the bias of the gyroscope and the bias of

the accelerometer (presumed that was already estimated). Now, using Eq. (4.56), the velocity
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terms in Eq. (4.58) are eliminated as follows, setting k = 0, k+ 1 = 1, and k+ 2 = 2 for clarity:

(
p̄c0
c2 − p̄

c0
c1

) s

∆t1
+
(
Rc0
b1
−Rc0

b2

) pbc
∆t1

+ 1
2g

c0∆t1 −
1

∆t1
Rc0
b1
α̂b1
b2

=
(
p̄c0
c1 − p̄

c0
c0

) s

∆t0
+
(
Rc0
b0
−Rc0

b1

) pbc
∆t0

+ 1
2g

c0∆t0 −
1

∆t0
Rc0
b0
α̂b0
b1

− gc0∆t0 +Rc0
b0
β̂
b0
b1

⇔ 1
∆t0

Rc0
b0
α̂b0
b1
− 1

∆t1
Rc0
b1
α̂b1
b2
−Rc0

b0
β̂
b0
b1

=
(
p̄c0
c1 − p̄

c0
c0

) s

∆t0
−
(
p̄c0
c2 − p̄

c0
c1

) s

∆t1

+
(
Rc0
b0
−Rc0

b1

) pbc
∆t0
−
(
Rc0
b1
−Rc0

b2

) pbc
∆t1

+ 1
2g

c0∆t0 −
1
2g

c0∆t1 − gc0∆t0

⇔ 1
∆t0

Rc0
b0
α̂b0
b1
− 1

∆t1
Rc0
b1
α̂b1
b2
−Rc0

b0
β̂
b0
b1

=
((
p̄c0
c1 − p̄

c0
c0

) 1
∆t0
−
(
p̄c0
c2 − p̄

c0
c1

) 1
∆t1

)
s

+
((
Rc0
b0
−Rc0

b1

) 1
∆t0
−
(
Rc0
b1
−Rc0

b2

) 1
∆t1

)
pbc

− 1
2 (∆t0 + ∆t1) gc0

⇔∆t1Rc0
b0
α̂b0
b1
−∆t0Rc0

b1
α̂b1
b2
−∆t0∆t1Rc0

b0
β̂
b0
b1

=
((
p̄c0
c1 − p̄

c0
c0

)
∆t1 −

(
p̄c0
c2 − p̄

c0
c1

)
∆t0

)
s

+
((
Rc0
b0
−Rc0

b1

)
∆t1 −

(
Rc0
b1
−Rc0

b2

)
∆t0

)
pbc

− 1
2
(
∆t20∆t1 + ∆t0∆t21

)
gc0 . (4.59)

The following system of equations is now obtained:([
λ(k) ζ(k) η(k)

]
χ− ι(k)

)
wk = 0, (4.60)

with:

χ =
[
s gc0 pcb

]T
(4.61)

λ(k) =
((
p̄c0
ck+1 − p̄

c0
ck

)
∆tk+1 −

(
p̄c0
ck+2 − p̄

c0
ck+1

)
∆tk

)
(4.62)

ζ(k) = −1
2
(
∆t2k∆tk+1 + ∆tk∆t2k+1

)
I3×3 (4.63)

η(k) =
((
Rc0
bk
−Rc0

bk+1

)
∆tk+1 −

(
Rc0
bk+1
−Rc0

bk+2

)
∆tk

)
(4.64)

ι(k) = ∆tk+1R
c0
bk
α̂bkbk+1

−∆tkRc0
bk+1

α̂
bk+1
bk+2
−∆tk∆tk+1R

c0
bk
β̂
bk
bk+1 (4.65)
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At this point, the weight wk is introduced. This allows incorrect data sets to have less influence
on the estimations of s, gc0 and pcb. Using Eq.(4.60), the following minimization problem is
established, with the solution being an estimate of χ:

min
χ

=
N−2∑
k=0

∣∣∣∣∣∣([ λ(k) ζ(k) η(k)
]
χ− ι(k)

)
wk
∣∣∣∣∣∣2 (4.66)

An iterative strategy is applied here, where after each minimization, using the estimate χ̂, the
weights in Eq. (4.60) are calculated as follows:

ek = ŝ · λ(k) + ζ(k)ĝc0 + η(k)p̂bc − ι(k) (4.67)
wk = exp(−||ek|| ·K2) (4.68)

As a result, estimates are now obtained for the scale s, the gravity vector gc0 , and the translation
between the camera and the IMU pbc. These allow to determine the bias of the accelerometer
and to optimize the estimates of s and pbc as described in the next section.

4.4 Refinement and Accelerometer Bias Estimation

This section describes how to use the previous estimates of scale, gravity vector and translation
between camera and IMU to determine the bias of the accelerometer and also to optimize the
estimates of scale and translation. At this point the fact is used that the magnitude of the
gravitational vector is usually known. Now first of all the gravity vector is defined in the world
frame {w}:

Gw =
[

0 0 G
]
, (4.69)

assuming that G = 9.807 m
s2 . Using the already estimated ĝc0 , the rotation between the frames

{w} and {c0} can be obtained as follows. To achieve this, first the unit vectors of the two gravity
vectors are determined:

g̃c0 = ĝc0

||ĝc0 ||
(4.70)

G̃
w = Gw

||Gw||
(4.71)

Further the rotation axis (v) and the rotation angle between θ the two vectors are determined
by

v = g̃c0 × G̃w∣∣∣∣∣∣g̃c0 × G̃w
∣∣∣∣∣∣ (4.72)

θ = atan2
(∣∣∣∣∣∣g̃c0 × G̃w

∣∣∣∣∣∣ , g̃c0 · G̃w
)
, (4.73)

where (×) denotes the cross product and (·) denotes the dot product. Using Rodrigues’ rotation
formula the final rotation matrix is obtained:

Rc0
w = I + sin (θ) [v]× + (1− cos (θ)) [v]2× . (4.74)
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At this point it should be noted that the gravity vector ĝc0 is slightly distorted, since it was
estimated under the assumption that the bias of the accelerometer is zero. Therefore, the
rotation is extended by a perturbation (δθ) as follows:

δθ =
[
δθTxy 0

]T
(4.75)

δθxy =
[
δθx δθy

]T
(4.76)

Gc0 = Rc0
w Exp (δθ)Gw ≈ Rc0

wG
w −Rc0

w [Gw]× δθ, (4.77)

where the first-order approximation Exp (δθ) ≈ I+[δθ]× is applied. Substituting Eq. (4.77) into
Eq. (4.56) and taking into account the effect of the accelerometer bias (Eq. (4.18)), it follows:

vc0
bk

=
(
p̄c0
ck+1 − p̄

c0
ck

) s

∆tk
+
(
Rc0
bk
−Rc0

bk+1

) pbc
∆tk

+ 1
2g

c0∆tk −
1

∆tk
Rc0
bk
ᾱbkbk+1

⇔ vc0
bk

=
(
p̄c0
ck+1 − p̄

c0
ck

) s

∆tk
+
(
Rc0
bk
−Rc0

bk+1

) pbc
∆tk

+ 1
2
(
Rc0
wG

w −Rc0
w [Gw]× δθ

)
∆tk −

1
∆tk

Rc0
bk

(
ᾱbkbk+1

+ Jαbak+1
δba

)
(4.78)

The same procedure is applied to Eq. (4.58):

vc0
bk+1

= vc0
bk
− gc0∆tk +Rc0

bk
β̄
bk
bk+1

⇔ vc0
bk+1

= vc0
bk
−
(
Rc0
wG

w −Rc0
w [Gw]× δθ

)
∆tk +Rc0

bk

(
β̄
bk
bk+1 + Jβbak+1

δba

)
(4.79)

Here δbak = δba is assumed, hence that the bias remains constant during initialization. Now,
using Eq. (4.78), the velocity terms in Eq. (4.79) are eliminated as follows, setting k = 0,
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k + 1 = 1, and k + 2 = 2 for clarity:

(
p̄c0
c2 − p̄

c0
c1

) s

∆t1
+
(
Rc0
b1
−Rc0

b2

) pbc
∆t1

+ 1
2
(
Rc0
wG

w −Rc0
w [Gw]× δθ

)
∆t1

− 1
∆t1

Rc0
b1

(
ᾱb1
b2

+ Jαba2
δba

)
=
(
p̄c0
c1 − p̄

c0
c0

) s

∆t0
+
(
Rc0
b0
−Rc0

b1

) pbc
∆t0

+ 1
2
(
Rc0
wG

w −Rc0
w [Gw]× δθ

)
∆t0

− 1
∆t0

Rc0
b0

(
ᾱb0
b1

+ Jαba1
δba

)
−
(
Rc0
wG

w −Rc0
w [Gw]× δθ

)
∆t0

+Rc0
b0

(
β̄
b0
b1 + Jβba1

δba
)

⇔ 1
∆t0

Rc0
b0
ᾱb0
b1
− 1

∆t1
Rc0
b1
ᾱb1
b2
−Rc0

b0
β̄
b0
b1

+ 1
2R

c0
wG

w∆t1 −
1
2R

c0
wG

w∆t0 +Rc0
wG

w∆t0

=
(
p̄c0
c1 − p̄

c0
c0

) s

∆t0
−
(
p̄c0
c2 − p̄

c0
c1

) s

∆t1
+ 1

2R
c0
w [Gw]× δθ∆t1 −

1
2R

c0
w [Gw]× δθ∆t0 +Rc0

w [Gw]× δθ∆t0

+ 1
∆t1

Rc0
b1
Jαba2

δba −
1

∆t0
Rc0
b0
Jαba1

δba +Rc0
b0
Jβba1

δba

+
(
Rc0
b0
−Rc0

b1

) pbc
∆t0
−
(
Rc0
b1
−Rc0

b2

) pbc
∆t1

⇔ 1
∆t0

Rc0
b0
ᾱb0
b1
− 1

∆t1
Rc0
b1
ᾱb1
b2
−Rc0

b0
β̄
b0
b1 + 1

2R
c0
wG

w (∆t0 + ∆t1)

=
((
p̄c0
c1 − p̄

c0
c0

) 1
∆t0
−
(
p̄c0
c2 − p̄

c0
c1

) 1
∆t1

)
s

+
(1

2R
c0
w [Gw]× (∆t0 + ∆t1)

)
δθ

+
( 1

∆t1
Rc0
b1
Jαba2

− 1
∆t0

Rc0
b0
Jαba1

+Rc0
b0
Jβba1

)
δba

+
((
Rc0
b0
−Rc0

b1

) 1
∆t0
−
(
Rc0
b1
−Rc0

b2

) 1
∆t1

)
pbc

⇔∆t1Rc0
b0

(
ᾱb0
b1
−∆t0β̄

b0
b1

)
−∆t0Rc0

b1
ᾱb1
b2

+ 1
2R

c0
wG

w
(
∆t20∆t1 + ∆t0∆t21

)
=
((
p̄c0
c1 − p̄

c0
c0

)
∆t1 −

(
p̄c0
c2 − p̄

c0
c1

)
∆t0

)
s

+
(1

2R
c0
w [Gw]×

(
∆t20∆t1 + ∆t0∆t21

))
δθ

+
(
∆t0Rc0

b1
Jαba2

+ ∆t1Rc0
b0

(
∆t0Jβba1

− Jαba1

))
δba

+
((
Rc0
b0
−Rc0

b1

)
∆t1 −

(
Rc0
b1
−Rc0

b2

)
∆t0

)
pbc
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The following system of equations is now obtained:([
λ(k) φ(k) κ(k) ξ(k)

]
χ−ψ(k)

)
wk = 0, (4.80)

with:

χ =
[
s δθxy δba pbc

]T
φ(k) =

[1
2R

c0
w [Gw]×

(
∆t2k∆tk+1 + ∆tk∆t2k+1

)]
(:,1:2)

κ(k) = ∆tkRc0
bk+1

Jαbak+2
+ ∆tk+1R

c0
bk

(
∆tkJβbak+1

− Jαbak+1

)
ξ(k) =

(
Rc0
bk
−Rc0

bk+1

)
∆tk+1 −

(
Rc0
bk+1
−Rc0

bk+2

)
∆tk

ψ(k) = ∆tk+1R
c0
bk

(
ᾱbkbk+1

−∆tkβ̄
bk
bk+1

)
−∆tkRc0

bk+1
ᾱ
bk+1
bk+2

+ 1
2R

c0
wG

w
(
∆t2k∆tk+1 + ∆tk∆t2k+1

)
where [·](:,1:2) means the first two columns of the matrix. At this point, the weight wk is
introduced. This allows incorrect data sets to have less influence on the estimations of s, δθxy,
δba and pcb. Using Eq.(4.80), the following minimization problem is established, with the solution
being an estimate of χ:

min
χ

=
N−2∑
k=0

∣∣∣∣∣∣([ λ(k) φ(k) κ(k) ξ(k)
]
χ−ψ(k)

)
wk
∣∣∣∣∣∣2 (4.81)

An iterative strategy is applied here, where after each minimization, using the estimate χ̂, the
weights in Eq. (4.80) are calculated as follows:

ek = ŝ · λ(k) + φ(k)δθ̂xy + κ(k)δb̂a + ξ(k)pbc −ψ(k) (4.82)
wk = exp (−||ek|| ·K3) (4.83)

Implementation details and the convergence criteria will be discussed later. As a result, estimates
are now obtained for the scale s, the perturbation δθxy, the bias of the accelerometer and the
translation between the camera and the IMU pbc.

4.5 Implementation Gyroscope Bias and Extrinsic Rotation Es-
timation

This section presents an approach to implement a system that estimates the extrinsic rotation
between a camera and an IMU

(
qbc

)
and the bias of a gyroscope (bω), explained in Section 4.2,

using the raw measurements of the gyroscope and the rotation data obtained by a camera.

For this work, the software that performs the estimation was written in C++, using ROS as
the underlying system. The advantage of ROS here is that this software can be directly used
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VINS-MONOExtrinsic rotation
estimation

Gyroscope bias
estimation

Rotate camera data
to IMU frame

Correct
pre-integration for
gyro bias with b̂ω

Are estimates q̂bc and
b̂ω converged?

