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Abstract

This thesis presents an analysis of thesWaL MoNO-SLAM algorithm used to create sparse con-
sistent 3D maps in real-time from images perceived by a monocular hana#umelera developed by
Davison et al. [13,16, 20]. To understand the workings tf0AL MONO-SLAM, foundations concern-
ing camera models and lens distortion are presented and followed by aiercabout visual features
and image procession techniques. The concept of the Extended Kalmais Itgroduced and it is
shown how an Extended Kalman lter can be used to obtain both a 6D pose tstirfa the camera
and position estimates for feature points in a 3D coordinate frame. An emctmiBD point estima-
tions using inverse depth is presented, allowing for immediate feature initializattbout any prior
knowledge about the depth of the feature point. It is shown that this ergpérforms well even for
features at great depth showing small or no parallax in contrast to ietional XYZ encoding. To save
computational load a conversion mechanism from inverse depth encodowrtimon 3 dimensional
XYZ encoding for features showing high parallax is discussed. An impléatien using @eENCV and
OPENGL is used to evaluate the discussed methods in a simulation, on provided sang#esggaences
and with a real time camera.

Zusammenfassung

Die vorliegende Arbeit beschreibt die Funktionsweise desML MONO-SLAM Algorithmus zur
Erstellung von dnn besetzten 3D Karten vorgestellt von Davison et al. [13, 16, 20]. Salssor zur
Kartenerstellung dient eine einfache handblche Webcam, die per Hand durch die Umgebundjlkyef
wird. Um den MsuaL MoNO-SLAM Ansatz besser vetdndlich zu machen werden als Grundlagen
ein einfaches Kameramodell und seine Erweiterungen zur Behandlarignsenfehlern vorgestellt und
durch ein Kapitel zur Erkennung von besonderen Bildmerkmalen ursthiedenen Bildverarbeitung-
stechniken abgerundet. Das Konzept des Erweiterten Kalman-Filters/argdstellt und am Beispiel
von VISUAL MONO-SLAM praktisch erdutert. Dabei wird gezeigt, wie man mit Hilfe des Erweiterten
Kalman-Filters sowohl die 6D Pose der Kamera als auch die 3D Positiondradigeter Merkmale
im 3 dimensionalen Raum s&tzen kann. Eine zétzliche Repasentationsiiglichkeit fur 3D Punkte,
bei der die inverse Tiefe mit ein ief3t, efglicht eine sofortige Initialisierung von 3D Merkmalen im
Erweiterten Kalman-Filter ohne zaizliche Informationeriiber die Aumliche Tiefe des Merkmals zu
haben. Es wird gezeigt, dass diese Rspntation, im Gegensatz zur géwlichen XYZ Repasentation
eines 3D Punktes, auch die korrekte Modellierung von Punkte in grafifarBung mit wenig Parallaxe
ermiglicht. Um Rechenkapadit zu sparen wird gezeigt, wie Merkmale mit ggend kleiner Unsicher-
heit beziglich ihrer Tiefe in eine gedhnliche XYZ Repésentation umgewandelt werdedriken. Um
die vorgestellten Methoden zu bewerten werden einige Experimente in é@nela8onsumgebung, mit
festen Bild-Sequenzen und einer in Echtzeit mit einer realen Kameragfiitint.
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Chapter 1

Introduction

1.1 Robotic Mapping

Map creation remains a very active eld in the robotics and Al community. Esfig in the domain of
mobile roboticgeliable sensor information and its comparison with a given model are cimcieder for
self-localization and meaningful navigation. To avoid tedious map creatidvabgl several approaches
for automatic map creation have emerged over the past years, with the sbbhd-approach being
one of the most popular at the moment. A great overview over severalitgerds for map creation is
provided by Thrun in [46] and is recommended to familiarize oneself with this.top

SLAM is short for Simultaneous Localization And Mapping and aggregatesrder of approaches
of automated map generation without any additiopateknowledge apart from sensor information.
That means that while the map is constructed the robot has to correctly loitsdifen the map it has
constructed so far in order to expand the map with new sensor informati@ninierplay between map
construction and localization is crucial in SLAM: If the localization if faultymnsensor information
added to the existing map will not be consistent, thus not resembling the eméndtnHowever if the
environment is not correctly modeled sensor information gathered by Itlo¢ wéll not correspond with
expected sensor measurements suggested by the map and the localizatienamilelerroneous.

The underlying methods (for example probabilistic methods vs. non-pit@biabmethods) to solve
the SLAM problem differ, oftentimes depending on the type of sensorrimdton available and the time
constraints imposed by the application scenario (online map generation tefi-gracessing). Along
with the methods and sensor information the resulting maps will differ in their diowagy (2D or
3D) and their representation of the environment (for example point cloudscupancy grids). Since
SLAM approaches can be discerned by a large amount of attributegainas hard to strictly cluster
existing approaches in a meaningful way. In the following a short dagamipf the state of the art in
SLAM will be given, distinguished rst by the type of sensor employed.

1.1.1 Range nder based approaches

For many applications laser range nders are the sensor of choicer taazge nders use laser light to
measure distances. Thus by rotating it with a known rotation at a xed positlmeromes possible to
obtain 3D data points in a reference frame with the range nder at its origepeDdent one the type
of laser range nder complete 3D rotation may be already built-in, thussoaawill consist of a full
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3D point cloud around the range nder. Other sensor types just obtsiartte measurements aligned
on a plane with a certain opening angle (for example an opening angle oiv@8lal return distance
measurements of points in a plane to the sides and the front of the rangg. Wdeuracy, frame rate
and the type of scan (full 3D point cloud or plane) are in close correlatitimthe money one is willing
to spend on the laser range nder. However it can generally be saidabat range nders provide
far better accuracy and higher frame rates than other common sensagrimgalepth like sonar or
infra-red sensors. For 2 dimensional maps many successful appagist today, often employing
probabilistic methods like the Kalman Iter and its derivatives (for examplessgleafer to [46]). A
inherent disadvantage of Kalman lIter based approaches is that they@aremodal, which means that
they can only model one hypothesis at a time. If the pose is lost in a mononystiains(i.e. if the error
between the estimation and the real state of the system grows too large) itlis éaer recovered. To
address this problem techniques sustaining multiple hypotheses at a time tn@taded. One example
for such a technique is the particle Iter, where multiple hypotheses and tfaapility are maintained.
If the probability of a single particle becomes to small it is pruned and reguiavlyparticles a spawned
to prevent the system to differ to much from one of the sustained hypath&sexample for a particle
Iter based SLAM approach can be found im&ETSLAM by Hahnel et al. [23]. Furthermore particle
Iters are often employed in Monte Carlo Localization, requireing a map of tivie@enment and tackling
only the localization aspect of the SLAM problem.

However the vast amount of data obtained in 3 dimensional scans hampeertbrmance of prob-
abilistic approaches so that for full 6D SLAM (3 coordinates denotingtiposand 3 angles denoting
orientation) non-probabilistic approaches like scan-matching perforirag/elemonstrated in [35, 36].
Scan matching approaches usually try to fuse two partially overlapping 8 glouds (scans) into a
larger consistent point cloud. As a rst guess for the relative transiaial orientation of the scans often-
times odometry information is used. This estimation is re ned by minimizing the ovevait{bo-point
distances in both scans via ICP or other suitable algorithms. Thus 3D mape ¢auilt incrementally
by fusing a new scan with the already existing combined point cloud. If laopsletected the created
map can be made globally consistent through an adaption of the algorithmeof Milios to 6DoF (see
Borrmann et al. [5]) or by the recently published ELCH algorithm of Sgibkf [45].

1.1.2 Vision based approaches

Apart from range nders (including sonar, laser, infra-red and tofidght cameras), cameras are also
used to construct 3 dimensional maps. Basically 2 different types of earoan be distinguished: Stereo
and mono cameras. Stereo cameras consist of at least two cameraswlainiaaged in a xed position
to each other and observe the scene.tki@gulation (explained later in section 2.4) stereo cameras are
able to obtain 3D information from the 2 dimensional data they perceive. Dtietoature of image
data and image processing it is not possible to generate dense depth n3&ppaint clouds for fast
real-time applications. Therefore 3D maps with vision based sensorsuatyusparse and less suited
for scan mathing techniques. While the reduced amount of data in sugespaps do not resemble a
complete 3 dimensional model of the environment, probabilistic methods becqtieabfe again for
6D pose estimation.

For example Se, Lowe and Little use in [40,41] a mobile robot platform egdipyth a trinocular
stereo head employing SIFT features (see subsection 3.1.2) to gain 3Dhatifan from the robots
surroundings by epipolar geometry. A rst guess for the egomotion ofrtts®t is obtained by its
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odometry and the stereo vision system is then used to improve to odometry estiamatidatermine the
position of the visual landmarks. Compared to other real-time visual SLAMoagpes the obtained
maps are quite dense. To maintain a consistent map Se et al. use Kalman lteiqteshto track
landmarks and model their uncertainty even in dynamic environments. DaagbKita [18] equiped
a robot with an active stereo head (featuring 4 degrees of rotaticgdldm) to sequentially create
sparse 3D maps on the y for navigational purposes of the robot. Opaolket in their approach is the
matching of visual features by active vision, which means that featuoesiging the most informational
gain are preferably matched. Once such a feature is determined the lastidecan be driven to is
predicted position to obtain measurements. Davion and Kita applied an EK& $ageM algorithm to
combine visual information with odometry and inclinometer information to allow fdslsticalization
in undulating terrain. A similar system is used in [19] by Davison and Muwasgre they conduct several
experiments concerning automatic map growing and pruning as well as deonsaof their estimations
with ground truth. However off the shelf stereo systems pricing is abovéotheost segment and
the calibration of self-made stereo cameras requires much ne tuning adsl tiebe sensitive towards
shaking often found on moving mobile robots.

If the pose of a single camera is known at each time, moving a single camera ewaigélacquire 3D
information from images. In case of cameras mounted on top of a robotrtemtoamera pose is usually
not known, but can only be estimated as a rough rst guess by otheosarformation like odometry.
For cameras not mounted on a robot, but hand-held devices and thedikéhese crude information are
not available to estimate their poses. Naturally pose estimation is crucial foe sengera approaches,
since all depth measurements are dependent in the estimated camera pasesngle camera SLAM
becomes even a bit harder than the SLAM problem with a range sensorréctlocalization and pose
estimation is not only necessary to built a consistent map, but also to obtainnemasits in the rst
place. General insight in the domain of visual map generation with a singleraaapart from speci ¢
approaches is provided by Lepetit and Fua in [28] where they prasemterview of miscellaneous 3D
tracking techniques of rigid objects with single cameras. Although 3D tradiasgiot exactly the same
objective as SLAM, both topics are closely related in the case of monoceasoss and share a lot
methods.

Single camera techniques can be divided into two subcategories: Thiypestof approaches use
a complete sequence of multiple images to nd suitable correspondencesheataeh frame and uses
information of all images to estimate camera movement and 3D position of the idefaatuwles. These
algorithms are off-line in their nature and thus the employed techniques dwawetto ful Il real-time
constraints. After initial estimations of camera movement and 3D positions dédeafures, methods
to reduce the global error may be applied and nally dense depth mapsecaonistructed for the given
scene. This approach is often callducture from motiorin the literature and various solutions can be
found in the computer vision community. In [21] Fitzgibbon and Zisserman us@tastep approach to
recover geometric information from given video sequences. In a hstsp stable features are detected
over all input images. In a second step the features are matched andDRheasRion is estimated.
Afterwards other steps using triangulation and plane tting are applied to ngdlgerate a VRML
scene of the observed geometry. Sato et al. [39] estimate 3D positionatofde through a multi-
baseline approache and fuse the resulting depth maps in a voxel spaekahtte environment. A
few predi ned markers with known 3D positions are suf cient to scale tlsifons of automatically
generated feature points in a consistent manner. Pollefeys et al. @édscf38] an approach to recover
3D information from uncalibrated video sequences. The resultant texBPemodels are fused in an
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exemplary application with real video sequences to create a new virtualiyeaigd scene.

Other approaches do not analyze a complete sequence of images,reataéntally incorporate in-
formation gathered from a single image in their estimations before considegnteit image. While
such an approach inhibits an analysis and reduction of the overalligpaientially allows for online or
real-time map creation, since only the current image has to be processeghtijtthe method of choice
for pose estimation of the camera and estimation of feature positions is the Egttiéatinan Filter. One
of the forerunners in this domain is Andrew Davison who in collaboration witlers publishes exten-
sively on this topic [11-13, 16, 17, 20, 33]. Usually such approackeesl a certain number of features
with known positions in order to work and new features have to be oldewer a certain period to
guess their depth before they can be added to the EKF. Recently DaRigers et al. introduced an al-
ternative feature representation. By representing a 3D point by a 6 siomathvector employing inverse
depth, new features can be added without any prior knowledge amdbcte to overall state estimation
even if they show little or no parallax.

The purpose of this thesis is to introduce the reader to this novel appreastly the needed back-
ground knowledge concerning camera models and image processing \pilbWided. Afterwards the
underlying mechanisms of theiSUAL MoONO-SLAM algorithm without prior knowledge as presented
by Civera, Davison and Montiel in [13] are discussed and analyseettail dThe main focus is the com-
plete derivation of the EKF mathematics and their meaningisilL MoNO-SLAM, with additional
information concerning an inverse depth representation of 3D points cethfzathe conventional XYZ
representation. The discussed methods are evaluated in a simulated revit@and with real image
sequences to provide the reader with information concerning the qualitg afifuAL MONO-SLAM
approach.

1.2 Thesis Outline

Chapter 1: A short explanation of the SLAM problem along with different solution igghes. Fur-
thermore an outline of the complete thesis.

Chapter 2: An introduction to the basic theoretical camera model commonly used in comysitam
and its extensions to better t real world cameras.

Chapter 3: A description of different image interest operators, including Harrisn€s, SIFT and
SURF descriptors. This is followed by some general remarks about irnagegsing, the bene ts
of integral images and a mechanism to compare image patches.

Chapter 4: An in-depth analysis of the MuAL MoNO-SLAM algorithm. This includes a brief intro-
duction of the Extended Kalman Filter and how this concepts can be used¢attpmodel the
speci ¢ demands of the MuAL MoNO-SLAM application. Furthermore two alternative encod-
ing methods for a given 3D point and their adavantages and disadvamtagdiscussed.

Chapter 5: To evaluate the workings of MuAL MONO-SLAM a simulation environment is presented
along with results obtained from the simulation. Practical evaluation for gimage sequences
using Shi-Tomasi based features and SURF are compared qualitaticefyresented alongside
real-time experimental results.

Chapter 6: This chapter concludes the thesis, presenting the ndings, open tapiéstéire work and
remarks.