Start translation and
scale estimation

Increment K0

Calculate weights
with K0 and q̂bc
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K0 ≥ K0,max
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Figure 4.1: This diagram shows the structure of the procedure for estimation of the extrinsic rotation
between camera and IMU and the bias of the gyroscope. The link between the individual blocks indicate
the flow of the data and the order of the individual actions. Blocks shown in green represent the necessary
steps to be performed if the weighting strategy is omitted.
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Algorithm 5: PerformRotationEstimation().
This algorithm uses a sequence of gyroscope bias corrected pre-integrations(
γ̂bkbk+1

(T0:K)
)

and rotations from camera data
(
q
ck+1
ck (T0:K)

)
to estimate the rota-

tion between the camera and the IMU. The fact that both the camera and the IMU are
subject to the same rotation during a movement is used. Note that the data sequences
have already been cleaned of erroneous data sets.

Input: γ̂bkbk+1
(T0:K), qck+1

ck (T0:K)
Output: Returns the estimate q̂bc with the optimal weight factor K0.
/* Performs the estimation of rotation for a fixed K0. */

1 Function PerformMinimizations(K0, qck+1
ck (T0:K), γ̂bkbk+1

(T0:K)):
2 q̂bc ← 0 // Stores the latest estimated rotation from camera to IMU as quaternion.

3 relativeErrorChange← 1 // Stores the relative change of the error between two minimizations.

4 weights← 1 // Stores the weight per data set, where all weights are initially 1.

5 error ← 0
6 previousError ← 1

/* Calculates q̂b
c until the weights converge. */

7 while relativeErrorChange > 0.01 do
/* Calculates the rotation between camera and IMU according to the minimization function (Eq. (4.35)) and returns its

norm after minimization. */

8 error = EstimateRotation
(
q
ck+1
ck (T0:K) , γ̂bkbk+1

(T0:K) , weights, q̂bc
)

9 relativeErrorChange = |previousError − error| /previousError · 100
10 previousError = error

/* Calculates the weights of the corresponding data respectively measurements according to Eq. (4.37). */

11 weight = CalculateWeight
(
q
ck+1
ck (T0:K) , γ̂bkbk+1

(T0:K) , K0, q̂
b
c

)
12 return q̂bc // Returns last estimate of rotation.

/* Main function of estimation of rotation between camera and IMU. */

13 Function PerformRotationEstimation(γ̂bkbk+1
(T0:K), qck+1

ck (T0:K)):
14 q̂bc ← 0 // Stores the latest estimated rotation from camera to IMU as quaternion.

15 error ← 0
16 results← 0
17 K0 ← 0 // Initially set to zero, all weights are 1 in the first run.

18 while K0 < K0,max do
19 q̂bc = PerformMinimizations

(
K0, q

ck+1
ck (T0:K) , γ̂bkbk+1

(T0:K)
)

/* Calculates error of estimation according to Eq. (4.36). */

20 error = CalculateError
(
q
ck+1
ck (T0:K) , γ̂bkbk+1

(T0:K) , q̂bc
)

21 results.append(q̂bc, error)
22 K0 = K0 + 1

/* Returns estimation with the lowest resulting error from all results. */

23 return SearchEstimateWithMinError(results)
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Algorithm 6: PerformGyroBiasEstimation().
This algorithm uses a sequence of non gyroscope bias corrected pre-integrations(
γ̃bkbk+1

(T0:K)
)

and rotations from camera data
(
q
bk+1
bk

(T0:K)
)

to estimate the bias of
the gyroscope. The fact that both the camera and the IMU are supposed to measure
the same rotation during a movement is used. Note that the data sequences have al-
ready been cleaned of erroneous data sets and the camera rotations are already given
in the IMU frame.

Input: γ̃bkbk+1
(T0:K), qbk+1

bk
(T0:K)

Output: Returns the estimate b̂ω with the optimal weight factor K1.
/* Performs the estimation of rotation for a fixed K1. */

1 Function PerformMinimizations(K1, qbk+1
bk

(T0:K), γ̃bkbk+1
(T0:K)):

2 b̂ω ← 0 // Stores the latest estimated bias of the gyroscope.

3 relativeErrorChange← 1 // Stores the relative change of the error between two minimizations.

4 weights← 1 // Stores the weight per data set, where all weights are initially 1.

5 error ← 0
6 previousError ← 0

/* Calculates q̂b
c until the weights converge. */

7 while relativeErrorChange > 0.01 do
/* Calculates the bias of the gyroscope according to the minimization function (Eq. (4.44)) and returns its norm after

minimization. */

8 error = EstimateBias
(
q
bk+1
bk

(T0:K) , γ̃bkbk+1
(T0:K) , weights, b̂ω

)
9 relativeErrorChange = |previousError − error| /previousError · 100

10 previousError = error
/* Calculates the weights of the corresponding data respectively measurements according to Eq. (4.46). */

11 weight = CalculateWeight
(
q
bk+1
bk

(T0:K) , γ̃bkbk+1
(T0:K) , K1, b̂ω

)
12 return b̂ω // Returns last estimate of bias.

/* Main function of estimation of gyroscope bias. */

13 Function PerformGyroBiasEstimation(γ̃bkbk+1
(T0:K), qbk+1

bk
(T0:K)):

14 b̂ω ← 0 // Stores the latest estimated bias of the gyroscope.

15 error ← 0
16 results← 0
17 K1 ← 0 // Initially set to zero, all weights are 1 in the first run.

18 while K1 < K1,max do
19 b̂ω = PerformMinimizations

(
K1, q

bk+1
bk

(T0:K) , γ̃bkbk+1
(T0:K)

)
/* Calculates error of estimation according to Eq. (4.45). */

20 error = CalculateError
(
q
bk+1
bk

(T0:K), γ̃bkbk+1
(T0:K) , b̂ω

)
21 results.append(b̂ω, error)
22 K1 = K1 + 1

/* Returns estimation with the lowest resulting error from all results. */

23 return SearchEstimateWithMinError(results)
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Algorithm 7: MainEstimateRotation().
This algorithm uses a sequence of non bias corrected pre-integrations

(
γ̃bkbk+1

(t0:K)
)

and
rotations from camera data

(
q
ck+1
ck (t0:K)

)
to repeatedly estimate the rotation between

camera and IMU and the bias of the gyroscope until the estimated values remain stable.
Erroneous data sets are sorted out before the parameters are estimated.

Input: γ̃bkbk+1
(t0:K), qck+1

ck (t0:K)
Output: q̂bc, b̂ω

1 Function MainEstimateRotation:
2 q̂bc ← 0 // Stores the latest estimated rotation from camera to IMU as quaternion.

3 b̂ω ← 0 // Stores the latest estimated bias of the gyroscope.

4 errorRotation← 0, errorBias← 0
5 relativeErrorRotationChange← 1
6 previousErrorRotation← 1
7 relativeErrorBiasChange← 1
8 previousErrorBias← 1
9 γ̂bkbk+1

(T0:K) = γ̃bkbk+1
(T0:K)

10 while relativeErrorRotationChange > 0.002 or
relativeErrorBiasChange > 0.002 do

/* Method PerformRotationEstimation is explained in algorithm 5. */

11 q̂bc = PerformRotationEstimation
(
γ̂bkbk+1

(T0:K) , qck+1
ck (T0:K)

)
/* Rotates camera determined rotations to IMU frame according to Eq. 4.40. */

12 q
bk+1
bk

(T0:K) = RotateToIMUFrame
(
q
ck+1
ck (T0:K) , q̂bc

)
/* Method PerformGyroBiasEstimation is explained in algorithm 6. */

13 b̂ω = PerformGyroBiasEstimation
(
γ̃bkbk+1

(T0:K), qbk+1
bk

(T0:K)
)

/* Correct the pre-integrations for gyroscope bias according to Eq. (4.20). */

14 γ̂bkbk+1
(T0:K) = CorrectForBias

(
γ̃bkbk+1

(T0:K)
)

/* Calculates error of estimation according to Eq. (4.36). */

15 errorRotation = CalculateError
(
γ̂bkbk+1

(T0:K) , qck+1
ck (T0:K), q̂bc

)
16 relativeErrorRotationChange =

|previousErrorRotation− errorRotation| /previousErrorRotation · 100
17 previousErrorRotation = errorRotation

/* Calculates error of estimation according to Eq. (4.45). */

18 errorBias = CalculateError
(
γ̃bkbk+1

(T0:K), qbk+1
bk

(T0:K) , b̂ω
)

19 relativeErrorBiasChange =
|previousErrorBias− errorBias| /previousErrorBias · 100

20 previousErrorBias = errorBias

21 return q̂bc, b̂ω
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by providing it the pre-integrated gyroscope measurements together with the rotations obtained
with camera images. Here VINS-Mono (cf. Section 2.5) was used to pre-integrate the mea-
surements and to obtain rotation information from camera images. For exact implementation
details, please refer to the appendix.

Fig. 4.1 is intended to give a rough overview of the estimation procedures. The flow of the
different data and the order of the steps can be seen. In addition, algorithms 5 - 7 present some
more complex procedures in more detail in form of pseudo-code. The intention of the procedure
is to find optimal values for the weighting parameters K0 and K1. Therefore, it is iteratively
searched for K0 and K1 such that the datasets are weighted in a manner that the errors of the
resulting estimates are minimized.

The following is a brief introduction to the procedure, where steps (2) - (8) are shown in detail
in algorithm 7.

1. Pre-Integrate Gyro Data and obtain Rotation Data from Camera Images
The camera acquired images are used to estimate the rotation between selected keyframes(
q
ck+1
ck (t0:K)

)
. Next the gyroscope measurements are pre-integrated according to Eq. (4.13)

between successive keyframes
(
γ̃bkbk+1

(t0:K)
)
, where the gyroscope bias is assumed to be

zero. The result is a rotation estimate by the camera and one by the IMU, which are
supposed to represent the same rotation in the respective coordinate system. This fact is
used in the following to estimate the rotation between camera and IMU and the bias of the
gyroscope. Note that the two calculations mentioned above are performed by VINS-Mono,
as shown as the same named block in Fig. 4.1.

2. Correct Pre-Integration for Gyroscope Bias
In this step, the pre-integrated gyroscope measurements are corrected for the bias of the
gyroscope, according to Eq. (4.20). This is described in Fig. 4.1 in the middle. Note that
this step can only be performed if an estimate of the bias already exists. The bias corrected
data is now given as γ̂bkbk+1

(T0:K).

3. Estimate K0,max
To estimate an upper bound for K0, Eq. 4.37 is rearranged as follows:

K0,max = − log(wmin)
||emax||

. (4.84)

Here emax is the maximum error that occurs in the data sets used, calculated with Eq. 4.36.
The minimum weight that this data set is to get is given by wmin. It has been found that
wmin = 0.001 is sufficient.

4. Estimate Extrinsic Rotation
In this step, the bias corrected pre-integrations

(
γ̂bkbk+1

(T0:K)
)

and the rotations obtained
by camera

(
q
ck+1
ck (T0:K)

)
are used to estimate the rotation between camera and IMU. Note

that initially K0 = 0 applies, thus all weights in the first run are 1. The procedure, which
appears in Fig. 4.1 on the left and is shown in algorithm 5, is divided into the following
five steps:
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(a) Calculate weights with K0 and q̂bc according to Eq. (4.37).

(b) Estimate rotation q̂bc according to Eq. (4.35).

(c) Repeat from step (a) until the estimate remains stable.

(d) Increment K0 and repeat from step (a) until K0 ≥ K0,max.

(e) Select estimation q̂bc (K0) with lowest error (cf. Eq. (4.36)).

5. Rotate Camera Data to IMU Frame
In this step, the data from the camera

(
q
ck+1
ck (T0:K)

)
is rotated into the coordinate

system of the IMU {b} using the last estimate q̂bc according to Eq. (4.40), resulting in(
q
bk+1
bk

(T0:K)
)
. This can be seen in Fig. 4.1 in the middle.

6. Estimate K1,max
To estimate an upper bound for K1, Eq. 4.46 is rearranged as follows:

K1,max = − log(wmin)
||emax||

. (4.85)

Here emax is the maximum error that occurs in the data sets used, calculated with Eq. 4.45.
The minimum weight that this data set is to get is given by wmin. It has been found that
wmin = 0.001 is sufficient.

7. Estimate Gyroscope Bias
In this step, the non bias corrected pre-integrations

(
γ̃bkbk+1

(T0:K)
)

and the rotations ob-
tained by camera

(
q
bk+1
bk

(T0:K)
)

are used to estimate the bias of the gyroscope. Note that
initially K1 = 0 applies, thus all weights in the first run are 1. The procedure, which
appears in Fig. 4.1 on the right and is shown in algorithm 6, is divided into the following
five steps:

(a) Calculate weights with K1 and b̂ω according to Eq. (4.37).

(b) Estimate bias b̂ω according to Eq (4.44).

(c) Repeat from step (a) until the estimate remains stable.

(d) Increment K1 and repeat from step (a) until K1 ≥ K1,max.

(e) Select estimation b̂ω (K1) with lowest error (cf. Eq. (4.45)).

8. Repeat from step 3 until the estimates remain stable

4.6 Implementation Scale, Gravity, Translation and Accelerom-
eter Bias Estimation

This section presents an approach to implement a system that estimates the visual scale (s), a
perturbation (δθxy), the gravity (gc0), the bias of the accelerometer (δba) and the translation
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Algorithm 8: PerformScaleEstimation().
This algorithm uses a sequence of gyroscope and accelerometer bias corrected pre-
integrations

(
α̂c0
bk+1

(t0:N ) , β̂c0
bk+1 (t0:N )

)
, rotation and translation from camera data(

p̄c0
ck

(t0:N ) , Rc0
bk

(t0:N )
)

and the corresponding durations (∆tk (t0:N )) of the time in-
tervals [tk, tk+1] to estimate scale, gravity and translation between camera and IMU
frame. Note here that the bias of the accelerometer has not yet been estimated in the
first run of this algorithm and is assumed to be zero.

Input: α̂c0
bk+1

(t0:N ), β̂c0
bk+1 (t0:N ), p̄c0

ck
(t0:N ), Rc0

bk
(t0:N ), ∆tk (t0:N )

Output: Returns estimates ŝ, ĝc0 and p̂cb with the optimal weight factor K2.
/* Performs the estimation of scale, gravity and translation for a fixed K2. */

1 Function PerformMinimizations(K2, Input):
2 ŝ← 0, ĝc0 ← 0, p̂cb ← 0 // Stores the latest estimates.

3 relativeErrorChange← 1 // Stores the relative change of the error between two minimizations.