AN ANALYSIS OF VISUAL MONO-SLAM



Chapter 2

Camera

As mentioned in the introduction in chapter 1 the only sensor information in M&in&M is gathered
from a standard low-cost USB digital camera. Low-cost devices typicaéya CMOS sensor and do
not exceed an image resolution@®f0 480pixels.

The following chapter will rst introduce an ideal basic camera model iniea@2.1 and show how
this ideal model can be modi ed with a distortion model (section 2.2) to better irtiperfections found
in real camera lenses. How to estimate model parameters for the distortion mithdbel discussed in
section 2.3. The remainder of this chapter will explain in section 2.4 how to estBDgpesitions from
the collected 2D data in subsequent camera images.

2.1 The Pinhole Camera Model

This section will rst introduce the basiginhole camera modéh subsection 2.1.1. Although the model
requires some assumptions lacking in real cameras it still allows for a ralsorst approximation. Due
to its mathematical convenience and simplicity it is nowadays widely used in the dafmeamputer
vision and computer graphics. In subsection 2.1.2 some relaxations oftireptsons of the basic model
presented in 2.1.1 are introduced to better emulate properties found iraneatas.

2.1.1 The basic model

The pinhole camera model consists of 2 dimensional plane, dividing a 3 donahsoordinate system.
The two dimensional plane is referred to as giehole planeand it features an in nitesimal hole (the
eponymouginhole. The pinhole corresponds to the origihof the 3 dimensional camera coordinate
system and is also known as thptical centerof the camera. The coordinate axes are referred to as
Xe; Ye andZ, whereX ¢ points to the side of the camepg, points up and is pointing in the viewing
direction of the camera. Thus the plane generated bgndY, corresponds with the pinhole plane. The
Z.-axis is often referred to as thoptical axisor principal axis Theimage planas parallel to the pinhole
plane and located at distantd > 0 from the originO along the negativ& .-axis. The intersection
of the image plane with the negatig-axis is calledprincipal pointor image centeand denoted aR.
The 3 dimensional world in front of the pinhole camera (i.e. in direction of thsitive Z .-axis) will be
projected through the aperture on the image plane. The distance betweerpiaag and pinhole plane
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pinhole plane

AYe

f
W

Figure 2.1: Pinhole camera model. The red lines indicates the displanefrom the optical cented in X; Y,
andZ. direction forP;, while the blue lines show the displacement of the projec) from the image center
R. The ray from poinf; through the optical centéd to its projectionQ; is shown in green. The focal length
de nes the distance between the pinhole plane and the image p

is thefocal lengthof the pinhole camera.

Since the model assumes the pinhole to be of in nitesimal size, from any 3 diomahgointP; =
(xi;vi:zi)T;z > 0, exactly one ray of light will pass through the pinhole and project this pmirthe
image plane at its image coordina®s= (u;;V;)". According to the intercept theorems the following
equation holds:

| | | |

LfLi = %I :) Ui = z (2 1)
S

Due to this assumption the projection of the 3 dimensional world on the image plaleaigs in focus.
The projection of a poin®; through the optical center onto the image plane is depicted in Figure 2.1.
While the image coordinatdsi;; v;) for any pointP; are uniquely determined by the focal lendth
the reverse cannot be determined. Two 3 dimensional pBjrasidP; are projected on the same image

coordinate, if’;—; = ’;—]’ and’z’—ii = 32’—; hold. That means for a given pair of image coordingtesv;)™ any
3 dimensional poinP; = (Xi;Vi:z)";z > 0on the line going througku;;v;)" and the optical center
O could create the given image coordinates. This follows directly from equéid).

To further simplify the pinhole camera model oftentimegraual image plands introduced. Like
the image plane the virtual image plane is parallel to the pinhole plane, but it tedbadistancé on
the opposite side of the pinhole plane. Every p&int (xi;yi;z)';z >f is projected on the virtual
image plane in the same way as on the image plane, but the image coordinatesiavented. Thus
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pinhole plane

Ye
image plane virtual image plane Pi
\Y VA Pi 1
. _ Yi
r| T Jo v |
Vi f R Zi Zj Zc
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Figure 2.2: Pinhole camera model as seen from ¥axis. Note that point®; andP; will be projected on the
same poinQ; = (u;;V;)" on the image plane. In front of the pinhole plane the virtn@ge plane is depicted
with a dashed line. In contrast to the project@non the image plane the projection on the virtual image pane
is not inverted.

equation (2.1) can be transferred to the generally more convenient form
! ! ! !
% Ui )Z(—Iif

= & =) =z (2.2)

The pinhole camera model with a virtual image plane is depicted in Figure 2.2tiBny2.2) (or (2.1)
for that matter) implies also some other common effects on the projection of 3 donahsbjects:
Increasing the distance between an object and the camera will result irllargmajection, since this is
equivalent to increasing of a given pointP;. Furthermore parallel lines on a plane not parallel to the
pinhole plane will not be parallel in the projection on the image plane. For deampge a line on the

X c-Zc-plane, parallel to th& .-axis. For all pointd?; on such a line coordinates andy; stay constant,
while z; varies. Thus the more distant a point on this line is from the oi@jithe closer its projection
will be to the image centeR and the projection of the line will be at image cenieron the horizon

of the projection. The projection on the (virtual) image plane induced by tHefg@rcamera model is
calledperspective projectioand closely resembles output generated by commonly used cameras. Apart
from perspective projection, other projection models namaélye projectionandspherical projection
are sometimes used in computer vision. The properties of these projectiofsrdifiée from perspective
projection, which can be bene cial in certain applications. Howevemafand spherical projection do
not contribute to the remainder of this thesis, so the interested reader is iefiellsed to [22] for more
details.

2.1.2 Adaption of the Basic Model

The basic pinhole camera model (see 2.1.1) can be modi ed at severd poorder to better describe
properties of real cameras. Most cameras use photographic lensssdims a pinhole. Though an
in nitesimal small pinhole in the basic model provides a projection always ingom reality shrinking
the hole beyond a certain point is not bene cial. The smaller the hole becdhwekess light will pass
through the hole and the material on the image plane (either CCD/CMOS-Semgirotographic Im).
If not enough light is passed through the pinhole the projection might esdntoecome dark with
little distinctions, since the image sensor usually requires a certain amount bfdige successfully

AN ANALYSIS OF VISUAL MONO-SLAM
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pinhole plane pinhole plane
. Ye . Ye
image plane P image plane P,
Y ' Y%
R f ) [Yi R f e IYi
Vi al Zi Ze Vi - Zi Ze
Qi Qi
(a) Small pinhole (b) Big pinhole

pinhole plane

. | Ye
image plane P
Vv
R f 0] Yi
Vi Z Zc
Qi

(c) Pinhole with lens

Figure 2.3: Projection under different pinhole¢a): The small pinhole causes diffraction, resulting in a adrr
projection. Furthermore less light than in (b) or (c) is pit@adl, eventually leading to dark projections, low in
contrast(b): The projectionQ; of pointP; appears out of focus and blurred, since multiple rays ot ligrected
from this point are projected on several different imagerdomates. (c): Notice that the projection of point
Pi = (xi;yi;z)" is in focus and corresponds therefore with with one singietpg®; = (u;;Vv;)T on the image
sensor. Still the lens admits more light than the cameraavignall pinhole (a).

triggered in case of digital cameras. In addition a small hole might causaddiffn and therefore blur
the projection on the image plane. This is visualized in Figure 2.3a. However Ifdle is too big, the

projection will be out of focus, since a single 3D pot = (x;;yi;z)" will be projected on several
image points (see Figure 2.3b). Using one or more lenses allows for a Ihigigeio provide more light

and still leave the projection in focus. A graphical comparison of the thoeeasios above is depicted
in Figure 2.3c.

Since most lenses have certain imperfections these need to be modeletedgparorder to be
consistent with the basic pinhole camera model. How to exactly determine the éuij@nt in the lens
of a given camera and how to adapt the model to these imperfections willtaesdésd in section 2.3 in
detail.

Furthermore in real cameras the world is not projected on an image planen lzuplanar light-
sensitive material (CCD/CMOS in digital cameras) of limited size which will in the falhg be referred
to asimage sensofor simpli cation. The size of this sensor limits theld of view of the camera. While
in the basic pinhole camera model every pdt= (xi;yi;zi)T wherez; > 0 can be projected on
the image plane, not every point ful lling this condition is projected on a sen$timited size. The
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2.1. THE PINHOLE CAMERA MODEL 9

boundaries of the image sensor specify the size of the eld of view acwptd the following formula:

I 0 y 1
arctan —dm
Y =20 A (2.3)
v arctan Vdm

wheref is the focal lengthUgim  Vaim Speci es the physical size of the image sensor (for example
36mm 27mm)and( ; V)T yields the opening angles of the eld of view. These relations are
illustrated in Figure 2.4. In the case of digital camera equation (2.3) can alsiated as
|
' arctan Wdth du
©=2@ e P (2.4)
v arctan "SGR

wherewidth  height states the image resolution in pixels afydandd, refer to the physical width and
height of a pixel on the image sensor. Placing the image sensor in a wayptregmonds to the inverted
image coordinates (i.e. the image sensor is placed upside down) of the indgileramera model (see
equation (2.1)). emulates the effect of the virtual image plane (see eq(@&dn Not only does the size
of the image sensor determined the eld of view, but it also affects the sideemwolution of the created
image. The most commonly resolutions found in low-cost digital cameras eendy either320 240
pixels or640 480pixels. Since the origin of images in computer applications is located in the top left
corner of the image it is convenient to incorporate this into the model by shiftegrigin of the image
coordinate system. The resulting pixel COOl‘dinE(tBSVi)T in the obtained image are calculated by

| | |

ui. B bkui+ou+0:5c' B bkf’z‘—i‘+ ou+0:50- 2.5)
v blv; + o, + 0:5¢c bif £+ o, +0:5¢ '

whereo, ando, describe the displacement of the upper left corner of the image from itsraarpixel
units. If a camera has a resolutionwidth  height theno, = W4 ando, = "9 Note that
while (ui;vi)T with uj;v; 2 R are tuples of real values, the correspondlng pixel coordir(Mesvi)T

are integer values and only perceivable of the image senspriifv; 2 Z*; 0  u; < width and

0 v; < height holds. Parameteisandl are scale parameter to map the distance obtalnéd;—band

f y' respectively to the correspondmg pixels. If distafictor instance is measured in m, then a pixel
has the dimension gf  §, wherek and| are expressed in pixel=m. Oftentimes the dimensions of a
pixel are denoted a&, d,, whered, andd, are measured in m or any other distance measure. Thus

equation (2.5) is often also denoted as
! ! !

ui' ) bf x.+ou+0:50 B bfu’é—i‘+ o, +0:5¢c 2.6)
Vi bf y' + 0, +0:5¢C bf % + oy +0:5¢ '

where parametetls andl of equation (2.5) have been replacedaﬁyand L. Thus parameterfs, and

f\ express the focal length in terms of pixel-units and are typlcally obtalned by camera calibration
methods instead of the actual focal length The distinction betweeh, andf, becomes necessary,
since the physical pixels on an image sensor are not always squategnietimes only rectangular. To
avoid unnecessarily cluttered equations in the following the explicit rourtditite nearest integer value
will be omitted. Please keep in mind that perceived image coordinates anghadess always integer
values.
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image sensor Oimage

Figure 2.4: Field of View. The boundaries of the eld of view, determinby the size of themage sensoare
depicted in blue. The resulting volume could be extendethéurin direction of the positiv&X . and is just cut
for visualization purposes. The corresponding anglesnithg the eld of view are labeled as, and , (see
equations (2.3) and (2.4)), respectively. Please notetleatrigin for the resulting image (its upper left corner) is
placed aDjmage Which is inverted from its corresponding real world posit@scene -

2.2 A Simple Distortion Model

Section 2.1.2 introduced a rst step to adapt the basic pinhole camera modgrasent real cameras
more closely, by means of the eld of view and the adaption of the origin toatedigital image sen-
sors. However the adaptions discussed so far still describe a “Pecfenera. Each real camera tends
to have its own unique imperfections, introduced by imperfect manufactaridgassembly processes.
Especially in the low-cost sector individual cameras of the same type temgytamntheir camera proper-
ties. One possible error induced by the manufacturing process is dejpi¢tegnlire 2.5, where the image
sensor is not aligned perfectly parallel to the camera lens.

Since the displacement of the image sensor is unique for each producedaca way to analyze
the inherent distortions and to model them is needed. A rst step is to funtloglify equation (2.6).
Equation (2.6) implies that the center of the image sensor is placed precigbdideal image center
R which is the intersection with th&.-axis and the image plane. Considering the CMOS sensor of
the HERCULESWebCam Classic with siz&6 mm  2:7 mm yields640 480pixels of resolution, the
physical size for the sensor of one pixel on the chif:35625mm 0:005625mm = 5625 m
5:625 m. So any displacement Iargerth?}% m would mean that (2.6) is not accurate, still assuming
that the image sensor is perfectly parallel to the pinhole plane. If howewelishlacement of the center
of the image sensor is known, the adaption of (2.6) becomes quite simple:

| |
Ud;i fugs + Uo

= 2.7
Vi fvd + vo @D

whereug andvp denote the image coordinate, which corresponds to the image dent&imilar to
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cheap camera lens i
cheap CMOS chip

cheap glue

(a) Exemplary cheap camera schematics (b) Tangential distortion

Figure 2.5: Exemplary result of production inaccuracya) lllustrates a common displacement of the CMOS
sensor, which should ideally be parallel the the camera I&ugh a displacement induces tangential distortion,
depicted in(b): For an ideal camera the black dots positioned in a grid shbelprojected, preserving the undis-
torted uniform grid structure. The CMOS sensor displacearimetuces the projection of a distorted grid, shown by
dotted black lines. Correspondences between the origiaeklolots and their projection are shown in blue.

equation (2.6)g:; andvy;; denote integer values bounded by 0 andth andheight respectively, while

Ui; Vi: Up andv are given as real values. The coordinates of pint (x;;vyi;z)" are also speci ed by
real values, of course. The pdirg;; vd;i)T are referred to as thdistorted image coordinatgsnarked

by subscripty), since they are still subject to lens distortion although they are calculateddiag to the
actual image cente(luo;vo)T. Distortions like the one depicted in Figure 2.5 are more complicated to
deal with and will be discussed together with radial distortions in the followarggraph.

Flaws and imperfections in a camera are not only limited to the correct placerhédmt image
sensor, but can (and usually do) also occur in the lens or lens systamaofiera. A compact overview
on properties of optical lenses likdberrationor vignettingis presented in [22]. A far more detailed
discussion of these topics can be found in [25, 27].

However once a suitablistortion modeis applied on top of the current camera model lens effects
like aberration and vignetting can be ignored in thesWAL MONO-SLAM context and are therefore
not discussed any further. The interested reader is referred t24227] for more information on these
topics.

Closely related to a distortion model is tbamera calibrationprocess. The distortion model de-
scribes how to calculate the ideal undistorted image coordirtatgsvy:;) " which would be perceived
by an ideal camera from a pair of actually perceived distorted image ioabes(uq:;; vq:i) " for a given
pointP; = (Xi;Vi; zi)T. Camera calibration describes technigues to estimate the unique camera param-
eters, used in a distortion model for an individual camera. A historicalvie of different calibration
techniques and their corresponding models is presented in [14]. Thetidistmodel used by Davison
et al. in [13, 16, 20] is a simpli ed version of the “Brown-Conrady-modgfso known as “plumb bob
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model”) proposed by Brown in 1965 [8]. This model usedi&tortion coef cientsto describe the im-
perfections found in a camera image. If all 5 coef cients are known it isegsimple to compute the
corresponding undistorted image coordinates of an ideal camera fegraair of distorted image coor-
dinates. The next paragraph will present the whole model rst anel gfime explanations concerning
the different components of the model. Subsequently the model will be simpibdde model used
in [13, 16, 20]. In section 2.3 the techniques used to estimate the distortiboients will be shown as
well as some exemplary results of camera calibration.

The model of Brown distinguishes between two different kinds of distortioamelyradial distor-
tion andtangential distortion Radial distortions are caused by the shape of the used lens and s&n cau
pincushionor barrel distortions of the image, where straight lines will be projected in a curvétdias
Usually the effects of radial distortion become stronger the larger the destsgtween a projected point
Qi=(u i;vi)T and the image cent& = (uo;vo)T becomes. Tangential distortion generally refers to
distortions due to imperfections in the centering of the camera lens. To modgd|disdortion 3 distor-
tion coef cients are used(; k; k3) while tangential distortion is described by 2 coef cienps;(py). If
the radial distortion coef cients are known, the correction te(msvi)T for radial distortion are de ned

as:
! !

0 Ug;i Uo

= 1+ kqr? + kor* + kar® (2.8)
i Vdgi Vo
where
S
1 2 1 2
r= —(ugi uo) + —(Vai Vo) (2.9)
fu fv

denotes the distance of pix@lg:; vd;i)T from the image centdjug; vo)T on the image sensor. To recap
how to calculatduq:; Vq:i )T please refer to equation (2.7).
To compensate for tangential distortion effects the following terms are pealp@ncorporating tan-

gential distortion coef cientg; andp;:
I 0 1
4 _ gy 2PaUaivai+ po(r+2ug) (2.10)
Vi fv pu(r?+2v3;)+ 2 paug;Va;

wherer is de ned as in equation (2.9).
The complete model, considering radial (2.8) and tangential (2.10) distodioesithe undistorted
image coordinate§iy;i; vu;i)T as
! ! !

Uy;i Oi + dj Uo

Vu;i ) OOi + ¥ N Vo 1 ('2-11)
_ @fu S0 1+ Kar? + kor® + kar® +2piugiva + p2(r? +2u3;) AL Uo
f, vd;ifvvo 1+ Ker2+ kor%+ kar® + pl(r2+2\/g;i)+2p2ud;ivd;i Vo
Ofu’z(ii 1+ kar2+ kor# + kar® +2pyf 5%+ p, f2+2fu§ i+ Uo!
CfVS Lt karZ kert+ kar® 4 py r2+2fv§* t2pafeyy Vo
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2.2. ASIMPLE DISTORTION MODEL 13

Luckily in most cases this full distortion model is not actually needed, bubeaabit simpli ed.

As mentioned earlier Davison et al. [13, 16, 20] propose a simpli ed varsefadhe general model.
For standard eld of view cameras (i.e. non-wide angle or “ sh-eyeheaas) it is not recommended or
necessary to push the radial component of the distortion beyond thed&h dherefore only cameras
providing a highly distorted image actually need distortion coef cieftin other cases it is advised to
assumekz = 0. Currently most manufactured cameras are assembled with very little impenféctio
centering the image sensor, so that tangential distortion becomes less irhpbhiarcorresponds with
the observations by Zhang [50] who states that the distortion function iycteaninated by coef cients
k1 andks. In other words for most low-cost cameras the assumgdion p, = 0 is valid. That leaves
a distortion model with just 2 radial distortion coef cients (hamklyandk,) which corresponds to the
distortion model used in [50]:

! ! !
Ui Ugi Ug) 1+ kir?+ kor u
wio _ ( d;i 0) 1 , 2 . + 0 (2.12)
Vuii (Vd;i Vo) 1+ klr + kzr Vo

The distortion model used by Davison et al. in [13, 16, 20] is quite similar to istertion model
of Zhang [50]. Davison et al. de ne an undistortion functibp that maps a pair of distorted image
coordinategug:i; Vg:i )T to a pair of undistorted image coordinates;; ; vu;i)T as follows:

| | 0 1 |
’ . ’ . + 2+ 4 )
g _ he Ugi  _ @(Ud,| Uo) 1+ Kairg+ Korg A, Yo (2.13)
with
a 2 2
ra= (du(ugi Ug))“+(dy(va; Vo)) (2.14)

Apart from the distance of the distorted image coordinaﬁﬂag;vd;i)T to the image center de ned in
equation (2.14) the distortion model (2.13) used in [13, 16, 20] correlptm the distortion model (2.12)

of Zhang [50]. For the de nition of distanaein Zhangs's model, please refer to equation (2.9). However
the difference betweenandry also means that the distortion coef cients are generally not equal (i.e.
ki 6 k; andk, 6 ky). From camera calibration (see 2.3) usually coef ciekisandk, are obtained,

but notky; ko. Since (2.12) and (2.13) should yield the same mapping for d@@i:vd;i)T of distorted

. . . 2 4 .
image coordinates the assumptitas3 = kir?, ki = kilz andkard = kor#, kg = koDr are valid.
d d
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Thusky andk, can be calculated according to the following equations:
kl = klf

1 f2(uai Uo)’+f2(vay Vo)°
HAZR Uy U+ B(vay Vo)

1 f2(ugi Up)’+f2(Wai Vo)
lf&f\?fz

2 2
re(ugi  uo)*+ (z(vai Vo)

2 2
1 f2fZ f2Uai  uo)*+ fF(vai Vo)

=k
SRE f2(ugi Uo)*+ f2(vai Vo)?

(2.15)
and
ko = ko—

1 fluUai Ug)*+2f2F2(Ugi  U0)>(Vai  Vo)2+ FA(Vai  Vo)?
2
fafd dd (g uo)' +2d2d2 (Ugi  Uo)’ (Ve  Vo)*+ dd(vai  Vvo)?
1 fdUgi U)*+2f22(Ugi  Uo)?(Vai Vo) + Fr(vai vo)?

2454 4 2 2 4
Fatva %(Ud;i Uo) +2ﬁ21T\IZ(ud;i Uo)” (Vg Vo) + %(Vd;i Vo)

1 fd tHuai uo)*+2f2f2(Ugi  Uo)®(Vai Vo) + T (Vai Vo)

FAM4  faUar  uo)* +2f2(2(Ugs  Uo)® (Vai  Vo)*+ Fd(vay  Vvo)?
1
f4

= ko

= kp (2.16)
While camera calibration usually obtains offily andf the focal lengthf can be calculated with the
help ofd, andd,, which can usually be derived from the data sheet of the camera. lethander of
this thesis undistortion will always be calculated according to equation (2=b8)eadability purposes
the use of thesymbol to indicate the distortion coef cients of (2.13) will be omitted henceforth

Sometimes it might prove useful or be necessary to obtain for a givenfpaidestorted image coor-
dinateq(uy:i; vu;i)T the corresponding distorted coordinateg; ; vd;i)T. For a given pair of undistorted
coordinates are the distorted coordinates are calculated as

I I 0 1
U U Ug + —Mui Uo) _
d;i — i _ 1+kir2+kord
sy =@ (AT A (2.17)
" T Grardrien))
with
rg=rg 1+kerZ+ kor§ (2.18)
q
o= (duQUui uo)®+(dy(Vui vo))? (2.19)
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2.3. CAMERA CALIBRATION 15

While r, can be directly computed by (2.19), can not be solved directly (see equation (2.18)). Thaus
has to be solved numerically, for example by the Newton-Raphson methedagic form for Newton-
Raphson iteration is given by

g(Xn)
g°(xn)

Xn+1 = Xn (220)

whereg denotes a function of,, andgPits derivative with respect tr,,. In order to apply this method
to approximate 4 functiong and its rst order derivativgl’ need to be de ned as well as the initial value
Xo. For this case equation (2.20) looks like this:

faret = T 9(ran) _ o fan? kirgs + Kafan  Tu. fao = T
nt " g%ran) " 1+kKirg2 + korgd ~ %07 "

(2.21)

This iteration is performed until > N fora xed N 2 N.
Of course other numerical methods could also obtain an approximationy fdiut for this case
Newton-Raphson is well suited, so that no further methods will be corsidesre.

2.3 Camera Calibration

This section will brie y describe how to obtain the parameters needed bycimplete distortion model
(see (2.11)) for a real camera, how to adapt these parameters to istbetidn model used in [13,16,20]
and show the results of camera calibration.

Since correctly calibrated cameras are a requirement for many appliciteresexists a large num-
ber of calibration tools, commercial or noncommerciakPERCYV provides its own method for camera
calibration ( see [7]). The EENCV implementation is basically th€ adaption of the Camera Cali-
bration Toolbox for MhTLAB by Bouguet [6]. The intrinsic camera model for the calibration toolbox is
similar to the model proposed by Heikkila [26], which largely correspondisadplumb bob model” of
Brown [8]. The calibration process itself is inspired by [50].

To estimate the camera parameters using camera calibratialibsation patternis needed. In the
OPENCV implementation and the MLAB toolbox the pattern consists of a at chequered rectangle
much like a chessboard. Commonly, but not necessarily, the black andretitiéegles are squares and
the whole pattern is rectangular (i.e. the number of columns differs fromuhber of rows) to better
distinguish the orientation of the pattern. A typical pattern used for calibregidepicted in Figure 2.6a.
Note that the single rectangles do not need to be black and white, but thitngosimpli es corner
detection of the single rectangles, which is needed for the camera calibréitisnmportant that the
pattern is really at so it should be carefully attached to some rigid surfapérited out. Of course a
real chessboard made of wood could also work perfectly. Furtherthersize of the black and white
rectangles needs to be known and should be measured by hand, smueranpight scale its input and
for a real chessboard the squares have to be measured anywayth&fie preparations some images
containing the calibration pattern have to be captured with the camera. Cahbvdlioeturn better
results, if the pattern is captured from different distances and at eliffédocations on the image (i.e.
center, left, right, top, etc...). Tilting the calibration pattern so that it canldserved from different
angles and rotating the pattern can also improve calibration results, buthrineage the whole pattern

AN ANALYSIS OF VISUAL MONO-SLAM



16 CHAPTER 2. CAMERA

(a) Exemplary calibration pattern (b) Short calibration sequence

Figure 2.6: (a) Exemplary calibration pattern of siZe 6. Please note that the size is determined by the “inner
corners” of the pattern.(b) Short calibration sequence. The calibration pattern ofijajaptured in different
locations, orientations, at different distances and dbffie angles. Please note that for visualization purposks on
a part of a real calibration sequence is depicted.

has to be visible. Generally the more images are taken for camera calibragdoetter, though 15—
20 images usually provide quite acceptable results and even less than 15 ipragele oftentimes
noticeable improvements. An example for a short calibration sequencevidgulan Figure 2.6b.

Once a suf ciently large sequence of suitable images for calibration igextethese images can
be processed via ®ENCV or MATLAB toolbox. The main advantage of theeONCV implementation
is automatic detection of all chessboard-corners.Especially with largeata@ibimage sequences this
becomes quite convenient. In the current version of theMB toolbox the 4 corners de ning the
calibration pattern have to be marked by hand in every image. On the otheétHe@MATLAB toolbox
provides much more options and information about the calibration. In cddasge distortion it is
possible to adjust the corner detection region for single images, for exantptdso offers a great
visualization of the estimated distortion model (see Figure 2.7) or the estimatéusiexfrarameters
(that means the 3D positions of the calibration pattern in each image) canwe.shbe in uence of
the tangential distortion (Figure 2.7b) compared to the complete distortion niideté 2.7a) is for the
used HERCcULESWebCam Classic near to non-existent, which justi es the simpli ed distortion mhode
(see equation (2.13)) as opposed to the complete distortion model (egR&itign(

Image processing like feature detection (explained in 3.1) is done on theabrifistorted images
in VISUAL MONO-SLAM and not on the undistorted images. The perceived image coordinate
then undistorted according to equation (2.13) stored in tlu¥L MoONO-SLAM application and for
prediction purposes distorted again by applying (2.17) (what is mearstbyirig” and “prediction” will
be explained in detail in chapter 4 so the reader should not worry alisutaw). This might seem a bit
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(a) Complete distortion model (b) Tangential component of distortion model

Figure 2.7: (a)In uence of the complete distortion model (see equatioh 1. The arrows show the displacement
of the corresponding pixels induced by distortion. Noticattmaximal distortion occurs at the top left and lower
left corners, where points are displaced by more than 4diXb) The tangential component of the distortion
model (equation (2.10)). Notice the maximal distortionurscat the bottom right corner where points are displaced
by more than 0.9 pixels.

Both results originate from calibrating agRcuLes WebCam Classic, providing images 40 480 pixels.
Calibration results and images obtained byxMAB toolbox [6].

(a) Original image (b) Undistorted image

Figure 2.8: Example for image undistortiorfa) Original image captured by #ERcuLESWebCam Classic. Image
distortion becomes visible near the edges of the image. fFaiglst lines on the calibration pattern on the left and
the corner between ceiling and wall on the top are appeaedutue to radial distortion(b) Undistorted image,
using intrinsic camera parameters and distortion coeftseestimates provided by MLAB toolbox [6]. Notice
that calibration pattern does not appear distorted anynboitethe visible area is slightly smaller than in (a). The
undistorted image was generated usiree@CV (see [7, 37]).
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inconvenient at rst glance and one might wonder why the undistorted émage not used. The main
reason is that undistortion of a whole image takes quite a lot of time if the prtoess$o perform all
operations for one image is somewhere between 30 — 60 ms. Since the dedist@ge is not composed
as a direct mapping in terms of pixels. That means that usually a single pixed imtlistorted image
is composed of a weighted sum of several pixels in the distorted image. Eogghtthe weighted sums
will stay the same, once the undistortion parameters are determined the wdesegis still rather costly
in terms of computation. Furthermore the weighted sums may induce a little blurringniegarts of the
image which is usually not bene cial for the detection of repeatedly reizadpte points in the image (as
explained in 3.1). In addition the undistorted image will show less of the scandltle distorted image
(see Figure 2.8). Itis possible that some image region containing a stahiesfesy be cropped by the
undistortion of the image.