4 weights← 1 // Stores the weight per data set, where all weights are initially 1.

5 error ← 0
6 previousError ← 1

/* Calculates ŝ, ĝc0 and p̂c
b

until the weights converge. */

7 while relativeErrorChange > 0.01 do
/* Calculates scale, gravity and translation according to the minimization function (Eq. (4.66)) and returns its norm

after minimization. */

8 error = EstimateScale(Input, weights, ŝ, ĝc0 , p̂cb)
9 relativeErrorChange = |previousError − error| /previousError · 100

10 previousError = error
/* Calculates the weights of the corresponding data respectively measurements according to Eq. (4.68). */

11 weight = CalculateWeight(Input, K2, ŝ, ĝ
c0 , p̂cb)

12 return ŝ, ĝc0 , p̂cb // Returns last estimates.

/* Main function of estimation of scale, gravity and translation. */

13 Function PerformScaleEstimation(Input):
14 ŝ← 0, ĝc0 ← 0, p̂cb ← 0 // Stores the latest estimates.

15 error ← 0
16 results← 0
17 K2 ← 0 // Initially set to zero, all weights are 1 in the first run.

18 while K2 < K2,max do
19 ŝ, ĝc0 , p̂cb = PerformMinimizations(K2, Input)

/* Calculates error of estimation according to Eq. (4.67). */

20 error = CalculateError(Input, ŝ, ĝc0 , p̂cb)
21 results.append(ŝ, ĝc0 , p̂cb, error)
22 K2 = K2 + 1

/* Returns estimation with the lowest resulting error from all results. */

23 return SearchEstimateWithMinError(results)
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Algorithm 9: PerformRefinement().
This algorithm uses a sequence of gyroscope bias corrected pre-integrations(
ᾱc0
bk+1

(t0:N ) , β̄c0
bk+1 (t0:N )

)
, rotation and translation from camera data(

p̄c0
ck

(t0:N ) , Rc0
bk

(t0:N )
)
, the corresponding durations (∆tk (t0:N )) of the time in-

tervals [tk, tk+1] and the previously estimated gravity (ĝc0) to estimate scale,
perturbation, accelerometer bias and translation between camera and IMU frame.

Input: ᾱc0
bk+1

(t0:N ), β̄c0
bk+1 (t0:N ), p̄c0

ck
(t0:N ), Rc0

bk
(t0:N ), ∆tk (t0:N ), ĝc0

Output: Returns estimates ŝ, δθ̂xy, δb̂a and p̂cb with the optimal weight factor K3.
/* Performs the estimation of scale, perturbation, accelerometer bias and translation for a fixed K3. */

1 Function PerformMinimizations(K3, Input):
2 ŝ← 0, δθ̂xy ← 0, δb̂a ← 0, p̂bc ← 0 // Stores the latest estimates.

3 relativeErrorChange← 1 // Stores the relative change of the error between two minimizations.

4 weights← 1 // Stores the weight per data set, where all weights are initially 1.

5 error ← 0
6 previousError ← 1

/* Calculates ŝ, δθ̂xy, δb̂a and p̂c
b

until the weights converge. */

7 while relativeErrorChange > 0.01 do
/* Calculates scale, perturbation, accelerometer bias and translation according to the minimization function (Eq. (4.81))

and returns its norm after minimization. */

8 error = EstimateScale
(
Input, weights, ŝ, δθ̂xy, δb̂a, p̂cb

)
9 relativeErrorChange = |previousError − error| /previousError · 100

10 previousError = error
/* Calculates the weights of the corresponding data respectively measurements according to Eq. (4.83). */

11 weight = CalculateWeight
(
Input, K3, ŝ, δθ̂xy, δb̂a, p̂

c
b

)
12 return ŝ, δθ̂xy, δb̂a, p̂cb // Returns last estimates.

/* Main function of estimation of scale, perturbation, accelerometer bias and translation. */

13 Function PerformRefinement(Input):
14 ŝ← 0, δθ̂xy ← 0, δb̂a ← 0, p̂bc ← 0 // Stores the latest estimates.

15 error ← 0
16 results← 0
17 K3 ← 0 // Initially set to zero, all weights are 1 in the first run.

18 while K3 < K3,max do
19 ŝ, δθ̂xy, δb̂a, p̂cb = PerformMinimizations(K3, Input)

/* Calculates error of estimation according to Eq. (4.82). */

20 error = CalculateError
(
Input, ŝ, δθ̂xy, δb̂a, p̂cb

)
21 results.append(ŝ, δθ̂xy, δb̂a, p̂cb, error)
22 K3 = K3 + 1

/* Returns estimation with the lowest resulting error from all results. */

23 return SearchEstimateWithMinError(results)
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Algorithm 10: MainEstimateScaleAndRefinement().
This algorithm uses a sequence of non bias corrected pre-integrations(
α̃bkbk+1

(t0:N ) , β̃bkbk+1 (t0:N )
)
, rotation and translation from camera data(

p̄c0
ck

(t0:N ) , Rc0
ck

(t0:N )
)

and the corresponding durations (∆tk (t0:N )) of the time
intervals [tk, tk+1] to repeatedly estimate scale, gravity, perturbation, accelerometer
bias and translation between camera and IMU frame until the estimated values remain
stable. The previously estimated rotation between camera and IMU (q̂cb) and the bias
of the gyroscope

(
b̂ω
)

are used to rotate the pre-integrations into the camera frame,
respectively to correct them for the bias of the gyroscope.

Input: α̃bkbk+1
(t0:N ), β̃bkbk+1 (t0:N ), p̄c0

ck
(t0:N ), Rc0

ck
(t0:N ), ∆tk (t0:N ), q̂cb, b̂ω

Output: ŝ, ĝc0 , δθ̂xy, b̂a, p̂cb
1 Function MainEstimateScaleAndRefinement:
2 ŝ← 0, ĝc0 ← 0, δθ̂xy ← 0, δb̂a ← 0, p̂bc ← 0 // Stores the latest estimates.

3 errorScale← 0, errorRefine← 0
4 relativeErrorScaleChange← 1, relativeErrorRefineChange← 1
5 previousErrorScale← 1, previousErrorRefine← 1
6 correctedRotatedInput = rotateAndCorrectGyroBias(Input)
7 correctedAccBiasInput = correctedRotatedInput
8 while relativeErrorScaleChange > 0.002 or relativeErrorRefineChange > 0.002

do
/* Method PerformScaleEstimation is explained in algorithm 8. */

9 ŝ, ĝc0 , p̂cb = PerformScaleEstimation(correctedAccBiasInput)
/* Calculates error of estimation according to Eq. (4.67). */

10 errorScale = CalculateError(correctedAccBiasInput, ŝ, ĝc0 , p̂cb)
/* Method PerformRefinement is explained in algorithm 9. */

11 ŝ, δθ̂xy, δb̂a, p̂cb = PerformRefinement(correctedRotatedInput, ĝc0)
/* Calculates error of estimation according to Eq. (4.82). */

12 errorRefine = CalculateError
(
correctedRotatedInput, ŝ, δθ̂xy, δb̂a, p̂

c
b

)
/* Correct the pre-integrations for accelerometer bias according to Eqs. (4.18) and (4.19). */

13 correctedAccBiasInput = CorrectForBias
(
correctedRotatedInput, δb̂a

)
14 relativeErrorScaleChange =

|previousErrorScale− errorScale| /previousErrorScale · 100
15 previousErrorScale = errorScale
16 relativeErrorRefineChange =

|previousErrorRefine− errorRefine| /previousErrorRefine · 100
17 previousErrorRefine = errorRefine

18 return ŝ, ĝc0 , δθ̂xy, b̂a, p̂cb
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between camera and IMU frame (pcb), explained in Sections 4.3 and 4.4. Thereby it uses the
gyroscope bias corrected measurements of an IMU and the rotations and up-to-scale poses
obtained by a camera. Note that all calculates are carried out in the {c0} frame, by rotating
the data with the previously estimated rotation

(
q̂bc

)
.

For this work, the software that performs the estimation was written in C++, using ROS as the
underlying system. The advantage of ROS is that this software can be directly used by providing
it the pre-integrated gyroscope and accelerometer measurements together with the rotations and
up-to-scale poses obtained with camera images via topics. Here VINS-Mono was used to pre-
integrate the measurements and to obtain rotation and pose information from camera images.
For exact implementation details, please refer to the appendix.

Fig. 4.2 is intended to give a rough overview of the estimation procedures. The flow of the
different data and the order of the steps can be seen. In addition, algorithms 8 - 10 present
some more complex procedures in more detail in form of pseudo-code. The intention of the
procedure is to find optimal values for the weighting parameters K2 and K3. Therefore, it is
iteratively searched for K2 and K3 such that the datasets are weighted in a manner that the
errors of the resulting estimates are minimized.

The following is a brief introduction to the procedure, where steps (2) - (9) are shown in detail
in algorithm 10.

1. Pre-Integrate IMU Data and obtain Pose Data from Camera Images
The camera acquired images are used to estimate the pose of selected keyframes(
Rc0
ck

(t0:N ) , p̄c0
ck

(t0:N )
)
. Next the IMU measurements are pre-integrated according to

Eqs. 4.11 and 4.12 between successive keyframes
(
α̃bkbk+1

(t0:N ) , β̃bkbk+1 (t0:N )
)
, where both

bias are assumed to be zero. Basically, the poses of the IMU and the camera are now
given at the times of the keyframes. With the help of this, the desired parameters can
now be estimated. Note that the two calculations mentioned above are performed by
VINS-MONO, as shown as the same named block in Fig. 4.2.

2. Correct Pre-Integrations for Gyroscope Bias
In this step, the pre-integrations are corrected for the bias of the gyroscope, according to
Eqs. (4.18) and (4.19). This can be seen in Fig. 4.2 in the middle. Note that this step uses
the previously estimated gyroscope bias b̂ω (cf. Section 4.5). The bias corrected data is
now given as ᾱbkbk+1

(t0:N ) and β̄bkbk+1 (t0:N ).

3. Rotate Data to Camera Frame
In this step, the data is rotated to represent the same motion defined in the same coordinate
system. According to Eq. (4.40) the camera obtained rotations are transformed to get the
rotation of the IMU with reference to the {c0} frame

(
Rc0
bk

(t0:N )
)

using the previously
estimated extrinsic rotation q̂bc (cf. Section 4.5). Using these transformed rotations the
reference frame of the pre-integrations is changed to {c0} (cf. Eqs.(4.52) and (4.58)).
That gives the position pre integration

(
ᾱc0
bk+1

(t0:N )
)

and the velocity pre integration(
β̄
c0
bk+1 (t0:N )

)
with reference to the camera frame. This step can be seen in Fig. 4.2.
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4. Correct Pre-Integrations for Accelerometer Bias
In this step, the pre-integrations are corrected for the bias of the accelerometer, according
to Eqs. (4.18) and (4.19). This can be seen in Fig. 4.2 in the middle. Note that this step
can only be performed if an estimate of the bias already exists. The accelerometer bias
corrected data is now given as α̂c0

bk+1
(t0:N ) and β̂c0

bk+1 (t0:N ).

5. Estimate K2,max
To estimate an upper bound for K2, Eq. 4.68 is rearranged as follows:

K2,max = − log(wmin)
||emax||

. (4.86)

Here emax is the maximum error that occurs in the data sets used, calculated with Eq. 4.67.
The minimum weight that this data set is to get is given by wmin. It has been found that
wmin = 0.001 is sufficient.

6. Estimate Scale
In this step, the accelerometer and gyroscope bias corrected pre-integrations(
α̂c0
bk+1

(t0:N ) , β̂c0
bk+1 (t0:N )

)
and pose informations obtained by camera(

Rc0
bk

(t0:N ) , p̄c0
ck

(t0:N )
)

are used to estimate the visual scale, the gravity and the trans-
lation between camera and IMU. Note that initially K2 = 0 applies, thus all weights in
the first run are 1. The procedure, which appears in Fig. 4.2 on the left and is shown in
algorithm 8, is divided into the following five steps:

(a) Calculate weights with K2, ŝ, ĝc0 and p̂cb according to Eq. (4.68).

(b) Estimate ŝ, ĝc0 and p̂cb according to Eq. (4.66).

(c) Repeat from step (a) until estimates remain stable.

(d) Increment K2 and repeat from step (a) until K2 ≥ K2,max.

(e) Select estimations ŝ (K2), ĝc0 (K2) and p̂cb (K2) with lowest error (cf. Eq. (4.67)).

7. Estimate K3,max
To estimate an upper bound for K3, Eq. 4.83 is rearranged as follows:

K3,max = − log(wmin)
||emax||

. (4.87)

Here emax is the maximum error that occurs in the data sets used, calculated with Eq. 4.82.
The minimum weight that this data set is to get is given by wmin. It has been found that
wmin = 0.001 is sufficient.

8. Estimate Accelerometer Bias
In this step, the non accelerometer bias corrected pre-integrations(
ᾱbkbk+1

(t0:N ) , β̄bkbk+1 (t0:N )
)
, pose informations obtained by camera

(
Rc0
bk

(t0:N ) , p̄c0
ck

(t0:N )
)

and the previously estimated gravity (ĝc0) are used to estimate the visual scale, the per-
turbation, the accelerometer bias and the translation between camera and IMU. Note that
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in this case the bias of the accelerometer is taken into account in the estimation and the
results for scale and translation are expected to have a lower error compared to the esti-
mation in step (5). Consider that initially K3 = 0 applies, thus all weights in the first run
are 1. The procedure, which appears in Fig. 4.2 on the right and is shown in algorithm 9,
is divided into the following five steps:

(a) Calculate weights with K3, ŝ, δ ˆθxy, δb̂a and p̂cb according to Eq. (4.83).

(b) Estimate ŝ, δ ˆθxy, δb̂a and p̂cb according to Eq. (4.81).

(c) Repeat from step (a) until estimates remain stable.

(d) Increment K3 and repeat from step (a) until K3 ≥ K3,max.

(e) Select estimations ŝ (K3), δ ˆθxy (K3), δb̂a (K3) and p̂cb (K3) with lowest error (cf.
Eq. (4.82)).