2.4 Triangulation

Section 2.1 of this chapter introduced the pinhole model, which is used to emudagtesibction prop-
erties of real cameras. In 2.2 a distortion model was introduced on top pfrthele camera model so
that radial distortion of real lenses can be compensated. Howeveundarhental problem is still un-
addressed. Up until now the whole sensor information gathered by thea#@#ill 2 dimensional and
does not provide any depth information about the projected 3 dimensianial. Whis becomes apparent
if the basic projection equation of the pinhole model (2.2) is taken into accé&inte the distortion
model basically just describes, at which image coordi@ate = (u u;i; Vi)' the pixel at perceived
image coordinat€g:; = (U g:;Vg:i)' would be found on an ideal camera, a properly calibrated camera
is not able to gather more information than the basic pinhole camera model.

In the following it is assumed that the camera is correctly calibrated and thereage coordinate
Qi = (u;;v;)' is not subject to any further distortion. To simplify things further, displageroéthe
image centeR is neglected. In other words the basic pinhole model with the virtual image pléir
used (see equation (2.2)).

From the pinhole camera model a line on which an observed Byilies can be de ned. If the
projectionQ; = (u;;v;)T of P; and the focal length is known,P; has to be somewhere on the lige

0 1

Ui
g: %Vi X: 2R (2.22)
f

Remember that the optical centeris de ned as the origin of the camera coordinate system. Therefore

may be restricted t&R* . However as long as no further information abouis known, the above
equation is not suited to determine the 3D positioRof

To gain 3D information from normal camera images, at least 2 images takemfdifferent positions

are necessary. The technique introduced in the following is cailtgulation Assume two calibrated
identical cameras observe the same scene. Both cameras are positiamguanigay that their pinhole
planes are coplanar and their optical centers are apart by a knowncdibtalso referred to alsaseline
in stereo visioncontext. Also both cameras are orientated the same way (i.e. they look in the same
direction). To distinguish the cameras they will be referred to as “left” aight” camera and their
corresponding variables will be marked with supersdriphdr. Both cameras observe a pot =

AN ANALYSIS OF VISUAL MONO-SLAM



2.4. TRIANGULATION 19

(xi;yi;zi)" which is projected a®! = (ul;vl)T andQ! = (u!; V)T, as depicted in Figure 2.9. Without
loss of generality it is also assumed that= VI holds, but the equations below could be extended to the
more general case wil&H 6 v/ . Observing the same poiR in two different images allows for a depth
estimation and subsequently for a estimation of the actual 3D positiBn @fccording to the intercept

theorem the following holds:

z f_QQf_b (u u)

2.2
Zi b b ( 3)
withf = f! = f' (since both cameras are identical). From (2.23) follows directly
b (u u)_ b _ _ bt Df
2 T oz ) ATUu u (e.24)

with uj = ul  ul, baselineb. Distanced is also known as thdisparity. For a visualization of (2.23)
and (2.24) please refer to Figure 2.9. Equation (2.24) implies that the depftpoint P; is inverse
proportional to the disparity u;. That means that if the disparityu; is large, a small change in the
disparity does not change the depthmuch. However if u; is nearO a small disparity change evokes
a large change in depth. This also implies that the depth resolution obtainedrnutation decreases
the farther away an object is from the optical center of a camera. To ilestre fact, please consider
the following example: Assume two cameras wlith- 200 mm;f' = f" = f = 8mm;dy, = d, =

8 m; 2 fl;rg, whered, describes the physical size of one pixel in direction of thaxis on the
image sensor indicated by Three different points;; P; andPy are observed with their corresponding
depthzi = 1m;z = 10m;z = 100 m. Describing the deptl; as a functiorh dependent from u;
according to (2.24) follows:

bf bf 1600
h( u)=1z= m =) u.—z—i—mmm—lﬁmm
The smallest detectable change in the disparity corresponds with the pipys&taized, . This gives:
h( u+dy)= bf - 1600 mm  995mm

ui+d, 1:608

That means at a distance bfn the exemplary setup can distinguish between differences in depth of
5mm or more. Analogously foP; andPy follows:

bf 1600
= — = — =0:16
Y= 2 T 10000™™ mm
bf 1600
h it dy)= = mm 9523 mm = 9:523m
G+ d)= =g, = 0168
bf 1600
= — = — =0:01
Uk 2 100000mm 0:016 mm
h( uc+dy)= bf _ 1600 mm 66666 mm = 66666 m

ug+d, 0024

Thus at a distance df0 m the smallest difference in depth the exemplary setup is able to distinguish is
477 mm = 0:477 mand for far away objects like poift; the depth resolution decreases dramatically to
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33:3m. Thisis an inherent problem of stereo vision. Though depth resolutidarfaway objects can be
increased by increasing baselimthis does only help to a certain degree, since depth resolution does not
decrease linearly (as shown above). Furthermore an increasdihdasight inhibit depth estimation
for close objects, since close objects might not be in the eld of view of batheras.

Triangulation can also be used to estimateandy; ( 2 fl;rg) of pointP;. If b; U andul are
known the following equation holds:

X7i2 Bl :) X, = ZiL;—i; 2f|,rg (225)

ioVg oy :ziz‘%i; 2flirg (2.26)

Thinking of both cameras as ostereo camergives a new optical cent&. atLZO'. Since the camera
coordinate systems of the “left” and “right” camera had the same orientatignatbesimply substituted
by one coordinate system with the same orientation and its orighyinWhile equation (2.24) is not
affected by this modi cation, (2.25) has to be slightly changed to

Xi+g_u _ . __u b
Z P XiTag 5

Substitutingz; according to (2.24) gives

bful b_ by b_ b 2 u u b u+uf

f u) 2 d oW 2 2 d oW od o 2 uj
W o bay
SRR S (T RT Sl RS

(2.27)

(2.28)

Usually the camera setup is not as convenient as depicted in Figure 2®inEafé-the-shelf stereo
cameras the pinhole planes are generally not perfectly coplanar ancosimeneonstraints might not be
satis ed. In theory it should still be fairly easy to compute the deqtlof point P; observed by two
cameras. As stated in equation (2.22) for each camera a line can be dmnegdichP; has to lie. If
the position of the optical centers of both cameras and their orientation in tiet @eordinate frame are
known, pointP; should be at the intersection of ling'sandg’. Whereg' denotes the line from equation
(2.22) of the “left” camera transformed in the world coordinate systemdarttie transformed line of
the “right” camera. In reality however, chances §bandg’ to intersect a quite small, due to calibration
errors and the discrete nature of the image sensor with its associated elggtiiion. One approach to
solve this problem constructs the line segment perpendiculgirandg’, intersecting both. The center
of this line segment is closest to both lines and therefore a meaningful estif@tibn Several other
approaches exist as well, but are beyond the scope of this thesis.t&restad reader is referred to [22]
for more details.

Up until now a setup of two cameras (or one stereo camera) were cathidier static environment
the same methods can be applied with a single camera. Keep in mind that onememtiis that the
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Figure 2.9: Triangulation from 2 cameras. Since the pinhole planes tif bameras are coplanar and their viewing
direction is the same, in both camera coordinate systemdepih for pointP; is the same! = zI and therefore
only labeled once az in the image. Of course this does not hold necessarily forother coordinates oP;.

In the depicted scenel 6 x! holds. The individual optical centers are denoteddisandO" respectively. If
both cameras are combined to a stereo camera the opticel Gris in the middle of line0'O", marked in red.
Please notice that the virtual image plane is depicted adsté the image plane to directly correspond with the
used mathematical formulation.

position and orientation (qrosg of both cameras need to be known. Therefore in a static environment
there is no difference between two cameras observing poiat the same time from given posgsand
p’ or one camera observirRgy at two different times from posgs andp' .

Above it was always assumed that for a 3 dimensional gRjimt ( X;;y;;z)" the image coordinates
Ql =(u!;vhT andQl = (u!;v)T ofits projection in two imagek' andl " are known. In reality this is
most often not the case. How to nd a correspondence in intdge image coordinat@! =(u !;v!)T
of imagel ' will be shown in chapter 3.
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Chapter 3

Image Processing

Chapter 2 dealt with camera models and how to estimate the 3D coordinatesiof B;po ( X;;yi;z)"

observed in two images from two given different pope®’ . Up until now it was assumed that both
projectionsQ! = (ul;vl)T andQ! = (u!;v/)T of point P; on both image sensors are known. While
that is true if we assume th&, p' andp’ are known, the camera position and orientation and point
positions are not known in thelSUAL MoONO-SLAM-scenario, but need to be estimated. Establishing
correspondences between two projecti@h; (u };vi')T andQj = (u {;v{)T of point P; on the image
sensor are crucial for depth estimation (see section 2.4) and therefateefwhole VsuaL MoNoO-
SLAM approach.

This chapter will discuss how stable pairs of image coordin@leandQ! can be detected in two
images observing the same scene from slightly different poses can béiskstd. Furthermore some
basic image processing techniques are introduced. First a brief overfithe used terminology and
data structures in computer vision is given in the next paragraph.

The origin of an image coincides with the top left corner in computer vision,atdtle top left pixel
is at position(0; 0). Accordingly if the image has a dimensionwidth  height the other corners are at
positions(width ~ 1;0), (0; height 1) and(width  1;height 1). Each pixel in turn is represented
by an 8 bit value in case of gray-scale images, thus providing 256 diffsfeades between black and
white. Color images usually use three 8 bit values to represent one pixadt.fibaning depends on the
used color model (HSV, YUV, CMY (K)...), among which the RGB color middg@robably the most
widely known and used. In the RGB model the rst 8 bit value represemsthount and intensity of
red for the current pixel, while the other two values repregesn andlue. For more information on
color models, their advantages, disadvantages and methods of conygisise refer to [22]. In the
following only gray-scale images are considered, if not explicitly statedwibe. This is in accordance
with most image processing techniques, since gray-scale images areil@sthaa color images and
usually provide suf cient information about the environment.

Firstly it should be noted that in image processing almost never the completatawf an image
is used. This has two main reasons. The rst and more important reasat iIthimage data tends to
be relatively unstable and is as such quite infeasible for comparison bretweémages. For example
in theory motion in a sequence of images taken from the same pose could tted&igjust comparing
each pixel with the pixel at the same position in the subsequent image. If tekipithe subsequent
image has not the same gray-scale value (or values in case of color imagagjuld assume that some
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(@ (b) (c) difference of (a) and (b)

Figure 3.1: Image sensitivity to lighting conditions. In sub gurés) and(b) are two images taken subsequently
by HERCcULESWebCam Classic. Though they appear the same, due to slighgeh in lightning conditions they
actually differ.(c) depicts the difference as binary images. Pixels in whitecate a difference between the pixels
of (a) and (b) larger than a given threshold, while the défere of black pixels is below the threshold. Used
thresholds are 186:7% white pixel), 4 85:9%), 7 2:6%) and 10 0:5%) from top left to bottom right.

movement in this area has occurred and thus a different object with eediffgray-scale-value (RGB-
value) is observed at this pixel. In an ideal environment this naive apprmight work, in reality there
will be too much noise in the images for this idea to be feasible. Cameras tendxtdmely sensitive

to changes in lighting conditions (see Figure 3.1). Especially if camerassace autdoors lightning
conditions will change and vary constantly.

The second reason is just the amount of data which would be impractical iy apgtications.
Consider that a common low-cost camera like tlErRiduLESWebCam Classic provides a resolution of
640 480 = 307200 pixels per image. Dependent on the frame rate of the camera 3fis-&h be
used to establish correspondences, estimate 3D positions for deteatespoodences and what other
operations might be necessary in an online application. That would (inyanaére implementation)
leave up t00:1953 sto try to nd a suitable correspondence in the remaining 307199 pixels fdr ea
single pixel, not taking into account that usually other computations havedgtake as well.

Furthermore a single pixel does not contain much information, while an gatipa of adjacent
pixels may indeed contain more information than its individual parts. Suchgregafion is commonly
referred to ageature Different feasible techniques exist how to select pixels to create sieatae, but
mainly the common goal is to create more robust measures of comparison heliffes=nt images or
to establish correspondences between posit@ns (u!;v))T andQ! = (u!;vl)T that belong to the
same 3D poinP;, observed in imagel§ andl .

Section 3.1 will introduce some approaches to detect features in a givea andgliscuss their ad-
vantages and disadvantages. Afterwards section 3.2 will brie y dissus®e general techniques related
to image processing.

3.1 Image Features
As stated above robustness and repeatability are two major goals foefeditected in an image. This

section is divided into two further subsection, which will present two diéffiéapproaches to tackle this
problem. In subsection 3.1.1 early approaches will be presented adjgroadled corner or interest point
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(a) Original Image (b) Sobel Filter (c) Canny Edge Detection

Figure 3.2: Edge Detection: To the original imade) two different edge detectors were applig¢td) shows the
result of the so called Sobel Iter , whilé) depicts the result of the canny edge detector [10]. Notie¢ tiine
edges in (b) are much thicker than in (c), which might not glvlae desired. Output however depends in both
techniques heavily on the used parameters.

detectors / operators. Though not as powerful in themselves as lgteaahes presented in subsection
3.1.2, they still have their appeal nowadays, mainly because of theinfdstasy computation.

Furthermore as a preface before the details of implementation are introdusidrt de nition of
terms is needed. In the literature the telwonsner, interest pointandfeatureare used somewhat ambigu-
ously. In this thesis corner and interest point will both refer to a spedsiton in the image and the
pixel present at this location. How such an interest point differs frommal pixels will be explained in
3.1.1. Afeature is de ned as an interest point with the addition of some casapameasure.

3.1.1 Corner Detectors

To achieve the robustness a common technique is to detect image regions wgth grddient (i.e.
corresponding to visual edges). Several approaches for edgetida exist, among which th8obel
operatorand Canny edge detectd 0] rank among the most popular and their results are depicted in
Figure 3.2.

Edges detected in one image usually have a good chance to be detectezbmusuth images. How-
ever to establish correspondences for single 3D points needed fayulagion (see section 2.4) edges
are not suitable. While edges show a large gradient in the image data gierganto the direction of the
edge, responses to image Iters moving along the direction of the edgetarewvefry similar. Therefore
it becomes dif cult to establish pairs of image positid@# andQy, even if corresponding edges in two
images are detected, as long as the camera movement is unknown. This isaisods theaperture
problem

To improve repeated detection and thus establish pairs of positions beldogigprojection of the
same 3D point it was proposed to use corners instead of edges. Usoallyauld expect a corner to
be at the intersection of two edges, but most so-called corner detectoadla nd also edge endings,
local intensity maxima or minima or points at local maximal curvature along a cBiease keep this in
mind if the term corner or corner detector is used in the following.

One of the st algorithms to detect such interest points was proposed bgvdo [34]. Moravec
de ned a corner as an image point with low self-similarity. This is tested foh g@el in an image by
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comparing a small squared image patch around the pixel with the image patdmdjaaent points in
vertical, horizontal and two diagonal directions. For patch comparisoauireof squared distances
SSDfor short is calculated. The minimum of the calcula&8Ds will be the interest measure for the
current pixel and local maxima in the interest measure indicate an inteiiesgpthe current pixel. For
uniform areas the interest measure will be close to zero, sin@&3bshould not differ signi cantly. If an
edge is present in the direction perpendicular to the edge$iavill be great, but in direction of the edge
it should be small. This way edges should mostly be rejected, since the minimumaafitulate ESDs

is used as interest measure. The main weakness of this detector is padsiblgdssi cation of edges
as interest points. Moravec proposed angle$sobetween the directions used 86EDcomputation. So
edges with angles of odd multiples of approximat@®5 might be detected as corners.

To create an isotropic detector Harris and Stephens [24] improved on thédea presented in [34].
Their detector is widely known as the “Harris corner” operator / detéstoomputer vision literature. In
order to make their detector isotropic, the weighted sum of squared dist@®8, ) is used to compare
image patches. THeS0), over an image patghwith dimensiongpy+1 pn+1) compared to a patch
of the same size shifted l{x; y) in direction of theU andV axes of the image can be de ned as:

R Rn
SSOy (X;y) = w(uv)(l (uv)  T((u+ x;v+ y))2 (3.2)
u=0 v=0

wherel (u;v) 2 Z*  255denotes the gray-scale value of atimage positigw) andw (u; v) the cor-
responding weight. The terin(u + x; v + y) of equation (3.1) can be approximated by Tailor expansion
as
@I @l
| + X;v + | (V) + X— + y—

(Ut x;v+y) (u;v) X@u y@v
Where%Land %{,denote the partial derivatives b{u; v) in direction of theU andV axes of the image.
The partial derivatives in turn are easily computed by

h i

@

@ 101 (3.2)

@u 5, 3

@l .

o ! 905 (3.3)
1

wherel  k indicates the convolution of the image with the speci ed ketnellhese approximations
allow for (3.1) to be written as

%W )Qh @I @I 2
SShy (x;y) w (u; V) Xau Yau (3.4)
u=0 v=0 n # |
R 3n @? @@l
=y wey) g B9
u=0 v=p @u@v @v
= x y H X
y
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whereH is called “Harris” matrix. To actually achieve an isotropic detector, the weightimction
w (u; v) should be smooth and circular around the center of image jpatite the Gaussian function:

0 1

w(u;v) =exp @

wherep,, andp, denote width and height of patgh To determine whether a corner is present at
the center of the selected patphor an edge no distinguishable element is present the Harris matrix
is examined more closely. Dependent ondtgenvalues ; and » three different cases need to be
considered:

If 1+ Oand > O, nointerest pointis present
If 1 Oand , 0, anedgeis detected
If 1 Oand > 0O, acorneris detected

To avoid computation of eigenvalues in [24] the following measure folinterest respons® is pro-
posed:

R= 12 (1+ 2%=det(H) trace(H)? (3.5)

where parameter is a constant that has to be determined empirically. For an interest redponse@

a corner at the center of the patch may be assuiRed, 0 corresponds to an edge aRd 0 implies
no distinguishable image region. Additionally only those points, where the gttezsponse forms a
local maximum are actually considered to be corners. Dependent onplieasipn these points can be
further Itered by applying a minimum interest resporRgin 2 R* as an additional threshold. Results
of the Harris operator depend heavily on the given parametersRf,n and the size of the compared
image patches, thus nding the right parameters for a speci c applicationtriagle some ne tuning.
OPENCYV provides a ready- The defaultr@NCV settings are image patches of skzke3and =0:04,
but can be changed to adapt to the needs of different applicationrgxen&xemplary results of the
Harris operator are depicted in Figure 3.3.

Closely related to the Harris operator is the detector presented by Shoaerakiin [42]. The results
of this detector are sometimes referred to as “Good Features to Track&dhafter the title of their
rst publication. Shi an Tomasi showed in their experiments tinat ( 1; 2) though more costly to
compute provides a better measure for corner strength than interesthiseRp(see (3.5)). Finding the
appropriate parameters for the Shi Tomasi detector is crucial and migohbewhat tedious just like in
case of the Harris detector. On the bright sight the Shi Tomasi detedqué$ta2 parameters to adapt,
namely response threshold and patch size. An implementation of the algorithaiscabe found in
OPENCV. In [13, 16, 20] Davison et al. use this interest operator to nd slgtabndidates for features.
An exemplary application of the Shi Tomasi detector on an image is depictedureRBg

The corner detectors discussed up until now are able to detect intenststip an image which can be
recovered in a similar image with high probability. However means of compabistween the interest
points of two different images are needed, since the interest respoeeddes not contain enough
information to ensure an appropriate pairing. A common approach is to cerimpage patches with the
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(a) low threshold (b) high threshold

Figure 3.3: Harris Corner Detector{a) shows the result of the Harris detector for image patche&zefs 3,
= 0:04 and a low threshold (dependent on the strongest intergatmes for the image)b) depicts the results
using a high threshold, while leavingand the patch size unchanged.

interest point at its center from the different images. Several compatgstiniques of image patches
are discussed in detail in 3.2.2. The interest points together with their assbtrsage patches and an
appropriate comparison mechanism compose a feature, according torfimalén the beginning of
section3.1. Still these interest point operators suffer from some limitatioamely they are nascale
invariant or rotational invariant Scale invariance means that an interest point is detected in images,
depicting the same scene from different distances, which results in fioojeat different scales on the
image sensor. The lack of this ability is inherent in the simple computation of thetoetelescribed
in [24, 34, 42]. Observed from a different distance (i.e. in a diffesmale) interest points may vanish
if several pixels are combined to a single pixel (zooming out) or a previaisle pixel might be
represented by a number of pixels of nearly identical intensity (zoomingArgommon technique to
achieve scale invariance in image processing is the so dallege pyramicf images where one image
is scaled to different resolutions, thus simulating zooming in and out of &sd¢émwever this is more
of post-processing step, possibly including accumulation of severaésttpoints detected at different
scale into some combined information and would diminish the computational fasnties of the corner
detectors. Details to the concept of image pyramids can be found in [1].

Rotational invariance in turn means that an interest point should be detextesdccessfully matched
if the camera is rotated around #g-axis. While the detection of interest points in a rotated view does not
pose a problem to the Harris operator and the Shi Tomasi detector, saycarthisotropic, establishing
correspondences to interest points of an image under a different ropaties a problem. If the rotation
is not known and large, the comparison of two image patches (see sectidyv@ElPmost likely fail.

In the following subsection some feature descriptors are introduced \ghinkd popularity in recent
years. Though computational costly, they are scale and rotational iniyaoaust and provide their own
means of comparison.
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(a) low threshold (b) high threshold

Figure 3.4: Shi Tomasi detector(a) depicts the results of the Shi Tomasi detector using a loastiold based on
the strongest response in the image, whiléina high threshold is used. In both cases the size of the imagk pa
is3 3 pixels. Notice that the results of this detector are venyilsinto the Harris detector depicted in Figure 3.3,
albeit not exactly the same.

3.1.2 Feature Descriptors

The algorithms introduced in this subsection detect interest points and cofopalesuitable feature
point candidates descriptor The descriptor is basically a vector which stores all the information needed
to compare one feature with another one. The descriptor does not coamaimage data like an image
patch, but higher level information calculated from the underlying imageatadaransformed in such
a way that the contained information becomes scale and rotational invarinatcomputations for a
feature descriptors is, compared to the computations needed for ceteetats (see subsection 3.1.1)
and retrieving an image patch surrounding the corner, quite costly, sthéhealculation of the features
presented in the following will be slower compared to corner detectors. Stilyroamputer vision
applications employ feature descriptors, especially in the domain of obfmmiion. Typically in this
application scenario multiple descriptors are used to describe a single dfgeceal-time applications
with high frame rates (30 — 60 ms) where computational speed becomed osw@dy simpler features
based on corner detectors are used.

In the following the algorithms for two feature descriptors are sketchedtlythe “Scale Invariant
Feature Transform” (SIFT) which was introduced by Lowe [30—32] @ be considered as one of the
most successful and widely used feature descriptors today. Sedberdi$peeded Up Robust Features”
(SURF) by Bay et al. [4] which re ned some ideas presented in [30—-3)th algorithms will be
introduced brie y only, since a detailed discussion would be beyond thpesof this thesis.
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SIFT Scale invariantinterest points for SIFT-features are found fourtidgalculation oDifference
of GaussiangDoQ over an image pyramid (see [1]). TB®Gis de ned as
D(uv; )= L(uvik ) L(uv; ) (3.6)
=(Guv;k ) G(uv; ) 1 (uv)

withL (u;v; )= G(u;v; ) | (u;v)where denotesthe convolution ofimagdu;v) and Gaussian
kernelG (u;v; ) de ned as

1 (u? + v?)
5 exp 52

G(uv; )= >

To ef ciently calculate (3.6) the imagk (u; v) is repeatedly convolved with the same Gaussian kernel
G (u;v; ), until is doubled. The convolved images are stored andDb@is computed by simply
subtracting each convolved image from its predecessor. Ongeloubled the last convolved image is
rescaled to half its original size and the process begins anew (with mudvolegsitational cost). Please
note that instead of rescaling the image, convolving the image further woltdttlygesame result, but the
convolution of a smaller image is more ef cient in terms of computation. All imagé# uns doubled
(i.e. images of the same size) composeoatavein the terminology of [30-32], while the convolved
images in the same octave are in differecdle Potential interest points are at local minimal or maximal
in theDoGs. These are detected by comparing each pixel with its 8 neighbors on thessalmand the

9 neighbors on the scale above and below. A schematic of this algorithmigtetem Figure 3.5.

Please note that tHeoGis a computational ef cient approximation for the Laplacian of Gaussians.
In [29] Lindeberg showed that the Gaussian function is the only suitabiekér scale-space. Mathe-
matical details why th®oGclosely approximates the Laplacian of Gaussians can be found in [32].

After obtaining the potential key points, these are tted with sub-pixel aamoyuto their correspond-
ing local extrema (i.e. the key point will usually not correspond to a singlel piout refer to a position
Usub; Vsub With Usyp; Vsup 2 R* with 0 ugyp < width and0  vgyp < height, wherewidth and
height specify the dimensions of the image). How this is done, is explained in detali].ilAfger the
correct position of the interest point is determined the function values apditi$ is compared with a
threshold, rejecting low function values (i.e. local minima and maxima with a smallbsvalue) to
ensure stable interest points.

Since theDoGalso has strong responses along edges and edges make for pooatmealizie to
aperture the remaining points are Itered once more. Similar to edges in 3.1rg wiesinterest measure
alongside the edge was small, the principal curvature along an actuaiveddgbe much smaller than
perpendicular to the edge. The principal curvature can be determingatéining the eigenvalues of the
HessianH of theDoGs de ned as
" #

DUU DUV
DUV DVV

H =

whereD denotes thd®oG(see 3.6) and ,; Dy ; Dyy are the partial derivatives along the andV -

axes. Partial derivatives are calculated by convolution of the imagedingato equations (3.2) and
(3.3). Similar to the Harris detector [24] (see equation (3.5)) the actual utatipn of the eigenvalues
can be avoided, since just their ratio is of importance. If the ratio of botmegdees differs strongly
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(a) Octaves and scales in SIFT

Figure 3.5: Image pyramid of SIFT-algorithm(a) depicts the construction of tH2oGs. To get from one scale
image to the next scale (shown in yellow), the current sct®nvoluted withG (u;v; ). The stored scales are
used to calculate thBoGs. In (b) the neighbors for a potential interest point are shown. Tiberést point is
displayed in red, while its neighbors are colored in greenthBgures (a) and (b) are based on gures shown
in [32].

from 1 the interest point can be assumed to lie on an edge. To obtain the rafithe eigenvalues
1; 2 the following method is proposed. Without loss of generality it can be asstimaed; 2 With
1=1 2;r2R*;1 r. This assumption yields

trace(H)? _ (1+ 2)2_ (r 2+ 2)2 _ (r+1)?
det(H) 12 r - r

The term@ has its minimum for equal eigenvalues (ire= 1) and increases for other valid values
of r. In [32] a use of = 10 is suggested. That means when the ratio between the eigenvalues becomes
grater thariLOthe interest point is assumed on an edge and subsequently discarded.

The remaining interest points will be assigned a orientation in order to eratenal invariance.
This way the information contained in the actual descriptor (see below)eapbesented in relation to
the assigned orientation. Orientation for an interest point will be determinedlbulation of a gradient
histogram in a region around the interest point at its correspondingBdaigv; k ). According to their
direction the gradients are arranged in the different bins of the histognanwveighted with their magni-
tude. Thus a gradient of great magnitude becomes more in uential thadaegt of small magnitude. If
resulting histogram does not clearly indicate one direction, an interestmpainalso be assigned more
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than one orientation. For details of this process please refer to [32].

After suitable interest point locations were found by the previous stepie stale and rotational in-
variant, the actual measure of feature comparison needs to be corgstnasteely the feature descriptor.
The information contained in the descriptor should make the feature morstydaking into account
different lighting conditions for example. To calculate the descriptor a véstmonstructed by calculat-
ing gradients in a neighborhood around the interest point and weightirgraldéents according to their
magnitude and a Gaussian with the interest point as its mean. All 4 all histograms are computed
around the interest point location, each histogram contaiinigs. The resulting information is written
into a vector of sizel 4 8 = 128. To make the feature descriptor robust to changing illumination
conditions, the vector is normalized (further details in [32]).

SIFT-features are matched by nearest neighbor search: Théudesecfa feature inthe rstimage is
compared to all descriptors found in the second image (or in case of odgeciition with descriptors in
a database containing the information for speci ¢ objects). Distance betiw@edescriptors is measured
by the Euclidean distance. The closest distahcbetween two descriptors is compared to the second
closest distancdy,. If the ratiog—; is above a certain threshold (in [32] a threshold of 0.8 is suggested) the
match is discarded due to ambiguity, in all other cases a correspondeénweebéhe nearest neighbors is
assumed. Please note that SIFT does approximate the nearest ne@gibbrty the so calleBest-Bin-

First algorithm which usekd-trees. This especially becomes important for object recognition tasks with
huge numbers of features, since a complete naive nearest neighbr s®uld be very time consuming.