9. Repeat from step 4 until the estimates remain stable
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Figure 4.2: This diagram shows the structure of the procedure for estimation of the scale, gravity,
translation and accelerometer bias. The link between the individual blocks indicate the flow of the
data and the order of the individual actions. Blocks shown in green represent the necessary steps to be
performed if the weighting strategy is omitted.
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Chapter 5

Evaluation of IMU Calibration

The purpose of this chapter is to demonstrate the performance of the system described in
Chapter 3. Thereby the calibration of an accelerometer and a gyroscope is investigated. For
experiments within this chapter a low-cost IMU manufactured by Phidgets is used. Its type
definition is stated as PhidgetSpatial Precision 3/3/3 High Resolution 1.

5.1 Evaluation of Accelerometer Calibration

In this section, the results of calibration of the accelerometer are described. The underlying
procedure is shown in Fig. 3.1 on the left side.

In the course of the calibration of the accelerometer, a dataset with a length of about 133s
was recorded, whereby the orientation of the IMU was changed 15 times by hand. Care was
taken to achieve a large variation in orientation. Looking at Fig. 5.1, the red points represent
the norm of the measured gravity vector during the standstill phases, the green ones after the
calibration. Here it is noticeable that the calibration has an enormous effect on the accuracy of
the measurement. If one examines additionally table 5.1, which expresses the results in numerical
values, it is noticeable that by the calibration almost the desired value of 9.81007 m

s2 is reached
on average. Also the error of the gravity measurement is lowered by the calibration around the
factor 30.

1https://www.phidgets.com/?catid=10&pcid=8&prodid=1158

Source Gravity norm Error
Without calibration 9.7731 0.4463
With calibration 9.8068 0.01518

Table 5.1: Shows the results of the calibration of the accelerometer in the form of the measured norm
of gravity in m

s2 . Here the data of Fig. 5.1 were used, where the norm corresponds to the arithmetic mean
and the error to the standard deviation.
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Figure 5.1: The plotted graph shows the results of the calibration of the accelerometer. The red
points represent the measured gravity in m

s2 before and the green points the measured gravity after the
calibration. During the recording of the data the IMU was brought into different orientations. The data
which was recorded during the orientation change was cut out for the sake of clarity. The results shown
correspond to the procedure on the left side of Fig. 3.1.

In this case, the following calibration parameters are obtained:

Ka =


0.9948850748 0 0

0 0.9948459340 0
0 0 1.0026721030



T a =


1 −0.0061402733 0.0040833257
0 1 0.0026169734
0 0 1



ba =


−0.1490165237
−0.0525612944
−0.5891789281



5.2 Evaluation of Gyroscope Calibration

In this section, the results of calibration of the gyroscope are described. The underlying proce-
dure is shown in Fig. 3.1 on the right side.
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Figure 5.2: The plotted graphs show a section of the data set which is already shown in Fig. 5.1. Here,
the orientation with respect to the z-axis of the IMU, represented as Euler angle in ◦, is shown. For
the sake of clarity, only one orientation change between two successive standstills is shown here. The
blue dots represent the orientation determined by the accelerometer, the red and green dots represent
the orientation determined by the gyroscopic measurements. The green dots represent the results after
calibration. In the ideal case, the orientation after the completion of the movement (approx. data point
2350) should correspond to that of the accelerometer. Both graphs show the same data in different detail.

In this section, the same dataset as in the previous section was used for calibration. Here,
the orientation was changed between successive standstills. During the standstills, the exact
direction of the gravity vector is determined with the aid of the accelerometer, and the orientation
of the IMU is determined by this. During a movement, the orientation is determined by the
temporal integration of the angular velocities, which were recorded by the gyroscope. Optimally,
the orientation determined by the gyroscope at the end of the motion should correspond to that
of the accelerometer.

Considering Fig 5.2, the orientation at the end of the movement (approx. data point 2350) in
the uncalibrated case (red points) still has a deviation of approx. 20 ◦ to the actual orientation
(blue points). By calibrating the gyroscope, this deviation is halved to approx. 10 ◦. The reason
for the remaining deviation is not known. Here it is possible that there is still a remaining error
due to the numeric integration. In the diagram it is also noticeable that in the calibrated case
a different orientation is determined than in the uncalibrated case. It is assumed that by the
calibration the values of the orientation lie closer to the true value. However, since no true
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values for the orientation are known (apart from the standstill phases), this does not allow a
conclusive assessment.

In this case, the following calibration parameters are obtained:

Kω =


0.8427205966 0 0

0 0.8965406691 0
0 0 0.9341525635



T ω =


1 0.4618838528 0.3827648811

−0.4840555917 1 0.0760070500
−0.3428641795 −0.2175452987 1



bω =


−0.006327691203

0.0010545279
−0.0018737855


5.3 Summary

In the previous two sections, the results of calibrating an accelerometer, respectively a gyro-
scope, were explained. Especially the measured values of the accelerometer are improved by
the calibration. In order to use an accelerometer for the determination of translational motions,
it is necessary to have acceleration measurement values that are as exact as possible. A large
measurement error has a large negative influence on the position estimate due to the double
integration.

The calibration of the gyroscope also led to an improvement in the measured values. Here, also,
the position estimation is dependent on error-free measurement values, because the gyroscope is
used during the execution of a movement to determine the exact orientation. A strongly erro-
neous orientation estimation leads to an error in the position estimation, because the knowledge
about the exact orientation of the gravity vector is necessary to adjust the measured values of
the accelerometer around this.
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Chapter 6

Evaluation of Camera-IMU Extrinsic
Calibration

The purpose of this chapter is to show how the system described in Chapter 4 performs. Thereby,
the results of the individual steps are presented and evaluated. In the following sections, the
methods of evaluation are discussed and the data sets used are presented.

6.1 Methodology

As explained in Section 1.1, the overall purpose of this work is to improve the pose estimation
using VIO methods with respect to the UWSensor project. More precisely, to improve the initial
estimation of the visual scale of the VINS-Mono software. The quality of the estimated scale is
significantly influenced by the following estimates:

• Extrinsic rotation between camera and IMU frame q̂cb
• Bias of gyroscope b̂ω
• Gravity ĝc0

• Translation between camera and IMU frame p̂cb
• Bias of accelerometer b̂a

Since the quality of these estimates has a direct impact on the estimation of the scale, the
following sections focus on the results of these estimates.

In the course of this, the question arises how to determine the quality of the respective estimates.
The main problem is that for arbitrary systems, consisting of camera and IMU, the real values
qcb, bω, gc0 , pcb and ba are not known and cannot be determined without any uncertainties. For
example, if the translation between an IMU and a camera, both fixed to a drone, should be
estimated, this could be compared to the hand-measured translation. In this case, however, it
is impossible to achieve millimeter accuracy or better, since it is usually difficult to determine,
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for example, the exact origin of the sensor axes inside the IMU case. Besides measuring by
hand, methods are employed which use certain patterns like AprilTags for support like e.g. the
work [28]. However, in this case the accuracy of the translation estimate also depends on the
camera calibration. In addition, badly estimated biases of gyroscope and accelerometer can
distort the result.

Therefore, the only possible option is to compare the accuracy of the estimates of q̂cb, b̂ω, ĝc0 ,
p̂cb and b̂a with the resulting pose estimation, in this case of VINS-Mono. It can be assumed
that better estimated initial values lead to a higher accuracy in the pose estimation.

Nevertheless, in order to compare the accuracy of different methods of estimating the param-
eters, Eqs. (4.36), (4.45), (4.67) and (4.82) are used. It is assumed here that the estimation is
optimal when the error becomes minimal. The disadvantage is that the mentioned errors of the
estimations become larger, if the underlying software, here VINS-Mono, itself produces errors in
the determination of the camera poses. The inaccuracy of the camera poses are not assessable
within the scope of this work. Consequently, if two different data sets of a flight of the same
drone are given, it is not possible to evaluate which dataset is better suited for the estimation of
the parameters, because it is not possible to evaluate which dataset leads to better camera pose
estimation using VINS-Mono. At this point, however, the assumption is made that the lower
the error of the estimates, the more the data set is suitable for calibration. A proper comparison
of multiple datasets can only be made using the final resulting pose estimation.

6.2 Choice of Minimization Algorithm

As already explained in Section 2.7, Eigen’s LM algorithm is used to find a solution of the
Eqs. (4.35), (4.44), (4.66) and (4.81). Since it turned out that in the iterative estimation of scale
and accelerometer bias, the estimates sometimes do not converge but alternate, the Ceres Solver
was additionally implemented. This behavior is not observed there. A more detailed description
of this characteristic follows later.

6.3 Choice of Datasets

To test the performance of the procedure developed in this work, a publicly available dataset
and one from the UWSensor project are used.

EuRoC MAV Dataset In the course of the development of the software, primarily the online 1

available dataset MH 02 easy.bag was used. It was collected in an industrial environment
and contains millimeter accurate position ground truth from a laser tracking system. For a
detailed description of the equipment used to generate the data, please refer to Article [16].
This dataset has the advantage that the system is manually slewed before flying through
the hall, recording data with rotations necessary for calibration. Fig. 6.1 shows one of
the images captured in this dataset. The IMU used is identified as ADIS16448 and the
camera with a resolution of 854× 480 is identified as Aptina MT9V034.

1https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
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Figure 6.1: Snapshot of dataset MH 02 easy.bag during the drone flight through an industrial hall.

UWSensor Dataset Since improving the position estimation of the sensors of the UWSensor
project is part of the purpose of this work, a data set taken from this project will be used
for calibration in the following. Fig. 6.2 shows one of the images captured in this dataset.
The IMU used is identified as KVH 1750 and the camera with a resolution of 3208× 2200
is identified as SONY IMX420. Here the resolution is scaled to 1600× 1100.

As explained in the previous section, the results of the estimated parameters are highly depen-
dent on the camera poses estimated by VINS-Mono. The following parameters, among others,
can be adjusted within VINS-Mono to improve the estimation of camera poses:

max cnt Defines the maximum number of tracked features.

min dist Defines the minimum distance between two features.

freq Defines the frequency at which the camera images are evaluated.

WINDOW SIZE Defines the maximum number of keyframes for which the camera poses are
estimated.

The parameter WINDOW SIZE can be adjusted in file vins estimator/src/parameters.h, all
others in the respective configuration file in the folder config/. The estimation of the camera
poses can also be influenced by the provided camera images, which is done in the course of this
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Figure 6.2: Snapshot of a dataset from UWSensor project during a calibration process.

work by setting a certain start time when replaying the datasets. In the course of this evaluation,
it was found that the results are best when the aforementioned parameters are set to the values
shown in Table 6.1.

In this evaluation, the two datasets with different values for WINDOW SIZE are examined.
Table 6.2 shows the values used for WINDOW SIZE, an ID which is used in the following for
the identification of the respective configuration, the resulting error of the estimation of the
extrinsic rotation and the error of the estimation of the scales. Here, the resulting errors refer
to the average of the errors determined with Eq. (4.36) and Eq. (4.67) respectively. The two
configurations shown here in green lead to ”good” results in the estimation of the calibration pa-
rameters, whereas the results of the configurations shown in red lead to almost unusable results,
which is also seen from the significantly larger errors. Both ”bad” configurations are included in
the evaluation to show the immense influence they have on the quality of the estimation. Two
reasons why the estimations with a WINDOW SIZE of 15 lead to ”bad” results, is on the one
hand an incorrect position estimation by VINS-Mono, on the other hand too few rotational and
translational movements in the used data.
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Parameter EuRoC MAV dataset UWSensor dataset
max cnt 300 300
min dist 15 30
freq 0 5
start time 5s 16s

Table 6.1: Configuration of VINS-Mono, which was used for the evaluation of the respective dataset.
For UWSensor, a larger min dist is chosen because the resolution of the camera used is larger, ensuring
that features are evenly distributed across the image.

ID WINDOW SIZE Error rotation Error scale

EuRoC MAV dataset
1 30 1.324E−4 6.211E−6
2 15 4.712E−4 1.814E−5

UWSensor dataset
3 30 2.667E−4 1.713E−4
4 15 1.007E−3 1.051E−3

Table 6.2: Configurations used in the course of the evaluation. The color red denotes failed estimates
and green denotes successful estimates. The errors which are listed here correspond to the final result
of the software developed within this thesis, therefore all steps in the Fig. 4.1, resp. 4.2 were executed,
using the LM algorithm.

6.4 Evaluation of Gyroscope Bias and Extrinsic Rotation Esti-
mation

In this section, the results of the individual steps of the estimation of extrinsic rotation between
camera and IMU frame und gyroscope bias are described.

In general, the purpose of the following sections is to demonstrate that the estimates are refined
by applying the two proposed methods: the weighting of the individual datasets and the alter-
nating estimation of extrinsic rotation and gyroscope bias. In each case, for extrinsic rotation
and gyroscope bias, first the results are presented, which are obtained without the use of the two
methods mentioned and with the use of weighting. Finally, the results obtained by alternating
the estimation of the two parameters are shown.

6.4.1 Extrinsic Rotation Estimation

The software developed in the course of this work starts with the estimation of the extrinsic
rotation, shown in Fig. 4.1 on the left. Results to be expected in the ideal case are listed in
table 6.3, along with the results obtained by the native calculation of VINS-Mono. As already
explained, the real values for the extrinsic rotation are not known, the values listed in the table
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Figure 6.3: The plotted graphs show the result of the estimation of the extrinsic rotation between
camera and IMU, represented in Euler angles in ◦, for each iteration of the LM algorithm. Data sets ID
1 (green) and ID 2 (red) were used. The results shown here correspond to the green block on the left
side of the Fig. 4.1.
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Figure 6.4: The plotted graphs show the result of the estimation of the extrinsic rotation between
camera and IMU, represented in Euler angles in ◦, for each iteration of the LM algorithm. Data sets ID
3 (green) and ID 4 (red) were used. The results shown here correspond to the green block on the left
side of the Fig. 4.1.
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Source Euler x Euler y Euler z

EuRoC MAV dataset
VINS-Mono 50.767◦ 1.829◦ 98.952◦

Ideal result 0.000◦ 0.000◦ 90.000◦

UWSensor dataset
VINS-Mono 178.172◦ 3.877◦ −90.004◦

Ideal result 180.000◦ 0.000◦ −90.000◦

Table 6.3: Results for the extrinsic rotation in Euler angles expected according to the developers of the
respective sensor systems along with the results of the native calculation by VINS-Mono.