SURF SURF-features, short for “Speeded Up Robust Features”, intemtioy Bay et al. in [4] seek to
reduce computational effort, compared to SIFT, while still maintaining a highafecorrect matching.
In the implementation of SURF-features another method to nd initial interestp@used. Instead of
the Laplacian of Gaussians (which was approximated bpt@for SIFT-features) the SURF detector
is based on the determinant of the Hessian Matrix of Gaussians repor23].if he Hessian detector is
de ned asdet (H (u;v; )) with
" #
Luu (Usv; ) Luv (Usv; )

v )= Lo (U;v; ) Lw(uv; )

3.7)

whereLy, (u;v; )= % denotes the second order derivative of the Gaussian convolution of the
image (see 3.6). The Gaussian kernel is therefore convolved twicedaogao equation (3.2) before
being applied to the imagelL,, andL,, are de ned analogously. The Gaussian convolution is in
practice accomplished by using a discretized and cropped kernel dfsize. In [4]L ;Lo andLyy
are roughly approximated by box Itei8,,, Dy, Dy (See Figure 3.6).

Since the approximation with box Iters is rather coarse just exchangipg L ,v andLy in equa-
tion (3.7) will yield different results from the original Hessian detector.b&ter emulate the Hessian
detector Bay et al. propose

det(H (u;v; )) DuwDw (0:9Dy)? (3.8)
This approximation is justi ed by observing

KL uv kF kD uu kF

KL KeKD urke =0:912::: 09 (3.9)
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Figure 3.6: Gaussian Kernels and Box Filtefs) shows a discretized kernel fog, (u;v; ) (see equation (3.7)),
with = 1:2. Below in(e) the 3D plot of the kernel is depicted. Please note that(u;v; ) can be achieved
by rotating (a) by 90. In (b) the kernel forL, is shown and its corresponding 3D plot is depictedf)n (c)
and (g) picture the box lterD, approximating toL,,. Accordingly box lter D, displayed in(d) and(h)
corresponds to (b) and (f). Note the different scales of taesSian kernels (e) and (f) compared to their box lIter
approximations (g) and (h) which results in the adaptiorheftiessian detector in equation (3.8).

wherek kg denotes the Frobenius norrny,, Ly the second order of a Gaussian convolution with
standard deviation = 1:2 andD,, Dy the corresponding box lters of siz¢ 9 (see Figure 3.6).
Equation (3.9) yields the the ratio of the resultant convolution of box IterragimationsD , to Dy
compared with the ratio of the convolution bbf,, andL . This in turn gives a valid measure how the
determinant has to be modi ed, leading to equation (3.8). A variance »fl1:2 and box Iter of size

9 9are the initial values in the original SURF implementation by Bay et al. to detelet swariant
interest points.

Before the box lters are applied, thategral image(see subsection 3.2.1) of the input image is

created. Integral images allow for a fast alternative to the image pyransitd&aa of iteratively applying

a lter to the output of the previous layer and sub-sampling the image for tkieantave the Iter size

is increased. This has basically the same effect, but is usually not decad® increased lter sizes
usually greatly increase the needed computations. However since box aterapplied to an integral
image, the computational effort to calculate the result is independent ofitdresize. And since all
Iters are applied to the same integral image the whole process could easilynecim parallel, taking
advantage of multi-processor platforms. Similar to SIFT, potential interéstgoare detected as local
extrema in a neighborhood on their and the adjacent scales. Afterwarlde#tion of the interest points
is calculated to sub-pixel accuracy, also using the approach of [9].
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(@) (b)

Figure 3.7: Object recognition with SURF-features in cluttered deskiremment. The object is shown in the
upper left corner ofa) and(b). Estimated correspondences are indicated by red linesicéNtttat both cases
(a) and (b) contain false matchings (though more obviousj) However the majority of features are matched
correctly, therefore object position and orientation ie iflmnage can be estimated.

Next the orientation of the feature will be estimated. Please note that therexidt® a version of
SUREF, called U-SURF where the step is omitted and orientation is assumed toidgiet.ugince the
camera will not heavily rotate around its owi-axis in many application scenarios this is a sensible
measure to reduce computational effort in these cases. Instead ofhisiograms of gradients like
SIFT, SURF determines the orientation of a feature by calculating sevaeathiiavelet responseslih
andV direction at different scales. Since Haar-wavelets are box lters, lleady constructed integral
image can be reused. The descriptor itself is also constructed of wassbeinses over a squared area,
centered at the interest point and rotated accordingly to the previousiyrdeed orientation. In order to
speed up the comparison process of features SURF-feature useiptdesf size64 (instead of SIFT's
128), which increases comparison speed. The actual comparison wotkikgisor SIFT-features.
Exemplary object matching, using SURF-features is depicted in Figure 3.7.

An interesting comparison between SIFT and SURF can be found in [#&)erfeatures in outdoor
images taken during different seasons and thus very different lightingditions are compared.
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3.2 Basic Image Processing Techniques

Many applications in computer vision bene t from high frame ratessGAL MoONO-SLAM makes no
difference and update frequencies signi cantly below60 Hz will seriously hamper the performance
of the algorithm. High frame rates of course imply that all needed computatisreng image need
to be done before the next image is retrieved, which leaves a time window -ef6B0ns per image,
dependent on the frame rate of the used camera. In this time window existtnggeneed to be matched,
eventually new features need to be acquired, all computations associtit¢detxtended Kalman Iter
(see section 4.1) need to be completed and results need to be visualizeds &cttunt it is important
to speed up computations as much as possible, even though this implies someiiigace on the
implementation of algorithms, since naive solutions which are easy to progrdmralerstand tend to
perform rather slow.

To provide a short example for this remark consider the representatioragke data. Since images
are 2 dimensional it seems convenient and natural to represent arr@b#gaple image of siagidth
height as a two dimensional arragng [width] [height] of char or any other 8 bit data type. This way
the pixel at positior(u;v)T could simply be addressed by usimgg [u][v]. During image processing
oftentimes data needs to be temporarily copied, allocated, freed and settireSince all the above
mentioned operations perform much faster on one dimensional arrayasllyusnages are internally
represented amg[width  height]. That means of course that addressing a F(IXBV)T becomes less
convenientifng [width v +u]).

In subsection 3.2.1 the concept of integral images will be presented, whéchsed in the SURF
algorithm and prove also bene cial for other purposes. Thereaftetdhic of image patch matching
is discussed in subsection 3.2.2 which will also serve to exemplary illustrate tloetanpe of ef cient
computation in image processing.

3.2.1 Integral Images

Integral imagesvere rstintroduced in 1984 by Crow [15]. Each pixelin an integral imég contains
the sum of the intensity of all pixels to the left and above of this pixel in the algmage and the
intensity of the pixel itself. Formally this can be expressed as

X X
Int (u;v)= I u®vO (3.10)

ud uvo v

wherel (u;v) denotes the gray-scale value of the pixel at posifigrv) in imagel . The computation
of (3.10) can be done ef ciently in a single pass over imhd®y employing

Int (u;v)=1@;v)+Int (u Lv)+Int (u;v 1) Int (u Lv 1) (3.11)

To further speed up the computation oftentimes an additional column abovesthelumn and an
additional row left of the rst row are added to resultant the integral imaldeese rows are lled with
0Os, so that equation (3.11) can be employed without any special corigienfithe boundaries. From
(3.10) and (3.11) follows that computational cost for the integral image@s(im) wheren is the number
of pixels contained in one image (per pixel 2 additions and 1 subtractioreaded).

Still the bene t of integral images might not be obvious at rst. Once cargtd, an integral image
allows the summation of the image intensity in a rectangular area speci ed by itsdawers in constant
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Figure 3.8: Summation over rectangle in integral image. To get the suthefintensity of all pixels inside the
rectangle given byl andlIr (colored in gray) the rectangle specied I6§;0) andIr is added to the rectangle
speci ed by(0; 0) andul. The rectangles marked by vertical lines (de ned(By0) andur) and horizontal lines
(de ned by (0; 0) andll) are subtracted. Due to the nature of the integral imageekded sums can be accessed
by 4 simple references (see equation (3.12)).

time. Consider the corners of a given rectangle as uppefugftvy ), upper right(uy, ; vy ), lower left
(uy;vi) and lower right(uy, ; vir ). The summation over all pixels in the de ned rectangle is given by
Hir Xir
F(u;v)=Int (Uy;ve)+ Int (Ur;vie)  Int (Uur;vee)  Int (uisve)  (3.12)
U=U gy V=V

A graphical representation of equation (3.12) is provided by FigureTh& property described in equa-
tion (3.12) allows for very fast calculation of box lters, simply by calculatiihg sum of the rectangle
speci ed by the Iter according to equation (3.12) and multiplying it by the weigfthe box Iter. This
characteristic was rst exploited by Viola and Jones [49] for objecbggition, using cascades of Haar
wavelets as classi ers. Since then it has been used in other applicatioresample the approximation
of the Hessian of Gaussians in scale space in SURF-features (seetfub8.1.2 SURF). It also be-
comes very useful in the comparison of image patches, as shown in 8abs2.2. It should be noted
that it is sometimes bene cial to also calculate the integral image of squaredistingg.

X X
Int sq (U;v) = I u
ud uvo v

0,02 (3.13)

The integral image of squared sums can be calculated like the integral imagmgieaass simply by
exchanging (u;v) in equation (3.11) with (u;v)2. Thereforelnt andInt sq are usually calculated
together in one single pass over imdgérequired.

3.2.2 Image Patch Comparison

The following subsection is supposed to give a short overview how imagisage patches can be
compared ef ciently. In the following the terms image and image patch will be ugedchangeably,
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since it makes no algorithmic difference if whole images or just parts of themcempared. The purpose
of the comparison is to determine if in two given image patches the same scepietsdlelt is important
to note, that both images need to have the same wizkth( height) and the discussed techniques are
applicable to gray-scale or any other single channel images.

For this purpose a comparison functiér(l; | 9 is needed which gets two images as input and should
indicate if these images are similar or not. The perhaps most obvious idea ¢otkislvask is to just
calculate the sum of distances between single pixels in Imagesl| ¢

X X
Caist 1310 = I (u;v)  19u;v) (3.14)

u \Y

While (3.14) would correctly determine a distanceOdbr two identical images it would fail in many
other cases (a gray image would be considered similar to an image showingawtlitdack in equal
parts). Using the absolute distances instead of the subtraction wouldtabisgproblem. However it is
usually desired to weight one great difference stronger than many siffi@tedces, since this reduces
the in uence of random noise. Therefore t88Dis often considered a good measure of comparison

X X
Cesg 11190 = I (u;v)  19%u;v) 2 (3.15)

u \

Still (3.15) will have problems with images under different illumination.9u; v) = 1 (u;v) + k where
8u;v: 0 u<width,0 v < height, k 2 Z holds, then both images show exactly the same image
under different lighting conditions, b@ssg will indicate a difference betwednandl © Another problem
might be that the codomain &f;sq is dependent on the size of the compared images. This inhibits the use
of xed thresholds to evaluate results different from perfect matcigg (= 0). To address the problems
of the aforementioned comparison functions tleemalized cross-correlatiofebbreviatedNCCin the
following) is a suitable function. It is de ned as
. (- 0
Crce 1110 = EX X 1@uv) | 1%uv) | (3.16)

n 1 10
u v

wherel and|?are the mean values of imageand| ° respectivelyn = width height denotes the
number of pixels in the image patches andand o are the standard deviation of imagesnd| °
Contrary to the (absolute) distance of tAR8Dsmall results for thé&dCCdo not indicate good matches.
The range of values for thdCCis de ned asCncc(l;1 9 7! [ 1;1] where 1 indicates a perfect match
and 1 would correspond to a perfect mismatch (i.e. the image is compared to its iniraetgd). The
use of the standard deviation provides for robustness against chathgmination.

Obviously the normalized cross correlation is more costly to compute than &.13)15). Naive
implementation will not be fast enough to estimate a good correspondenceaiveiteble time window.
Consider the scenario that a given image patéh compared to a region of identical size in imdge
The objective is to nd the position where patch and image corresponcabesf the score of thelCC
is above a given threshold it may be assumed that the patch is depicted inrtho$ the image. Like
kernels, patches in this scenario are typically of odd width and heighh¢dutecessarily squared), so
that there is one center pixel which determines the position of the patch in the.ifflag image patch's
size is given byp,  pn and the search region in imagés denoted by, . S; can take various shapes,
most common are rectangles or circles around a given image coor¢inale but also a set of listed
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image coordinates would work. Since pafehvill not change it is assumed, that standard deviatign
and mearp are previously determined, the part of the image comparedmattound image coordinate
(u;v) is denoted ap, (u; V), its mean and standard deviationpasand p, . To simplify the expressions
it is furthermore assumed that the image coordinatgsandp, are the same, i.e. in both the upper left
corner refers tq0; 0) and the lower righttdpw  1;pn  1). The naive implementation ®CCmight
look like Algorithm 3.1. Note that the operations in lines 3 and 4 of Algorithm 3elagso loops, going

Algorithm 3.1: Naive Implementation oNCC

Please note that functiogetMean() andgetStdDev() include loops over all pixel i .
input :image patclp, imagel and a search regidp
output: correlation scordest_score and corresponding positidrest_pos

1 best_score 1

2 bestpos (1, 1)

3 patch_size pw pn

4 forall (i,j)inS, do

5 pi  getPatch( i;j)

6 p getMean( p) //'loop over all pixels imp, required
7 b getStdDev( pi) /['loop over all pixels i, required
8 sum O

9 forall (u,v)inp, do

10 sum  sum+(p(u;v) p) (pi(u;v) pr)

11 end

12 sum sum=(patchsize p, p)
13 if sum > best_score then

14 best_score  sum
15 best_pos  (i;])
16 end

17 end

over all elements g .

There exist however several methods to speed up the calculation dfeeg(16). Consider the
de nition of the standard deviation of an image pafcbf sizen = p,  pn with its upper left corner at
position(up; vp) in imagel :

v
u 1pg
1’:)(
_t (p(u:v) p)?
u=0 v=0
v 1pg 1 1pg 1 2
%le)( PX 1 X
=" — [ (Utupv+vy) — I (U+Uup;v+Vy) (3.17)
n u=0 v=0 n u=0 v=0

P P
This expression can be simpli ed, if a closer look is taken ttﬁ"zvo ! p" ! (p(u;v) p)2 This can be
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rewritten as

EL & P 1K 1
(p(u;v) p)P= p(u;v)?  2p(u;v) p+ p?
u=0 v=0 u=0 v=0
P 1K 1 , P 1P 1 ,
= p(u;v) 2p (p(u;v))+ np
u=0 v=0 u=0 v=0
P 1K 1
= p(u;v)>  2pnp+ np?
u=0 v=0
P 1 1
= p(u;v)>  np? (3.18)
u=0 v=0

Combining equations (3.18) and (3.17) results in

1
T

pu;v)?  p? (3.19)

<

1 P 1 1
n

u=0 v=0

If the integral imagdnt (see equation §.10)) gnd the integral image of squared Bumg,; (equation
(3.13)) are calculated beforehapd,and  P*y ' Pt p(u;v)? can be calculated very ef ciently as:

o= Int (up;vp)+ Int (Up+pw Livp+pn 1)

n
Int (up;vp+pn 1)+ Int (Uup+ pw 1;Vp)
n
and
A 1e 1
p(U;V)Zz Int sq (Up;Vp) + Int sq (Up+ pw  Livp+ pn 1)
u=0 v=0

INt sq (Up;Vp+ prn 1) Int sq(Up+ pw  1;Vp)

Since the computation dfit andint sq are inO (n) (n being the number of pixels) their computations
pays of quickly especially if several image patches need to be comparedérsksarch areas. However
optimization can be taken another step further. First consider the humefaquation (3.16) for the
case of comparing a patghwith a region of image of equal size and upper left cornery; vp). Letp

be the mean value of the de ned regionlin With a similar approach as for the standard deviation the
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numerator of equation (3.16) can be written as

P lp 1
(p(u;v) p)(I (utupv+vy) pr)
u=0 v=0
1 1
= pu;v)I (u+tupv+vyp) p(u;v)p pl(Uutupv+vp)+ pp
u=0 v=0
1 1
= (p(u;v) I (U+up;v+vp))  2npp + npp
u=0 v=0
P 1p 1
= (P(u;v) I (Utup;v+vp))  npp (3.20)
u=0 v=0

Though the rst part of the numerator with the double sum has to be computelbop, the second part
can be obtained by the integral image (see above). Employing both equaib@sgnd (3.20) results in
Algorithm 3.2.

Algorithm 3.2: Ef cient implementation oNCC

This algorithm combines the simpli cations stated in (3.19) and (3.20).
input : image patclp, imagel , search regio, Int andint sq of |
output: correlation scordest_score and corresponding positidrest_pos

1 best_score 1

2 bestpos (1, 1)

3 patch_size pw pn

4 forall (i,j)inS do

5 pi  getPatch( i)

6 i,sum  getPatchSum( Int,i,j, pw, Pn)

7 i.sum2  getSquaredPatchSum( Intsg, i,j, Pw, Pn)
8 sum_ppl O

9 forall (u,v) inpdo

10 sum_ppl  sum_ppl+ p(u;v) p (u;v)

11 end

12 numerator sum_ppl isum p

13 denom  (i.sum2 i_sum i_sum = patch_size) g
14 score  numerator =sqgrt( denom)

15 if score > best_score then

16 best_score  score
17 best_ pos  (i,))
18 end

19 end

The OPENCYV function cvMatchTemplate() uses some additional low-level optimizations to
Algorithm 3.2, but the basic principle is the same. Of course the overhaagutation needed for
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o Algorithm
Speci cations

3.1 3.2 cvMatchTemplate()
Patch Size Search Regionmspatch Mslpatch % of 3.1  M3fpatch % of 3.1
5 5 3 3 0.0433 0.0400 92 0.0457 105
5 5 5 5 0.1100 0.0766 70 0.0465 42
5 5 10 10 0.4239 0.2528 60 0.1067 25
77 3 3 0.0763 0.0400 52 0.0530 69
77 5 5 0.1947 0.0877 45 0.0503 26
7 7 10 10 0.7460 0.2778 37 0.1156 16
11 11 3 3 0.1643 0.0498 30 0.0492 30
11 11 5 5 0.4372 0.1015 23 0.0724 17

11 11 10 10 1.7474 0.3513 20 0.1151 7
21 21 3 3 0.5598 0.0925 17 0.1082 19

21 21 5 5 1.5366 0.2064 13 0.1100 7

21 21 10 10 6.0853 0.6708 11 0.2804 5

Table 3.1: Speed comparison faMCCcomputation. All run-times were determined experimensailee average

of 153000 runs on a Intel Core2Duo 2.26 GHz processor (noitiuiading used here). Still it is doubtful, how
reliable the measured run-times are, therefore run-timegpéage compared to Algorithm 3.1 is rounded to integer
values and should more be seen as a general indicator, théfeloa

the integral image and the integral image of squared sums pays off more gke $aarch area and
image patch become. In Table 3.1 a run-time comparison of the algorithms is depRiEase note
that patches of sizél 1land21 21 give stable results, smaller patch sizes may decrease correct
matching. Search regions up 1@ 10 pixels or even larger might temporary be needed isUAL
MoNoO-SLAM. Usually around 10 image patches need to be matched in one framat. dfl necessary
operations can be completed this can lead to a vicious circle, since missed fraduee larger search
areas in the subsequent frame.
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Chapter 4

VISUAL MONO-SLAM

After all the basics have been discussed in chapter 2 and 3 this chaptexmdin how the discussed
concepts and algorithms work together is¥AL MONO-SLAM.

In the rst section 4.1 the general concept of the Extended Kalman Filtetrisduced from a theo-
retic standpoint. Afterwards it will be shown how an EKF can be used to h8ipositions of distinct
feature points and the pose and velocities of the observing camera.fdreeresection 4.2 the state
representation will be de ned, while section 4.3 presents the transitiotifumalong its Jacobian. The
function to obtain the measurement prediction and its Jacobian are discussetion 4.4, followed by
section 4.5 devoted to incorporate the actual measurements gained bg featahing. The description
of the EKF algorithm for the YSuAL MONO-SLAM application is concluded by section 4.6 which
contains the update step along all related operations. The remainder dfdpigiccovers various issues
concerning the two different 3D point representations introduced itoged.2. First section 4.7 pro-
vides a mathematical analysis of the linearity of the depth estimation of both 3Drppiisentations,
followed by section 4.8 which discusses how additional features can beporated in the existing
EKF. Afterwards in section 4.9 conversion from one point representédiahe other is presented and
the chapter is closed by a brief explanation on the deletion of features irnkthe E

This chapter is supposed to fully illustrate the workings of an EKF at a \&mjldd level, since many
descriptions of EKFs in the literature are either on a very super cial lededre most of the details are
omitted or the EKF is discussed in a mathematical context without any applicatiégroand. Thus
the reader not familiar with the EKF in the rst place might sometimes get the imipresat its a priori
state estimation and its correction happen by “magic”. Hopefully this chapteshalv that no “magic”
but plain (and sometimes tedious) mathematics can be used to do all the worke Bef technical
details will be explained in their appropriate sections the main ideastM. MoNo-SLAM will be
presented rst.

VisuAL MoNO-SLAM will create a consistent 3 dimensional map of the environment by maveme
of a single low-cost camera. The environment will be represented bies3ipgpoints. As explained in
section 2.4 depth information can only be gathered if the same point is otddesueat least two known
poses. Therefore the pose of the camera needs to be estimated as wedstifitaion is done via
an EKF, assuming a static environment. Therefore changes in the mbdsigges are contributed to
camera movement. Dependent on the amount of movement and the depthirtfits parallax will start
to differ. Repeated observation of the same points and comparing the lootiwir projections with
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the expected locations re nes both camera pose estimation and point locgtimoatoon. The underlying
method is triangulation, of course, but the whole triangulation process is impheitidled by the EKF
and does not need to be modeled explicitly. Another nice property of theiEKfat different points in
the EKF will become connected via the covariance matrix. This means that giteloestimation of
points that were not observed during one frame may still be improved bybderation of other points.
How this main idea is implemented will be shown in the following.

4.1 Extended Kalman Filter

This chapter will provide a short introduction to tBatended Kalman Filte(EKF) which is used as the
underlying mechanism to estimate pose and feature positionssina%¥ MONO-SLAM.

The EKF is an extension of the Kalman Filter to model non-linear systems. Sia¢@tman Filter
and EKF are quite similar in respect to the underlying theory only the EKF witlibeussed further.
Please note that only a very brief and incomplete (in terms of proofs etc.)dirdtion to the EKF
is given in this chapter. Extensive information on the topic of Kalman Filtersadher probabilistic
methods, including proofs, computational complexity analysis and applicatempdes can be found
in [47] which is highly recommended for more details.

The Kalman Filteris a well known and widely used recursi@aussian lterto estimate the state
of continuous linear systems under uncertainty. That means, that the state x4 of a system is
modeled by a multivariate Gaussian distribution with meamand covariance ¢, at timet. What the
state denotes is dependent on the application, of coursesioa¥ MoNo-SLAM for example the state
will encode the 3D position of the camera in the world coordinate system, its@ticamand velocities
and the estimated positions of all observed features. The system will beveldsat discrete points in
time, where the current time is always referred td ,ashile the previous time steps are 1,t 2
etc. The system can be in uenced in each time step by a set of actions dexsate Furthermore it is
assumed that some sort of sensor with measurement furicisists which can be used to gain (noisy)
measurementg about the system at tinte Each time step is structured in two phases: First comes the
so calledprediction stepand afterwards thapdate stepThe basic idea of the prediction is to estimate
into which state the system should be transferred to from estimated state 1) if actionsa; are
executed. This is done by transition functigfa;; : 1). Once the next state ¢; ¢) is predicted, a
measurement prediction has to be made. In order to do this, a measuremehwitiod functionh (' )
is needed, wherb ( ;) returns the measurements which are expected, if the system would in fact be
in state( t; ). After the execution a measuremegtis taken and the actual state of the system is
compared with the predicted state. Both prediction and measurement in tlemoew estimated state
( t; t). Algorithm 4.1 shows the the previous description in a more compact way. tNatevhile the
measurementg and the actiong; can be directly observed, the rest of the system, especially)state
can not be observed directly, but is estimated through sensor meastsemeéractions. If the true state
could be observed there would be no need for an estimation and thus arTBKEistinction is depicted
in Figure 4.1.

In the remainder a closer look is taken to Algorithm 4.1 to properly explain thenimgaf all
involved terms. As stated above, the Kalman Filter can only be used for lipgt@nss, which is a rather
severe limitation, since many “interesting” systems do not behave linearlye 8imy linear systems
are considered in the Kalman Filter the prediction of the meafAlgorithm 4.1, line 1) is done by
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Figure 4.1: Schematic EKF Sequence.

Legend:g — transition functionh — measurement functioR — transition noiseQ) — sensor noiseg — actionst —

time andx — state. Arrows indicate in uences. Keep in mind tixatlenotes the real state and not its estimation.
Therefore there is no arrow from the measurenzeotstatex, since the measurement should not change the actual
state of the system (while it is likely to change the estioratf the state).

Algorithm 4.1: Extended Kalman Filter

input : prev. mean ; 1, prev. covariance; 1, actionsa;, measurementg
output: mean ¢, covariance
t=9d(@; t 1)
t= Gt t 1GtT + Rt
Ki= (H{ He H{ + Q
t= t+Ki(ze h(y)
t=( KiHy) ¢ /I is identity matrix

1

a b~ W N PP

multiplying the actionsa; with an appropriate matrix, encoding the state transition. The EKF uses
linearizationof to enable estimation of systems, featuring non-linear behavior. In dimesr- system

the state transition cannot be expressed by a matrix (since the system wedinddr otherwise), but is
expressed by some functign To linearizeg rst order Taylor expansion is used, which creates a linear
approximation ofy, dependent on the properties of the rst order derivageSince Taylor expansion
approximates a function from a single point and the value of the derigaivihat point, for a Gaussian
functions it is reasonable to use the point of the largest likelihood as tivat gdis is given by the last
mean ; 1. The linearization fog is therefore given by

g(acxe 1) 9@ ¢ 0+ P@; ¢« DX 1 ¢ 1)
=g(a; t )+ Ge(Xe 1t 1) (4.1)

wherex; denotes the actual state at timme 1 andG; the Jacobianof g(a;;  1). The JacobiarG;
plays an important part in the estimation of the covariance (see Algorithm 4el12)inTo model noise
in the transition function a Gaussian random variable with nteand covarianc®; is incorporated in
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the state prediction. This is re ected in the additive teRqin line 2 of Algorithm 4.1 while line 1 is
not in uenced, since the mean of the noiséisThe same linearization method usedgis applied to
measurement functiom, resulting in its JacobiaH (Algorithm 4.1, line 3). In the same line matri;

is calculated, which is referred to Esilman gainin the literature. The Kalman gain can be interpreted
as a weight how strongly the actual measuremzeptin in uence the predicted mean, resulting in
(see line 4). Finally the Kalman gain and the Jacobian of the measuremetidifuae used to update
the estimation of the covariance (line 5).

Please note that the EKF after the linearizationgf@andh according to equation (4.1) basically cor-
responds to the well-studied Kalman Filter. Due to this fact and its simplicity amilesfcy compared to
other methods to estimate non-linear systems the EKF is currently one of theopakimpapproaches in
this eld. The computational most expensive part of the EKF is the matrix #watin line 3. According
to [47] the EKF isinO k%% + n , wherek is the dimension of measurement veaoandn denotes the
dimension of stat&;. Compared to other approaches like particle Iters, which can be expiahann
this is quite fast. Still for high frequency applications likeswAL MoNO-SLAM the matrix inversion
limits the feasible size of the state veciqr What this means in practice will be discussed in chapter 4
alongside the practical implementation of an EKF as the coreigs¥. MONO-SLAM.

4.2 State Representation

As stated in section 4.1 the state vecteis not directly observable but can only indirectly be estimated
by prediction, sensor measurements and subsequent fusion of predictioneasurement. All informa-

tion important for the system needs to be encoded in the state, which impliessforYM oONO-SLAM

that the current position and orientation of the camera need to be includesl stetie vector as well as

the estimated positions of all present features in the map. In practice thas ithedix, is composed

of two parts. The rst will represent the camera state and this part willvaog in its dimension. The
second part ok; will contain the features and their estimated positions, thus making up the map. This
part will vary in dimension, since the map is initially empty and will grow (and evahtshrink) over

time.

Before the different parts contributing to the state vector are considstesbme short notes on the
notation used in the following are given: In the following two coordinate sgsteiill be considered,
namely the world coordinate systéii and the camera coordinate syst€mThese coordinate system
may be denoted as superscripts in the remainder to indicate relative to whiclirnaie system a variable
is de ned (for exampld ©). To better distinguish vectors from scalars vectors will be printed badd an
in non-italics (sax denotes a vector whibe would denote a scalar).