ID Source Euler x Euler y Euler z Error
1 LM −6.9205◦ −9.5942◦ 89.2621◦ 1.914E−3
1 Ceres −5.6991◦ −8.9992◦ 89.2882◦ 1.933E−3
2 LM 11.9759◦ −1.9178◦ 84.0069◦ 2.506E−3
2 Ceres 10.4164◦ −3.7315◦ 84.4806◦ 2.513E−3
3 LM 179.9997◦ 0.6624◦ −89.9629◦ 2.762E−4
3 Ceres 179.9908◦ 0.6538◦ −89.9359◦ 3.175E−4
4 LM 179.2263◦ 1.0211◦ −92.5425◦ 1.040E−3
4 Ceres 169.8912◦ 0.2874◦ −97.2411◦ 3.210E−3

Table 6.4: Results of the estimation of the extrinsic rotation between camera and IMU, represented in
Euler angles, using the LM algorithm and Ceres Solver. The results shown here correspond to the green
block on the left side of Fig. 4.1.

are provided by the developers of the respective sensor systems based on the CAD models and
are highly likely to be subject to errors themselves, but nevertheless serve as a reference value
here. The values for rotation are given in this section in terms of Euler angles, since these
provide a simpler representation compared to the quaternions and rotation matrices used in the
algorithms.

First, the results are to be analyzed, in case the weighting is omitted, therefore only the result of
the green block on the left side of Fig. 4.1. The results of the iterative process of the LM algorithm
are shown in Fig. 6.3 for ID 1 and 2 and in Fig. 6.4 for ID 3 and 4 together with the resulting
error of the estimation. Both diagrams have the purpose to give the reader an impression of
how the LM algorithm iteratively finds a solution and how the error of the estimation behaves
during this process. Final results after termination of the LM algorithm are listed in Table 6.4,
along with the results computed by the Ceres Solver.

Considering the results using the EuRoC MAV dataset, it is recognizable that the results of
LM and Ceres are much closer to the ideal result than the native result of VINS-Mono. The
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ID Best K0 Euler x Euler y Euler z Error
1 374 −9.6517◦ −13.9831◦ 89.5419◦ 1.898E−3
1 0 −6.9205◦ −9.5942◦ 89.2621◦ 1.914E−3
2 240 14.6263◦ −3.3292◦ 82.3015◦ 2.487E−3
2 0 11.9759◦ −1.9178◦ 84.0069◦ 2.506E−3
3 2112 179.9438◦ 0.5096◦ −89.8824◦ 2.759E−4
3 0 179.9997◦ 0.6624◦ −89.9629◦ 2.762E−4
4 744 179.4550◦ 0.6554◦ −91.7345◦ 1.031E−3
4 0 179.2263◦ 1.0211◦ −92.5425◦ 1.040E−3

Table 6.5: Results of the estimation of the extrinsic rotation between camera and IMU, represented in
Euler angles, using the LM algorithm and the weighting strategy. The results shown here correspond to
all blocks on the left side of Fig. 4.1. Note that the results for K0 = 0 are taken from Table 6.4 and serve
as a comparison if the weighting is not used.

latter deviates strongly from the true value, making it impossible to estimate the visual scale
and anything related to it. The results using the UWSensor dataset come close to the ideal
results, also the results of VINS-Mono match better with this dataset, although not as good as
the LM algorithm and the Ceres Solver.

Regarding the results of both data sets it is noticeable that in all cases the error of the estimation
of the LM algorithm is smaller than that of the Ceres Solver, a reason for this is not known.
In addition, the results of the UWSensor dataset are generally better, this could be due to the
fact that in this sensor setup a much higher quality IMU is used and the expected bias of the
gyroscope is much smaller than the bias of the gyroscope used in the EuRoC MAV dataset.
At this point it should be pointed out again that the bias of the gyroscope was not taken into
account in the estimation of the extrinsic rotation in this section.

Looking at the errors of the estimation of the extrinsic rotation at ID 1 (see table 6.2 and 6.4),
it clearly shows that the error (1.914E−3) in this step of the software is significantly larger than
the error (1.324E−4) which is present after the termination of the software. Thus it can be
noted, how important the methods presented in the following sections are, i.e. the introduction
of a weighting and the alternating estimation of rotation and bias.

Evaluation of the Weighting Scheme

At this point, weighting is introduced in the estimation of extrinsic rotation. Considering again
Fig. 4.1, the results are presented which are obtained when the whole process on the left side
is executed (red and green blocks). The software now estimates the parameters for different
factors K0 and selects the result for which the error becomes minimal. Therefore, for each
K0, the process explained in the previous section is performed until the result does not change
anymore. The results of this are shown in Fig. 6.5 for ID 1 and ID 2 and in Fig. 6.6 for ID 3 and
ID 4 together with the resulting error of the estimate. Both diagrams have the purpose to give
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Figure 6.5: The plotted graphs show the result of the estimation of the extrinsic rotation between
camera and IMU using the weighting strategy, represented in Euler angles in ◦, for each K0. Data sets
ID 1 (green) and ID 2 (red) were used, where the left y-axes belong to ID 1 and the right ones to ID 2.
The results shown here correspond to all blocks on the left side side of the Fig. 4.1.
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Figure 6.6: The plotted graphs show the result of the estimation of the extrinsic rotation between
camera and IMU using the weighting strategy, represented in Euler angles in ◦, for each K0. Data sets
ID 3 (green) and ID 4 (red) were used, where the left y-axes belong to ID 3 and the right ones to ID 4.
The results shown here correspond to all blocks on the left side side of the Fig. 4.1.
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Source Bias x Bias y Bias z

EuRoC MAV dataset
VINS-Mono 0.0441 0.0234 0.0953

UWSensor dataset
VINS-Mono 6.218E−3 1.547E−3 1.691E−3

Table 6.6: Results of the gyroscope bias in rad
s calculation by the native VINS-Mono. Note here that

there are no known ideal results regarding the gyroscope bias and that here the values are likely to
be error-prone, since the extrinsic rotations necessary for the bias estimate (cf. Table 6.3) are already
corrupted.

ID Source Bias x Bias y Bias z Error
1 LM −1.331E−3 0.0232 0.0682 6.863E−4
1 Ceres −7.096E−4 0.0223 0.07228 4.660E−4
2 LM −0.0122 0.0592 0.0658 1.214E−3
2 Ceres −8.778E−3 0.0614 0.0707 9.525E−4
3 LM −6.332E−5 6.538E−4 2.096E−4 2.679E−4
3 Ceres −1.491E−4 1.121E−3 2.112E−4 3.113E−4
4 LM 1.212E−3 8.522E−3 5.919E−4 1.234E−3
4 Ceres 4.561E−4 0.0213 −3.931E−3 3.834E−3

Table 6.7: Results of the estimation of the gyroscope bias in rad
s using the LM algorithm and Ceres

Solver. The results shown here correspond to the green block on the right side of Fig. 4.1.

the reader an impression how the software determines the optimal factor K0. The results with
minimum error (best K0) are listed in Table 6.5. In addition, the results (without weighting)
of the previous section are also listed there to enable a comparison. Note that the weighting
is only implemented for the LM algorithm, as this gives better results compared to the Ceres
Solver based on the error of the estimation.

Looking at Table 6.5, it is noticeable that the weighting produces a smaller error for each data
set. Especially for ID 4 it can be seen that the results using the weighting are much closer to
the ideal results. Considering the results of ID 1 and ID 2, it is noticeable that they deviate
somewhat more from the ideal results due to the weighting, compared to the values without
weighting. Mathematically, however, the results with weighting are still better, since they have
a smaller error. At this point it should be pointed out again that so far no gyroscope bias has
been included in the calculation.

6.4.2 Gyroscope Bias Estimation

Once the extrinsic rotation has been determined, the bias of the gyroscope is estimated, shown
in Fig. 4.1 on the right. Compared to extrinsic rotation, no ideal values are known for the
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Figure 6.7: The plotted graphs show the result of the estimation of the gyroscope bias in rad
s , for each

iteration of the LM algorithm. Data sets ID 1 (green) and ID 2 (red) were used. The results shown here
correspond to the green block on the right side of the Fig. 4.1.
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Figure 6.8: The plotted graphs show the result of the estimation of the gyroscope bias in rad
s , for each

iteration of the LM algorithm. Data sets ID 3 (green) and ID 4 (red) were used. The results shown here
correspond to the green block on the right side of the Fig. 4.1.
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ID Best K1 Bias x Bias y Bias z Error
1 1736 −1.028E−3 0.0232 0.0713 6.830E−4
1 0 −1.331E−3 0.0232 0.0682 6.863E−4
2 399 −0.0154 0.0627 0.0636 1.210E−3
2 0 −0.0122 0.0592 0.0658 1.214E−3
3 5561 −2.600E−4 5.765E−4 3.347E−4 2.668E−4
3 0 −6.332E−5 6.538E−4 2.096E−4 2.679E−4
4 936 2.872E−4 1.074E−3 −1.296E−4 1.009E−3
4 0 1.212E−3 8.522E−3 5.919E−4 1.234E−3

Table 6.8: Results of the estimation of the gyroscope bias in rad
s using the LM algorithm and the

weighting strategy. The results shown here correspond to all blocks on the right side of Fig. 4.1. Note
that the results for K1 = 0 are taken from Table 6.7 and serve as a comparison if the weighting is not
used.

bias of the gyroscope. Since the bias of a gyroscope can vary after each sensor start and is e.g.
also temperature dependent, no quantitative statement about the results can be made for this
section. However, since in the course of the software (cf. Fig. 4.1) the bias is used to improve
the results of the extrinsic rotation, it is concluded whether the results for the bias are realistic.
A strongly erroneously estimated bias leads to a degradation of the results of the rotation. In
table 6.6 the results are listed, which the native computation of VINS-Mono supplies. On the
one hand, the magnitudes of the results are plausible, since a smaller bias is expected for the
UWSensor dataset, due to the significantly higher grade IMU. On the other hand, the estimated
rotations between the IMUs and the cameras, which are necessary for the calculation of the bias,
are error-prone, especially for the EuRoC MAV dataset (cf. Table 6.3), so that a large error in
the estimation of the bias is to be expected.

First, the results are analyzed, in case the weighting is omitted, therefore only the result of the
green block on the right side of Fig. 4.1. The results of the iterative process of the LM algorithm
are shown in Fig. 6.7 for ID 1 and 2 and in Fig. 6.8 for ID 3 and 4 together with the resulting
error of the estimation. Both diagrams have the purpose to give the reader an impression of
how the LM algorithm iteratively finds a solution and how the error of the estimation behaves
during this process. Final results after termination of the LM algorithm are listed in Table 6.7,
along with the results computed by the Ceres Solver.

As already explained, no quantitative statement can be made here about the results. However,
it is concluded that the results of the LM algorithm and the Ceres Solver are more realistic
compared to the results of VINS-Mono, since the estimated rotations (cf. Table 6.5), used for
bias estimation, are closer to the ideal results. Also the results of the following sections suggest
that the results in Table 6.7 are realistic and do not suffer from a large error.
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Figure 6.9: The plotted graphs show the result of the estimation of the gyroscope bias in rad
s for each

K1 using the weighting strategy. Data sets ID 1 (green) and ID 2 (red) were used, where the left y-axes
belong to ID 1 and the right ones to ID 2. The results shown here correspond to all blocks on the right
side side of the Fig. 4.1.
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Figure 6.10: The plotted graphs show the result of the estimation of the gyroscope bias in rad
s for each

K1 using the weighting strategy. Data sets ID 3 (green) and ID 4 (red) were used, where the left y-axes
belong to ID 3 and the right ones to ID 4. The results shown here correspond to all blocks on the right
side side of the Fig. 4.1.
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ID Source Iteration Euler x Euler y Euler z Error
1 LM 9 −0.5942◦ 0.8012◦ 89.3780◦ 1.324E−4
1 LM 0 −9.6517◦ −13.9831◦ 89.5419◦ 1.898E−3
1 Ceres 3 −0.5838◦ 0.7362◦ 89.5016◦ 1.507E−4
2 LM 14 2.2081◦ 2.2999◦ 87.7187◦ 4.712E−4
2 LM 0 14.6263◦ −3.3292◦ 82.3015◦ 2.487E−3
2 Ceres 19 1.9212◦ 2.7395◦ 87.8769◦ 4.937E−4
3 LM 1 179.9026◦ 0.5620◦ −89.8961◦ 2.667E−4
3 LM 0 179.9438◦ 0.5096◦ −89.8824◦ 2.759E−4
3 Ceres 1 179.9544◦ 0.6391◦ −89.9130◦ 3.110E−4
4 LM 7 179.2842◦ 0.4649◦ −91.4632◦ 1.007E−3
4 LM 0 179.4550◦ 0.6554◦ −91.7345◦ 1.031E−3
4 Ceres 0 169.8912◦ 0.2874◦ −97.2411◦ 3.210E−3

Table 6.9: Results of the iterative process of alternating estimation of extrinsic rotation, represented
in Euler angles, using the LM algorithm and the Ceres Solver. The iterations here indicate the point at
which the error became minimal. Note that the results for zero iterations are taken from Table 6.5 and
serve as a comparison if the iterative strategy is omitted.

Evaluation of the Weighting Scheme

At this point, weighting is now introduced in the estimation of the gyroscope bias. Considering
again Fig. 4.1, the results are presented which are obtained when the whole process on the right
side is executed (red and green blocks). The software now estimates the bias for different factors
K1 and selects the result for which the error becomes minimal. Therefore, for each K1, the
process explained in the previous section is performed until the result does not change anymore.
The results of this are shown in Fig. 6.9 for ID 1 and ID 2 and in Fig. 6.10 for ID 3 and ID
4 together with the resulting error of the estimate. Both diagrams have the purpose to give
the reader an impression how the software determines the optimal factor K1. The results with
minimum error (best K1) are listed in Table 6.8. In addition, the results (without weighting)
of the previous section are also listed there to enable a comparison. Note that the weighting is
only implemented for the LM algorithm.

Looking at Table 6.8, it is noticeable that the weighting achieves a smaller error for each data
set.

6.4.3 Evaluation of the Iterative Estimation Process

Once the bias of the gyroscope has been determined, this allows the pre-integrations to be
corrected and the software begins estimating extrinsic rotation again. Hence the process of
alternating estimation of rotation and bias is applied. It is expected that the estimates are
refined at each step.
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Figure 6.11: The plotted graphs show the result of the iterative process of alternating estimation of
extrinsic rotation, represented in Euler angles in ◦, and gyroscope bias in rad

s for each iteration. Dataset
ID 1 was used, where the left y-axis belong to the extrinsic rotation (green) and the right y-axis to the
gyroscope bias (dark-green). The results shown here correspond to all blocks of Fig. 4.1.
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Figure 6.12: The plotted graphs show the result of the iterative process of alternating estimation of
extrinsic rotation, represented in Euler angles in ◦, and gyroscope bias in rad

s for each iteration. Dataset
ID 2 was used, where the left y-axis belong to the extrinsic rotation (red) and the right y-axis to the
gyroscope bias (dark-red). The results shown here correspond to all blocks of Fig. 4.1.
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Figure 6.13: The plotted graphs show the result of the iterative process of alternating estimation of
extrinsic rotation, represented in Euler angles in ◦, and gyroscope bias in rad

s for each iteration. Dataset
ID 3 was used, where the left y-axis belong to the extrinsic rotation (green) and the right y-axis to the
gyroscope bias (dark-green). The results shown here correspond to all blocks of Fig. 4.1.
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Figure 6.14: The plotted graphs show the result of the iterative process of alternating estimation of
extrinsic rotation, represented in Euler angles in ◦, and gyroscope bias in rad

s for each iteration. Dataset
ID 4 was used, where the left y-axis belong to the extrinsic rotation (red) and the right y-axis to the
gyroscope bias (dark-red). The results shown here correspond to all blocks of Fig. 4.1.

IMU calibration and scale estimation improvement of existing VIO methods



6.4. Evaluation of Gyroscope Bias and Extrinsic Rotation Estimation 85

ID Source Iteration Bias x Bias y Bias z Error
1 LM 10 −1.142E−3 0.0216 0.0779 1.324E−4
1 LM 0 −1.028E−3 0.0232 0.0713 6.830E−4
1 Ceres 10 −3.843E−4 0.0220 0.0782 1.508E−4
2 LM 19 −6.637E−3 0.0730 0.0901 4.712E−4
2 LM 0 −0.0154 0.0627 0.0636 1.210E−3
2 Ceres 3 −2.558E−3 0.0635 0.0888 4.934E−4
3 LM 7 −2.658E−4 5.338E−4 3.334E−4 2.667E−4
3 LM 0 −2.600E−4 5.765E−4 3.347E−4 2.668E−4
3 Ceres 12 −1.494E−4 1.125E−3 2.144E−4 3.111E−4
4 LM 7 3.059E−4 1.246E−3 −3.624E−5 1.007E−3
4 LM 0 2.872E−4 1.074E−3 −1.296E−4 1.009E−3
4 Ceres 2 3.512E−3 0.0258 −3.448E−3 3.750E−3

Table 6.10: Results of the iterative process of alternating estimation of gyroscope bias in rad
s , using the

LM algorithm and the Ceres Solver. The iterations here indicate the point at which the error became
minimal. Note that the results for zero iterations are taken from Table 6.8 and serve as a comparison if
the iterative strategy is omitted.

The results of this iterative process are shown for ID 1 in Fig. 6.11, for ID 2 in Fig. 6.12, for ID
3 in Fig. 6.13, and for ID 4 in Fig. 6.14, where after each iteration the rotation and then the bias
were estimated. In addition, Table 6.9 lists the final results for extrinsic rotation and Table 6.10
lists the final results for bias. Here, the software selects the results of each iteration with the
least error. In the tables and charts, zero iterations represents the results from the previous
sections and serves as a comparison value to illustrate the advantage of iterative estimation. In
addition, the results are also listed, which the Ceres Solver supplies, although it must be noted
that the weighting method is not implemented for this and therefore only the green blocks in
Fig. 4.1 were processed.

Looking at the Fig. 6.11 - 6.14, it is noticeable that the values stagnate after a few iterations and
the error has clearly decreased. For the fluctuations in the estimation of the bias in Fig. 6.13 no
cause is known, since these lie in a range of only 4E−6, this can be neglected.

Considering Table 6.9, it is noticeable that using the LM algorithm, all errors decrease compared
to the results of the previous sections (iteration= 0). Also, the values have a smaller deviation
from the ideal results (cf. Table 6.3). Compared to the Ceres Solver, a lower error is obtained
with the LM algorithm, which may be due to the non-applied weighting with respect to the
Ceres Solver. The results of the Ceres Solver of ID 4 also deviate strongly from the ideal results.
For the results of the UWSensor dataset (ID 3 and 4), it is noticeable that the iterative process
described in this section yields only a small improvement in the error. This is due to the fact
that the bias of the gyroscope used here is small and accordingly does not have a large influence
on the extrinsic rotation.
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Regarding the table 6.10, it is noticeable that the errors of the estimation also decrease when
the iterative strategy is applied. However, as is well known, no quantitative assessment of the
results of the estimation of the bias can be made. But, since these results led to an improvement
of the estimation of the extrinsic rotation, it is concluded that the values of the bias cannot have
a large deviation.

6.4.4 Summary

In the previous sections, for the estimation of the extrinsic rotation and the bias of the gyroscope,
the individual steps of the proposed calibration approach have been evaluated. Hence, the
estimation of the values with and without the use of the weighting strategy and finally the
alternating estimation of the values.

In each step a reduction of the error is achieved, so that the values for the extrinsic rotation
correspond close to the ideal results. As already mentioned in Section 6.1, it is not possible
here to determine the reasons for the remaining deviation from the ideal results. The reasons
could be residual errors in the camera poses estimated by VINS-Mono or in the minimization
algorithms. It is also conceivable and most likely that the values for the ideal results (cf.
Table 6.3) are imprecise. For example, for the UWSensor dataset it is implausible that the
CAD parameter of 180.0◦ around the X-axis between the camera and the IMU applies exactly,
since it is mechanically impossible to align the devices that precisely. Accordingly, a rotation of
179.9026◦ (cf. Table 6.9 ID 3) might be closer to the real value. However, the actual value is
not known and only the effect of the calibration on the pose estimation is evaluated.

6.5 Evaluation of Scale and Translation Estimation

In this section, the results of the individual steps of the estimation of scale, gravity, translation
and accelerometer bias is described.

In general, the purpose of the following sections is to show that the estimates are refined by ap-
plying the two methods, the weighting of the individual datasets and the alternating estimation
of gravity and refined gravity. In each case, for gravity and refined gravity, first the results are
presented, which are obtained without the use of the two methods mentioned and with the use
of weighting. Finally, the results obtained by alternating the estimation of the parameters are
shown.

Since the software estimates many individual parameters in this section, it was decided to limit
the evaluation of the estimation of scale, gravity and translation (cf. Section 4.3) to gravity,
since the expected norm known for this.

In the course of the refinement and the estimation of the accelerometer bias (cf. Section 4.4),
the evaluation is limited to the translation, since the expected values are also known here.
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Figure 6.15: The plotted graphs show the result of the estimation of the gravity in m
s2 , for each iteration

of the LM algorithm. Data sets ID 1 (green) and ID 2 (red) were used. The results shown here correspond
to the green block on the left side of the Fig. 4.2. For a finer representation, the values are plotted starting
with the second iteration, since the initial values are zero at the first iteration.
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Figure 6.16: The plotted graphs show the result of the estimation of the gravity in m
s2 , for each iteration

of the LM algorithm. Data sets ID 3 (green) and ID 4 (red) were used. The results shown here correspond
to the green block on the left side of the Fig. 4.2. For a finer representation, the values are plotted starting
with the second iteration, since the initial values are zero at the first iteration.
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Source Gravity x Gravity y Gravity z |Gravity|

EuRoC MAV dataset
VINS-Mono 1.9261 9.6191 0.02139 9.81007
Ideal result unknown unknown unknown 9.81007

UWSensor dataset
VINS-Mono 1.0538 9.6529 1.3961 9.81007
Ideal result unknown unknown unknown 9.81007

Table 6.11: Expected results for gravity in m
s2 along with the results of the native calculation by VINS-

Mono.

ID Source Gravity x Gravity y Gravity z |Gravity| Error
1 LM 0.1677 6.1756 7.5202 9.7324 6.3000E−6
1 Ceres 0.2052 6.1810 7.5153 9.7328 6.3187E−6
2 LM −0.2615 8.8954 3.9793 9.7484 2.1200E−5
2 Ceres −0.2540 8.8823 4.0097 9.7488 2.1473E−5
3 LM 0.06252 9.8174 −0.5570 9.8334 1.9745E−4
3 Ceres 0.05960 9.8181 −0.5442 9.8334 1.9697E−4
4 LM −0.2144 9.8795 −0.6863 9.9056 1.2752E−3
4 Ceres −0.3734 9.8141 −1.2893 9.9055 1.5369E−3

Table 6.12: Results of the estimation of gravity using the LM algorithm and Ceres Solver. The results
shown here correspond to the green block on the left side of Fig. 4.2.

6.5.1 Scale Estimation

Once the extrinsic rotation and the gyroscope bias have been estimated by the software, the
estimation of the scale, the gravity and the translation is performed, shown in Fig. 4.2 on the
left. As mentioned earlier, solely the results for gravity will be discussed in this section. The
values for the expected norm of the gravity vector are listed in Table 6.11, along with the results
of the native calculation of VINS-Mono. Considering the norm of the gravity vector determined
by VINS-Mono here, it is assumed that the results are optimal. However, since VINS-Mono
neither considers the translation between camera and IMU nor the bias of the accelerometer in
the determination of the gravity vector, it must be assumed that the results of the gravity vector
are falsified here. The expected norm of 9.81007 m

s2 is only achieved by normalizing the norm of
the estimated vector to the desired amount, which trivially does not lead to an accurate result.
At this point, it should also be mentioned that the real magnitude of the gravity vector is not
known exactly, the ideal results in Table 6.11, however, represent a good approximate value.

First, the results are analyzed, in case the weighting is omitted, therefore only the result of the
green block on the left side of Fig. 4.2. The results of the iterative process of the LM algorithm
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ID Best K2 Gravity x Gravity y Gravity z |Gravity| Error
1 24905 0.1687 6.1744 7.5195 9.7310 6.2353E−6
1 0 0.1677 6.1756 7.5202 9.7324 6.3000E−6
2 50490 −0.2857 8.9093 4.0270 9.8086 2.0168E−5
2 0 −0.2615 8.8954 3.9793 9.7484 2.1200E−5
3 5643 0.06204 9.8186 −0.5616 9.8357 1.9166E−4
3 0 0.06252 9.8174 −0.5570 9.8334 1.9745E−4
4 1131 −0.2214 9.8249 −0.6629 9.8511 1.1802E−3
4 0 −0.2144 9.8795 −0.6863 9.9056 1.2752E−3

Table 6.13: Shows the results of the estimation of gravity in m
s2 , using the LM algorithm and the

weighting strategy. The results shown here correspond to all blocks on the left side of Fig. 4.2. Note that
the results for K2 = 0 are taken from Table 6.12 and serve as a comparison if the weighting is not used.

are shown in Fig. 6.15 for ID 1 and 2 and in Fig. 6.16 for ID 3 and 4 together with the resulting
error of the estimation. Both diagrams have the purpose to give the reader an impression of
how the LM algorithm iteratively finds a solution and how the error of the estimation behaves
during this process. Final results after termination of the LM algorithm are listed in Table 6.12,
along with the results computed by the Ceres Solver.

Looking at the table 6.12 it is noticeable that all results for the norm of the gravity vector lie
in the proximity of the ideal result. Except for ID 3, the LM algorithm delivers better results
than the Ceres Solver, defined by the respective error. The smaller error for the EuRoC MAV
datasets (ID 1 and 2) is also remarkable, which is either due to a better camera pose estimation
by VINS-Mono or to an inherently smaller bias of the accelerometer of the EuRoC MAV.

Comparing Fig 6.15 and 6.16, it is noticeable that the LM algorithm for ID 4 needs comparatively
many iterations until the error becomes minimal, also a significant alternation of the gravity
estimates is observed. For both observations no reason is known, possibly this is caused by not
optimal initial values during the minimization.

Evaluation of the Weighting Scheme

At this point, weighting is now introduced in the estimation of gravity. Considering again
Fig. 4.2, the results are presented which are obtained when the whole process on the left side
is executed (red and green blocks). The software now estimates the parameters for different
factors K2 and selects the result for which the error becomes minimal. Therefore, for each
K2, the process explained in the previous section is performed until the result does not change
anymore. The results of this are shown in Fig. 6.17 for ID 1 and ID 2 and in Fig. 6.18 for ID 3 and
ID 4 together with the resulting error of the estimate. Both diagrams have the purpose to give
the reader an impression how the software determines the optimal factor K2. The results with
minimum error (best K2) are listed in Table 6.13. In addition, the results (without weighting)
of the previous section are also listed there to enable a comparison. Note that the weighting is
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Figure 6.17: The plotted graphs show the result of the estimation of gravity in m
s2 for each K2 using

the weighting strategy. Data sets ID 1 (green) and ID 2 (red) were used, where the left y-axes belong to
ID 1 and the right ones to ID 2. The results shown here correspond to all blocks on the right side side
of the Fig. 4.2.
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Figure 6.18: The plotted graphs show the result of the estimation of gravity in m
ss for each K2 using

the weighting strategy. Data sets ID 3 (green) and ID 4 (red) were used, where the left y-axes belong to
ID 3 and the right ones to ID 4. The results shown here correspond to all blocks on the right side side
of the Fig. 4.2.
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Source Trans. x Trans. y Trans. z

EuRoC MAV dataset
VINS-Mono 0.01563 0.06613 −0.002926
Ideal result 0.02000 0.06000 −0.01000

UWSensor dataset
VINS-Mono −0.03098 0.004238 0.3288
Ideal result 0.0 −0.02000 0.3500

Table 6.14: Results for translation in m expected according to the developers of the respective sensor
systems along with the results of the native calculation by VINS-Mono. Note here that VINS-Mono
optimizes the values for translation during the entire period of pose estimation, whereby this process is
shown in the Fig. 6.19 and 6.20. The results of VINS-Mono shown in this table here correspond to the
final results of this process.

ID Source Trans. x Trans. y Trans. z Error
1 LM 0.01356 0.07136 −0.02129 7.3500E−6
1 Ceres 0.01630 0.06454 −0.01943 6.3516E−6
2 LM −0.02085 0.05194 −0.07281 2.0400E−5
2 Ceres −0.01260 0.05975 −0.06559 1.9405E−5
3 LM −0.04710 −0.003861 0.3570 2.0271E−4
3 Ceres −0.04747 −0.01967 0.3562 1.7695E−4
4 LM −0.08502 −0.1929 −0.001135 1.2659E−3
4 Ceres −0.07588 −0.3957 0.01145 1.0755E−3

Table 6.15: Results of the estimation of translation in m using the LM algorithm and Ceres Solver.
The results shown here correspond to the green block on the right side of Fig. 4.2.

only implemented for the LM algorithm.

Looking at Table 6.13, it is noticeable that the weighting produces a smaller error for each data
set. Especially for ID 3 and 4 it is seen that the results using the weighting are much closer
to the ideal results. Considering the result of ID 1, it is noticeable that this deviate somewhat
more from the ideal results due to the weighting, compared to the values without weighting.
Mathematically, however, the results with weighting are still better, since they have a smaller
error. At this point it should be pointed out again that so far no accelerometer bias has been
included in the calculation.

For the fluctuations seen in Fig. 6.17 and 6.18 no reason is known, nevertheless, since the error
of the estimates does not become minimal in the range of these fluctuations (cf. Table 6.13)
they have no influence on the result.
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Figure 6.19: The plotted graphs show the translation in m estimated by VINS-Mono during the process
of pose estimation for the EuRoC MAV dataset. Note that the values are plotted from the time when
the first estimate is available, because during the initialization phase of VINS-Mono the translation is
not taken into account by the software.
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Figure 6.20: The plotted graphs show the translation in m estimated by VINS-Mono during the process
of pose estimation for the UWSensor dataset. Note that the values are plotted from the time when the
first estimate is available, because during the initialization phase of VINS-Mono the translation is not
taken into account by the software.
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Figure 6.21: The plotted graphs show the result of the estimation of translation in m between camera
and IMU, for each iteration of the LM algorithm. Data sets ID 1 (green) and ID 2 (red) were used. The
results shown here correspond to the green block on the right side of the Fig. 4.2.

IMU calibration and scale estimation improvement of existing VIO methods



6.5. Evaluation of Scale and Translation Estimation 97

-0.12
-0.10
-0.08
-0.06
-0.04
-0.02
0.00
0.02

-0.2
-0.1
0.0
0.1
0.2
0.3
0.4

-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4

0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014
0.0016
0.0018

2 4 6 8 10 12 14 16 18 20

Tr
an

s.
x

Tr
an

s.
y

Tr
an

s.
z

Er
ro

r
of

es
tim

at
io

n

Iterations of LM algorithm

Figure 6.22: The plotted graphs show the result of the estimation of translation in m between camera
and IMU, for each iteration of the LM algorithm. Data sets ID 3 (green) and ID 4 (red) were used. The
results shown here correspond to the green block on the right side of the Fig. 4.2.
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6.5.2 Accelerometer Bias Estimation

Once the scale, the gravity and the translation have been estimated by the software, the refine-
ment of these parameters is performed, shown in Fig. 4.2 on the right. As mentioned earlier,
solely the results for translation is discussed in this section. The values for the expected trans-
lations are listed in Table 6.14, along with the results of the native calculation of VINS-Mono.
Since VINS-Mono optimizes the translation between the camera and the IMU during the en-
tire process of pose estimation, the final results of this procedure are shown in the Table 6.14.
Fig.6.19 and 6.20 show the temporal progression of the translation values for the EuRoC MAV
dataset and the UWSensor dataset, respectively. Looking at Fig 6.19, it is noticeable that the
values converge towards the ideal results, but even the final result shows a deviation of several
cm in all axes. Here it must be pointed out that the result should improve with increasing time,
since more data is continuously available for evaluation. Also, in the course of time, loops are
closed with respect to the loop-closing technique of VINS-Mono (cf. Article [27]), which further
improves the results.

Regarding Fig. 6.20, it is noticeable that although the result of the z-translation converges in
the direction of the ideal results, the sign of the other results does not even match.

As will be shown later, the results of VINS-Mono have a large deviation from the ideal result
because during the initialization phase the visual scale is determined without taking into account
the translation between the camera and the IMU and therefore a large error in the translation
remains present in the course of the position estimation.

First, the results are analyzed, in case the weighting is omitted, therefore only the result of the
green block on the right side of Fig. 4.2. The results of the iterative process of the LM algorithm
are shown in Fig. 6.21 for ID 1 and 2 and in Fig. 6.22 for ID 3 and 4 together with the resulting
error of the estimation. Both diagrams have the purpose to give the reader an impression of
how the LM algorithm iteratively finds a solution and how the error of the estimation behaves
during this process. Final results after termination of the LM algorithm are listed in Table 6.15,
along with the results computed by the Ceres Solver.

Looking at Table 6.15, it is noticeable that in this case the Ceres Solver provides results with
a smaller error in every case. Why in this case compared to the other estimates the Ceres
Solver provides a better result compared to the LM algorithm is not known. At this point it
turns out why in the introduction (cf. Sec. 6.3) with respect to ID 2 and 4 it is spoken of a
bad configuration. For these IDs, the results deviate strongly from the expected results (cf.
Table 6.14). Why the estimation is almost unusable with these configurations is not assessed
conclusively. Since, in comparison, the estimate of the z-translation for ID 3 shows only a small
deviation, it is reasonable to assume that the problem is not the acceleration measurement, but
apparently the camera pose estimate of VINS-Mono, which is error-prone in the case of ID 2
and 4.

Evaluation of the Weighting Scheme

At this point, weighting is introduced in the estimation of translation. Considering again Fig. 4.2,
the results are presented which are obtained when the whole process on the right side is executed
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Figure 6.23: The plotted graphs show the result of the estimation of translation in m for each K3 using
the weighting strategy. Data sets ID 1 (green) and ID 2 (red) were used, where the left y-axes belong to
ID 1 and the right ones to ID 2. The results shown here correspond to all blocks on the right side side
of the Fig. 4.2.
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Figure 6.24: The plotted graphs show the result of the estimation of translation in m for each K3 using
the weighting strategy. Data sets ID 3 (green) and ID 4 (red) were used, where the left y-axes belong to
ID 3 and the right ones to ID 4. The results shown here correspond to all blocks on the right side side
of the Fig. 4.2.
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ID Best K3 Trans. x Trans. y Trans. z Error
1 87840 0.01881 0.06127 −0.01758 6.2132E−6
1 0 0.01356 0.07136 −0.02129 7.3500E−6
2 15260 −0.002038 0.06274 −0.04768 1.8142E−5
2 0 −0.02085 0.05194 −0.07281 2.0400E−5
3 2793 −0.04638 −0.01807 0.3527 1.7142E−4
3 0 −0.04710 −0.003861 0.3570 2.0271E−4
4 1281 −0.07966 −0.3377 0.006108 1.0508E−3
4 0 −0.07588 −0.3957 0.01145 1.0755E−3

Table 6.16: Results of the estimation of the translation in m using the LM algorithm and the weighting
strategy. The results shown here correspond to all blocks on the left side of Fig. 4.2. Note that the results
for K3 = 0 are taken from Table 6.15 and serve as a comparison if the weighting is not used.

(red and green blocks). The software estimates the parameters for different factors K3 and selects
the result for which the error becomes minimal. Therefore, for each K3, the process explained in
the previous section is performed until the result does not change anymore. The results of this
are shown in Fig. 6.23 for ID 1 and ID 2 and in Fig. 6.24 for ID 3 and ID 4 together with the
resulting error of the estimate. Both diagrams have the purpose to give the reader an impression
how the software determines the optimal factor K3. The results with minimum error (best K3)
are listed in Table 6.16. In addition, the results (without weighting) of the previous section are
also listed there to enable a comparison. Note that the weighting is only implemented for the
LM algorithm.

Looking at Table 6.16, it is noticeable that by applying the weighting strategy, the error for
each data set is reduced. Except for ID 4, it is observed for all IDs that the estimates tend
towards the ideal results due to the weighting. Especially with the y-translation of ID 3 a
clear improvement of the value can be seen. For ID 4, except for the error, no improvement is
observed, which is probably due to poor camera pose estimation. This is apparently also the
cause of the fluctuation of the estimates for ID 2 and 4 in Fig. 6.23 and 6.24.

6.5.3 Evaluation of the Iterative Estimation Process

Once the bias of the accelerometer has been determined, this allows the pre-integrations to be
corrected and the software begins estimating gravity, hence the process of alternating estimation
of scale and refinement is applied. It is expected that the estimates are refined at each step.

The results of this iterative process are shown for ID 1 in Fig. 6.25, for ID 2 in Fig. 6.26, for
ID 3 in Fig. 6.27, and for ID 4 in Fig. 6.28, where after each iteration the gravity and then
the translation were estimated. In addition, Table 6.17 lists the final results for gravity and
Table 6.18 lists the final results for translation. Here, the software selects the results of each
iteration with the least error. In the tables and charts, iteration 0 represents the results from
the previous sections and serves as a comparison value to illustrate the advantage of iterative
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Figure 6.25: The plotted graphs show the result of the iterative process of alternating estimation of
gravity in m

s2 and translation in m for each iteration. Dataset ID 1 was used, where the left y-axis
belong to the gravity (green) and the right y-axis to the translation (dark-green). The results shown here
correspond to all blocks of Fig. 4.2.
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Figure 6.26: The plotted graphs show the result of the iterative process of alternating estimation of
gravity in m

s2 and translation in m for each iteration. Dataset ID 2 was used, where the left y-axis belong
to the gravity (red) and the right y-axis to the translation (dark-red). The results shown here correspond
to all blocks of Fig. 4.2.
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Figure 6.27: The plotted graphs show the result of the iterative process of alternating estimation of
gravity in m

s2 and translation in m for each iteration. Dataset ID 3 was used, where the left y-axis
belong to the gravity (green) and the right y-axis to the translation (dark-green). The results shown here
correspond to all blocks of Fig. 4.2.
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Figure 6.28: The plotted graphs show the result of the iterative process of alternating estimation of
gravity in m

s2 and translation in m for each iteration. Dataset ID 4 was used, where the left y-axis belong
to the gravity (red) and the right y-axis to the translation (dark-red). The results shown here correspond
to all blocks of Fig. 4.2.
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ID Source It. Grav. x Grav. y Grav. z Grav. norm Error
1 LM 7 −0.05398 5.9185 7.8242 9.8107 6.2141E−6
1 LM 0 0.1687 6.1744 7.5195 9.7310 6.2353E−6
1 Ceres 19 0.2953 6.2202 7.5799 9.8098 6.3528E−6
2 LM 14 −2.5709 9.4069 1.0820 9.8117 1.8468E−5
2 LM 0 −0.2857 8.9093 4.0270 9.8086 2.0168E−5
2 Ceres 18 −0.9253 10.5109 1.2345 10.6235 1.9106E−5
3 LM 4 −0.1507 9.7957 −0.5000 9.8096 1.7113E−4
3 LM 0 0.06204 9.8186 −0.5616 9.8357 1.9166E−4
3 Ceres 2 −0.1321 9.7943 −0.5365 9.8099 1.7703E−4
4 LM 1 −1.2518 9.8083 0.07264 9.8882 1.0472E−3
4 LM 0 −0.2214 9.8249 −0.6629 9.8511 1.1802E−3
4 Ceres 19 −2.3024 9.5088 0.7400 9.8115 1.1061E−3

Table 6.17: Results of the iterative process of alternating estimation of gravity, using the LM algorithm
and the Ceres Solver. The iterations here indicate the point at which the error became minimal. Note
that the results for zero iterations are taken from Table 6.13 and serve as a comparison if the iterative
strategy is omitted.

ID Source Iteration Trans. x Trans. y Trans. z Error
1 LM 1 0.01917 0.06095 −0.01771 6.2111E−6
1 LM 0 0.01881 0.06127 −0.01758 6.2132E−6
1 Ceres 1 0.01630 0.06454 −0.01943 6.3516E−6
2 LM 1 −0.002038 0.06274 −0.04768 1.8142E−5
2 LM 0 −0.002038 0.06274 −0.04768 1.8142E−5
2 Ceres 15 0.008038 0.07480 −0.03636 1.9098E−5
3 LM 23 −0.04661 −0.01802 0.3530 1.7126E−4
3 LM 0 −0.04638 −0.01807 0.3527 1.7142E−4
3 Ceres 1 −0.04751 −0.01974 0.3562 1.7686E−4
4 LM 1 −0.07966 −0.3377 0.006108 1.0508E−3
4 LM 0 −0.07966 −0.3377 0.006108 1.0508E−3
4 Ceres 1 −0.07588 −0.3957 0.01145 1.0755E−3

Table 6.18: Results of the iterative process of alternating estimation of translation in m, using the
LM algorithm and the Ceres Solver. The iterations here indicate the point at which the error became
minimal. Note that the results for zero iterations are taken from Table 6.16 and serve as a comparison if
the iterative strategy is omitted.
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estimation. In addition, the results are also listed, which the Ceres Solver supplies, although it
must be noted that the weighting method is not implemented.

Looking at the Fig. 6.25 - 6.28, it is noticeable that most of the values, especially the translation,
fluctuate and do not seem to converge. The reason for this is not known, but the fluctuations in
the translation are in a millimeter range and can be neglected. Especially for the bad configura-
tions (ID 2 and 4) the gravity estimates also fluctuate strongly, which is either due to insufficient
motions in the datasets or due to bad camera pose estimations of VINS-Mono.

Looking at the table 6.17, it is noticeable that in all cases an acceptable result is obtained for
the norm of gravity. Especially for the good configurations (ID 1 and 3) the norm of gravity is
estimated by the LM algorithm almost without errors. An exception is the result of the Ceres
Solver for ID 2. There the result seems to be strongly falsified, whereby no cause is known. Also
the error is lowered for each data set in comparison to not using the described iterative process,
whereby the LM algorithm achieves a better result than the Ceres Solver in each case.

Considering the table 6.18, it is noticeable that also here by the LM algorithm better results
are obtained than by the Ceres Solver. Except for the ”bad” configurations, the error could
be reduced by using the iterative process. With the result of the LM algorithm of ID 3 it is
noticeable that the values for the translation if the iterative process is applied seem to deviate
more from the ideal result, in comparison to it if the iterative process is omitted. Nevertheless,
the estimation by the iterative process achieves a lower estimation error.

6.5.4 Summary

In the previous sections, for the estimation of the visual scale, the gravity, the translation between
camera and IMU and the bias of the accelerometer, the individual steps of the structure seen in
Fig. 4.2 have been evaluated. Hence, the estimation of the values with and without the use of
the weighting strategy and finally the alternating estimation of the values.

In each step a reduction of the error is achieved, so that the values for the norm of gravity and the
translation correspond close to the ideal results. Solely for ID 4 and ID 2, the iterative process
of estimating the translation did not reduce the error (cf. Table 6.18). As already mentioned
in Section 6.1, it is not possible here to determine the reasons for the remaining deviation from
the ideal results. The reasons could be an error in the camera poses estimated by VINS-Mono
or still existing problems in the minimization algorithms. It is also conceivable and most likely
that the values for the ideal results (cf. Table 6.11 and 6.14) are incorrect. For example, for the
UWSensor dataset it is implausible that an exact translation of 0.0m in x direction between
the camera and the IMU applies, since it is mechanically impossible to align the devices that
precisely. Accordingly, a translation of −0.04661m (cf. Table 6.18 ID 3) might be closer to the
real value.

Comparing the results for the translation of the software of this thesis with the results of VINS-
Mono (cf. Table 6.14), it is noticeable that the results of VINS-Mono show a larger deviation
in all cases compared to the results of the ”good” configurations (ID 1 and 3). Only with the
translation in x-direction for the UWSensor dataset VINS-Mono achieves an apparently better
result, but as already said, in this case it cannot be clearly determined which result is closer to
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the true value. Solely the effect of the calibration parameters on the pose estimation is evaluated
based on reference data in the following chapter.
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Chapter 7

Evaluation of Pose Estimation

The purpose of this chapter is to show how the extrinsic calibration parameters determined in
the previous chapter improve the pose estimation by VINS-Mono. The EuRoC MAV dataset
on the one hand and the UWSensor dataset on the other hand is evaluated.

7.1 Methodology

As already explained in the previous chapter, the true values for all calibration parameters are
not known or only approximately known. Thus, only a qualitative statement about the results
was made, i.e. whether the values seem plausible. In order to verify whether the methods for
the estimation, which were presented in the context of this work, provide better results than
the native calculation by VINS-Mono, the resulting trajectories, respectively point clouds are
compared in this chapter.

For the EuRoC MAV, a trajectory is created using VINS-Mono’s own methods for estimating the
calibration parameters and a comparison is made with the trajectory obtained using the results
of this work for translation and rotation between camera and IMU. In this case, a ground truth
trajectory exists with which the trajectories determined by VINS-Mono are compared.

To evaluate the UWSensor system, a dataset is used which was recorded underwater in the
Baltic sea. In this case the trajectories are not compared, because no ground truth is known,
instead the point clouds generated by UWSensor are compared, using reference targets placed
in the scene.

7.2 EuRoC MAV

A ground truth trajectory exists for the flight of the EuRoC MAV. The flight of this drone was
recorded with a laser tracking device. Thus it is possible to compare the trajectory estimated
by VINS-Mono with this ground truth. At this point, the fact that the trajectory of the laser
tracking device is defined in a different coordinate system must be taken into account. In order to
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Figure 7.1: Shows the trajectory in x and y direction in m. For the sake of clarity, the z direction is
omitted, since it barely changes during the flight. Here the green line represents the ground truth and
the red line the resulting trajectory of VINS-Mono using the rotation and translation estimated in the
course of this work. Start and end point are around the coordinates (0, 0).

compare the two trajectories, a transformation must be found that transforms the trajectory of
the ground truth into the coordinate system of VINS-Mono. To align the two trajectories to each
other the script evaluate ate.py from 1 is used. Both trajectories are aligned to each other using
a least squares approach based on singular value decomposition. However, using this method,
no correct quantitative statement can be made about the accuracy of the trajectory estimated
by VINS-Mono, since it is not possible to estimate whether the cause for a deviation of the
trajectories is due to an incorrect pose estimation or an incorrect transformation of the ground
truth. Nevertheless, a qualitative statement is made about different trajectories of VINS-Mono,
since it is assumed that the deviations from the ground truth become smaller, if the trajectory
estimated by VINS-Mono is less error-prone.

In Fig. 7.1 the resulting trajectory is shown in red using the translation (cf. Table 6.18 ID 1) and
rotation (cf. Table 6.9 ID 1) estimated in the course of this work. For comparison, the aligned
ground truth is shown in green. Fig. 7.2 shows the same data, but only the beginning of the pose
estimation (until time 42s) to allow a more detailed representation. Here it is observed that the
trajectories are shifted. This is due to the aforementioned problem that the two trajectories have
to be registered against each other in order to compare the trajectory of VINS-Mono with the
ground truth. The script evaluate ate.py searches here for the optimal transformation, for which

1https://vision.in.tum.de/data/datasets/rgbd-dataset/tools
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Figure 7.2: Shows the same position data as Fig 7.1. However, here only the trajectory up to time 42s
after start to allow a more accurate representation of the beginning of the trajectory.
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Figure 7.3: Euclidean distance to the ground truth. Where the red line represents the deviation of
the trajectory from VINS-Mono and the green line represents the deviation of the trajectory using the
rotation and translation estimated as part of this thesis. The distance is given in m and the time in s.
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Profile ID Length Error

Initialization with methods of this thesis
1 2.2029 −0.007115
2 2.2047 −0.005260
3 2.2167 0.006735

Initialization with native VINS-Mono
1 2.2194 0.009369
2 2.2297 0.01972
3 2.2441 0.03411

Table 7.1: Sphere distances determined from the point clouds (cf. Fig. 7.6) using the native VINS-Mono
and using the translation and rotation between the camera and IMU estimated as part of this thesis.
The error was calculated from the deviation to the actual length of the profiles (2.21m). All units here
are in m.

the deviations of the trajectories become minimal. Therefore, it cannot be clearly judged at this
point whether the transformation is faulty or the trajectory of VINS-Mono. If we look at the
complete trajectory (cf. Fig. 7.1), however, it seems rather as if the trajectory of VINS-Mono,
at least at the beginning, is error-prone, since the trajectory was well registered from time 42s
on and the mentioned shift is not observed here.

Fig. 7.3 shows the Euclidean distances to ground truth. The green line represents the distances
of the trajectory using the parameters of this work and the red line the trajectory of the native
calculation of VINS-Mono. Since VINS-Mono continuously optimizes the translation and rota-
tion, especially the beginning (until about time 40s) is relevant. Here it can be clearly seen that
using the calibration methods of this work a smaller deviation to the ground truth is achieved.
Also in the further course of the pose estimation the green line is mostly below the red line. The
reason why the green line shows a larger deviation at the end of the trajectory cannot be clearly
stated. It can be assumed that a not correct transformation between the trajectory and the
ground truth is the cause, because in the other areas the pose estimation of the green trajectory
is better than the red one.

7.3 UWSensor

Compared to EuRoC MAV, there is no ground truth of the trajectory traversed for the UWSensor
dataset. However, since the UWSensor system has the possibility to create a point cloud due
to the installed sensor technology, the quality of the resulting point cloud allows to compare
the trajectories estimated by VINS-Mono. It is assumed that the less accurate the estimated
trajectory is, the worse the quality of the point cloud calculated from it.

For the evaluation a dataset was used, which was recorded under water in the sea. Four aluminum
profiles were scanned from a distance of about 1m over a length of about 10m. The aluminum
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Figure 7.4: Snapshot of a data set from the UWSensor project during a trajectory under water. The
spheres seen here are used in the evaluation of the resulting point cloud.

profiles have a length of 2.21m and have a sphere at each end, as shown in Fig. 7.4. To estimate
the accuracy of the resulting point cloud, the lengths of the aluminum profiles determined by
the point clouds are compared with the actual length of the profile.

Fig. 7.6 shows the two point clouds estimated using the trajectory of the native VINS-Mono
(black) and using the translation and rotation between the camera and IMU estimated as part
of this thesis (yellow). Here the scaling deviation is observable. The lengths of the profiles
determined from these point clouds are shown in Table 7.1, with profiles 1-3 shown from top to
bottom in Fig. 7.6. Note here that the first profile is ignored because the point clouds do not
clearly show the first sphere. Table 7.1 shows that the deviations from the real profile length
using the methods of this work are smaller than from the native VINS-Mono. In addition, it
is noticeable that the deviations of the profile lengths increase continuously with the native
VINS-Mono, which is due to an incorrectly estimated scale. Consequently, it is concluded that
using the methods presented in this thesis to estimate the translation and rotation between
camera and IMU, the scale is better estimated by VINS-Mono, leading to a better result in the
estimated poses.
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Figure 7.5: Point cloud generated by UWSensor, which was colored using the color camera data. VINS-
Mono was used to estimate the poses, using the translation and rotation between the camera and IMU
estimated as part of this thesis. The trajectory determined using this is shown as a red line. Areas which
can be recognized as circles are the spheres which is seen in Fig. 7.4. The trajectory starts at the top of
the figure and ends at the bottom.
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Figure 7.6: Shows the point clouds generated by UWSensor, which were estimated using the native
VINS-Mono (black) and the resulting point cloud using the translation and rotation between the camera
and IMU estimated as part of this thesis (yellow). Areas which can be recognized as circles are the
spheres which is seen in Fig. 7.4. The trajectory starts at the top of the figure and ends at the bottom.
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Chapter 8

Summary and Outlook

8.1 Résumé

To develop a sensor system that is capable of determining the poses of i.e. a mobile platform, it is
convenient to use the sensors camera and IMU. These are, depending on the quality, inexpensive
to purchase and are in terms of pose estimation only dependent on sufficient structure in the
environment to find sufficient feature in the camera image. There are various VIO methods
that process the data from the camera and IMU to determine the position and orientation of
the sensor system. Since absolute visual scale information cannot be obtained from the image
data with only one camera, each VIO method must determine it using the IMU data. In order
to merge the data of two sensors, the sensor data must be available in the same coordinate
system. Since the sensors are usually physically distant from each other and rotated relative to
each other, a transformation must be found that transforms the data from one sensor coordinate
system into the other. Hence there is a new problem, since the exact transformation is usually
not known, due to the fact that it is impossible to align the sensors exactly to each other by
hand. Accordingly, the transformation must be estimated using the data from the camera and
the IMU. This thesis presents the necessary methods and algorithms.

First, methods and algorithms are presented in the course of this thesis, to calibrate an IMU.
Error-free measurement values of the IMU are necessary, because later the distance traveled has
to be determined from these data, therefore the acceleration values are integrated twice. A large
measurement error would lead to an enormous deviation in the determined distance due to the
double integration. The calibration methods for the accelerometer take advantage of the fact that
it must experience the same gravitational force at standstill, regardless of its orientation to the
earth. This is used to calculate the deterministic calibration factors. The calibration methods
for the gyroscope use the calibrated values of the accelerometer to determine the orientation
before and after a movement, the orientation determined by the gyroscope must match this.
Using this, the deterministic calibration factors are calculated.

Next, methods and algorithms are presented that first determine the rotation between the camera
and IMU using the poses determined by the camera and the pre-integrated readings from the
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IMU. In the next step, the bias of the gyroscope can be determined. The subsequent alternating
estimation refines the results. With the known rotation between the sensors the gravity vector
in the camera coordinate system can be determined. Afterwards this is refined with the help of
the known norm of the gravity on earth. In the same step, the visual scale and the translation
between the camera and the IMU are determined. By then alternately estimating the gravity
vector and translation, the results are refined. In this work, a weighting strategy is developed
which optimally weights the sensor data such that the error of the estimates of the parameters
just mentioned decreases.

Subsequently, the methods used to calibrate the IMU are evaluated. Hereby the measurement
error, related to the accuracy of the gravity measurement, was reduced by a factor of 30. The
measurement error of the gyroscope, related to the determination of the orientation, was halved.

In the following, the methods for determining the extrinsic calibration parameters between
camera and IMU are evaluated. No correct quantitative evaluation is possible here, since no
real values are known for the estimated values, to which these can be compared. However, it
is shown that the estimates of the parameters using the methods from this thesis are at least
better than those of the software VINS-Mono, which was used as VIO method in the course
of this thesis. It is also shown that the estimated trajectory of the EuRoC MAV drone using
VINS-Mono is more accurate when using the parameters for rotation and translation between
the camera and the IMU, which were estimated in the course of this thesis. With the data
from the UWSensor system, it is shown that the accuracy of the pointclouds determined using
the estimated trajectory also improves when using the calibration methodology of this work for
translation and rotation.

8.2 Future Work

Needless to say, a lot of work remains to be done. In the future, the two software systems
developed in this work shall form a unified software. Therefore it should be possible to estimate
the calibration parameters of the IMU as well as the extrinsic parameters between camera and
IMU simultaneously. This has the advantage that all calibration parameters can be optimized
jointly and as a result more accurate results can be expected. To achieve this, the equations for
the estimation of the extrinsic parameters have to be extended, to allow the estimation of the
scaling factors and the rotations of the individual axes of the accelerometer and the gyroscope
via the presented minimization problems.

VINS-Mono has the disadvantage that only a few parameters can be adjusted regarding the
camera pose estimation. As a result, many parameter configurations have to be tested before
obtaining reliable values from VINS-Mono. Therefore, it is desirable that the software developed
in this thesis is no longer dependent on VINS-Mono. Hence a strategy for the evaluation of the
camera images has to be developed, which can reliably determine the rotation and translation
between successive images. Furthermore, the pre-integration of the IMU measurement has to
be implemented.

IMU calibration and scale estimation improvement of existing VIO methods
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