It should be noted that MuAL MONO-SLAM as presented in the following assumes a right-hand
coordinate system, for both world coordinates and camera coordinatésisTater illustrated among
other things in Figure 4.3.
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4.2.1 Camera Representation

Information concerning the camera is encoded in a 13 dimensional vegtarhich embodies the rst
entries in the complete state veciqr Vectorx,, has the following appearance:
0 1

WC
X, = %qvw g (4.2)

1 C

whererWC = (x¢ yc zc)T denotes the 3D position of the camera optical center in the world coor-
dinate systemgW¢ the unitquaternionspecifying the camera orientation relative to the world frame,
vW encodes the linear velocities of the camera along the coordinate a¥¢saofl! © the angular ve-
locities relative to the camera coordinate systemThus the camera state will be represented by a 13
dimensional vector. Initially the camera will be positioned in the origin of the woolokdinate system
(rWC = (0 0 0)"), looking into the direction of the positivEy -axis ¥ = (1 0 0 0)7) and the
camera is assumed to be unmovind(= 1 € =0 0 0)7).

Thel3 13covariance matri® is initialized as

0 1

0 1 100 O O O

0 0 0 010 0O O O
p=RB": Lo 'E’V: 001 0 0 O
00 0 000G 0 O

0 oV 0O 0 0 05 O
000 O 0 O05

If the reader should be unfamiliar with quaternions and how they can liktagepresent rotations
and their advantages compared to other rotation notations [3, 43] pravéadsl information on this
topic.

4.2.2 XYZ Feature Representation

The parametrization of a 3 dimensional featureén the EKF seems straightforward by simply denoting
Xj as

T
Xi= Xi Vi Z (4.3)

referred to as XYZ encoding. As discussed in section 2.4 cameras taabledo measure depth imme-
diately, but can only calculate depth by triangulation for given corredgoces and two or more known
camera positions. At the rst observation of a newly initialized feature normftion about its depth
can be deduced. While the EKF is able to cope with non-linear transition arglinegaent functions by
linearization, its state estimation estimation modeled as Gaussiant) has to be linear. Unfortunately
if a feature is not initialized with its guessed depth close to its real depth (whighits unlikely) the
depth estimation will not behave linear and thus cannot be correctly modedeBiKF.
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Figure 4.2: Azimuth and elevation in camera coordinate system. The camgtical center is denoted &
coordinate axes are labeléd, Y. andZ.. For the observed featuyg, marked by &, azimuth ; and elevation
i are depicted. The azimuth is shaded in blue, while the etavat shaded red.

4.2.3 Inverse Depth Feature Representation

To address the problems caused by initialization of features in XYZ encddinguthors of [13, 16, 20]
propose atinverse deptlencoding of features. Since the inverse depth is linear in contrast totthépik

a feasible approach. A featuye in inverse depth encoding is comprised by the following 6 dimensional
vector:

Yi= Xci Yei Zci i i i (4.4)

whereXci, Yci, Zc;i specify the 3D position of the camera’s optical center at the rst obsernvaf
featurey;. ; and ; areazimuthandelevation(see Figure 4.2) of the feature in reference to the camera
coordinate system and is the inverse depth of;.

The 3D point modeled by (4.4) is given by

0 1 O 1
Xj Xc;i 1
xi = @y = Gy K+ ~m(ii ) (4.5)
|
Zj Zc;i
.
m(i; i)= sinjcos i sin j C€OS;cCOS (4.6)

Functionm ( i; ;) in equation (4.6) yields a unit vector pointing from the camera's optical cente
to featurey;. Multiplying this vector with the deptld; = il and adding it to the position of the rst

observatior(X¢; Yei Zci)' results in the concurrent 3D position (equation (4.5)).

Both XYZ encoded features and inverse depth features consist ofthrargust the description of a
3 dimensional point by equations (4.3) and (4.4) respectively. In addibare comparison mechanism
is needed. Whether this is done by comparison of an image patch, astptesesubsection 3.2.2 or
by comparison of high level descriptors (see subsection 3.1.2) deparilds actual implementation and
has no in uence on the underlying mathematical modulation of the EKF.
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The full state vectok, for a map composed of features is therefore composed of

.
Xe= xg ff £ oo f] (4.7)

wheref; 2 f X;;y;g denotes a feature either in XYZ or inverse depth encoding.

4.3 State Transition

The state transition functiog, for the camera in YSsuAL MONO-SLAM is quite simple. As stated
in equation (4.2) the camera is de ned by the 3D position of its optical calftér its orientation as
a quaterniorgW© and linear and angular velocitied¥ and! ©. In section 4.1 the transition function
g(ut; ¢ 1) was dependent on the current actionsand the previous mean 1. In the case of a free
moving camera no observable explicit commands are given, thus the traffigitciion in this case will
solely depend on; ; andis de ned as

0 1 0 1
e S,
q'© 9§ quat 1T, t
gv(tlF% §=% (4.8)
vy 240
1 C 1 C
Tt a1

where tis de ned as the difference ¢fandt 1landquat ! £, t isthe quaternion corresponding to
the rotation of £ ; t. To compute the quaternion from the given angular velocities and time ditfere
t two operations are necessary. First the the angleaxisha; i representation of the rotation is

A
calculated. For given angular velocity® = 15 ' 'S and t the equivalent angle-axis
representation is given by

kIC
a= hg; |—h%bay ?‘%klc § kI & tki (4.9)

kICt

wherel! tc ;21 X;Y;Zgrefers to the angular velocity around the indicated coordinate axis. Ehk re
of (4.9) is then transferred to the quaterngpdenoting the same rotation:

T
q= C0S; Zcsiny rsing 2 sin, (4.10)
Since no information about any actions like accelerations of linear or anglizcity are available both
velocity vectors are predicted to be the same jras in 1. If during measurement contradicting
information concerning this assumption is gathered, this will be incorporatéeinpdate step. As all
features in the map are assumed to be static their estimations are not chanigedragsition function.

This leads to the following complete transition function:
!

9( ¢ 1)= gV(Ot ) (4.11)
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where0 denotes the 0 vector amiim (0) = ngim  13if dim( ¢ 1) = Ngim.-

Please note that for similar applications ofSYAL MONO-SLAM it might be possible to directly
observe issued commands. If for example a single camera is mounted on doplodt, its steering
commands would de nitely have an impact on the appearance of the transitiotidn.

With the complete transition functiog( ; 1) de ned in equation (4.11) for the MuAL MONO-
SLAM scenario its Jacobia@; should be considered, to complete the prediction step of the EKF (lines
1 and 2 in algorithm 4.1). According to (4.11) fomadimensional mean vector; ; and belonging
Ngim Ngdim COvariance ; ; JacobiarG; is of the following form

!
Fi O

G =
T 0

; dim(F) =13 13 dim(G¢) = Ngm  Ndim (4.12)

In the remainder of 4.3 the appearancé&pfvill be examined more closely. Matrix; is the Jacobian of
ov( ¢ 1), de nedin equation (4.8). Judging from (4.8) the structuré& pfs

@rg e,
0 @Wc 0 g :
. av : (4.13)
eV,
@!
0 I

where0 is already inserted in place of the Jacobians submatrices where no ir iepcesent. Of the
remaining 6 non-zero Jacobians 4 can be dealt with easily, namely it holds

1
0

ve ey _ et iy

@'y~ @V, el o

1
&.°
o -

o — O

and

O1001
WC
‘Wzt%nlog
@y 001

which follows immediately from (4.8). To distinguish the real and the three imagets a quaternion
q will be denotes ag| = (G O O q[;k)T. The quaterniora refers to the quaternion representing
the rotation given by £ ; and t, thusa; 1 =quat !, t . Using these notations the 2 remaining
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. we @\e
Jacobian e and@!IC ) are de ned as
1
ar 1r at 1 at 1 ar 1.k
}NC _Bat 1 at 1 ar 1k at 1]
WC ~ (4.14)
t 1 At 1 a 1k St 1r a1
at 1k A 1 a 1 at 1r
C
e @y’ @uat !t
c C C
@y, @uat!;, t @f, t 0 1
@a 1 @a 1y @a 1y
O 1 @ltc 1;X t @IIC 1Y t @ltc 1,2 t
G 1 G i G 1 G 1k @a 1 @a 1. @a 1
_BG ni G o G 1k G 15 @F 1 1 O@F U @F g (4.15)
q 1; q[ 1k q 1r q[ 1 @a 1; @a 1; @a 1; ’
‘ ’ ‘ ' @ltC 1;X t @Itc 1Y t @ltc 1,2 t
G 1k G 15 G 1 G 1r
@a 1x @a 1x @a 1k

C C C
@!t 1;X t @!l 1Y t @!t 1;Z t

@uat(! S, t)

To solve et 1 @ closer look at the partial derivatives in the right-hand matrix in (4.15)aslee.
T 1
First consider the partial derivatives of the real part of the quaterfibese are calculated by
@a 1 . c t ! tC 1 t
——— = sin k! k— — 2fX;Y;2 4.16
@c, t " iy k2 g (4.16)

The partial derivatives in the remainiryy 3 submatrix of the right-hand matrix in (4.15) can be dis-
tinguished in two cases: Those were the imaginary part of quateani@aerived by its corresponding
angular velocity (found on the main diagonal of e 3 submatrix) and the other partial derivatives.

The main diagonal partial derivatives are
!
t 18,7 1 18, %

@a 1. c L t c t 1
————=cos k K— ————+sin k! k— 1 ’ 4.17
@FC, t t1h2 kC k22 t1h2 Kk C ok ki & k2 (4-17)

and(; )2f(i;X);(j;Y); (k;Z)g The partial derivatives still left are of the form
I
@a 1. 1E e ot 1 et
- = : — cos k! k— — ———sin k! 7 k— 4.18
@F, t kCK 1% 2 kST g (4.18)

with (55 ) 2 F(;Y;X)5 (2, X )XY );(:Z: Y )i (ki X;Z2);(k;Y;Z)g. Though the partial
derivatives (4.16), (4.17) and (4.18) may seem complicated at rstgl#mey can be obtained by simple
but somewhat tedious application of the common rules of derivation on furgiat(! £ , t), de ned
by equations (4.9) and (4.10).

In order to calculate the prediction of the covariangethere is still one piece missing, namely the
additional noisdR; (see algori'thm 4.1, line 2R has an appearance similar@g:

q

RO 0O _ _
R = 0‘ 0 dim R? =13 13 dim(Ry) = Ngim  Ndim (4.19)
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where matrixR? is de ned as

0 @we 1 O 1T
t 0
@ wc @:N ! wce
0 T 0 g' 0 g‘!lc
Ri= Ft Vmaxit Ft = @W T EVimaxit @V E) ! (4.20)
ab; O av; O
@' (@]
0 0 @,

with

WhereF; is the13 6 submatrix, formed by column8 — 13 of matrix F; (see equation (4.13)). If
the maximal linear velocity is denoted b)Y, and maximal angular velocity a5, matrix V max:t is

de ned as
I

Vmax: 0
V max;t = maxt (4.21)

0 max;t

whereVmax:t and max:t in turn are speci ed by

0 1 0 1
1 0 O 1 0 O
2 2
Vimax;t = Vm/ax %)0 1 Og max;t = ! r(’r:1ax t %90 1 Og
0 0 1 0 0 1

Having completed the prediction of and : next the measurement function needs to be considered.

4.4 Measurement Function

In this subsection the measurement functioand its Jacobiamd; will be presented. Both play an
integral part in the EKF and therefore in&UAL MONO-SLAM, since theH; in uences the Kalman
gainK and the difference of the actual measuremeptnd the measurement predictiof ;) is used
to eventually correct the predicted pose according to received sgatsor

According to the pinhole camera model (see chapter 2) an observed paird mnage sensor de nes
a directional vectoh© = (hy hy h,)" in the camera coordinate systé&n For better readability the the
subscripts denoting timewill be omitted for the time being. For a point in XYZ encodirgdirectional
vectorh® is speci ed by

0 O 1 1

hf = h%yz; = REY %&M r' (4.22)

whererWC denotes the position of the camera optical center in the world coordinatensgatR €W
is the rotational matrix to transform vectpr; r"WC) into the camera coordinate systeR*W can

AN ANALYSIS OF VISUAL MONO-SLAM



4.4. MEASUREMENT FUNCTION 53

be obtained by the inverse of quaternipf © which denotes orientation of the camera with respect to
the world coordinate system. How a unit quaternip/F (o G ¢ k) can be converted by function
g2r(q) into a rotation matriR denoting the same rotation is shown in the following equation:
0 2 2 1
F+@ @ @ 24G+24G 200G +2G0
R=q2r(0)= @ 20G+264 @ @+¢ ¢ 206G +2¢ (4.23)
201 +2G%k 204G +2G%k F ¢ G+
Please note that in the special case of unit quaternions the inyetsef a quaterniory is the same
as the conjugatg of the quaternion. Furthermore it makes no difference in the resulting matrst if
the the quaterniogVC is conjugated an®R“"W is constructed ag2r qV¢ orif "¢ is converted
by g2r gW¢ to RWC rst and RWC is subsequently inverted to obtaRfY . However in terms of
computational ef ciency rst calculating the conjugatgV© is preferable, since this can be done by
switching the sign of three double values which is less costly than matrix inmwersio
The directional vector for a poinyt in inverse depth encoding is given using equation (4.5) in (4.22):
0O 00 1 1 1

Xc;i
he=hS = RWE By, & rek+m(i 0k (4.24)
A

wherem ( ;; ) is de ned in equation (4.6). It is noteworthy that even for points at in nity € 0)
equation (4.24) can be evaluated without problems. In scenes obdsneecamera points which show
no parallax despite movements of the camera are considered to be at in olgserto in nity. For these
kind of points where; 0 holds it follows by equation (4.24) tha© RSWm( ;; ;). That means
while points at or close to in nity will not contribute to the estimation of the camersitfmn r'V <,
they still can provide valuable information on the camera's orientagiit and the directional vector
m( i; i) of the associated poiryt; in inverse depth coding. A scene with different point encoding is
depicted in Figure 4.3.

Furthermore it should be mentioned that for a given pgijrit inverse depth and a XYZ-coded point
X;j obtained by evaluating; according to equation (4.5) generalﬁ‘;}YZ ; 8 hcJ will hold. This can be
explained by the different length,, ; and hCJ will have in the general case. However both vectors
will specify the same direction (i.&a°=kh®k = h$,,=kh$%,,K).

Of courseh© is neither for points in XYZ encoding nor for points in inverse depth diredbisesved,
but only the points projection on the image sensor. For a given figifit2 f x;yg and its associated
directional vectoh¢ the undistorted image coordinates:;; vu;i)T expected projection to be measured
is given by

' f hx’i
Uy u TR

hp(fy= 0 = 0 (4.25)
VU;i VO Ehz;i

where(ug; Vo) denotes the principal point, dy is the physical size of a pixel arfdthe focal length
of the camera.

To resemble the actual coordinates obtained by the camera the undistorteccooagjnatgu,:; ; Vy:i )T
needs to be distorted to be comparable to the actually received image. Theatigsibimage coordinate
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Figure 4.3: VisuAL MoONO-SLAM coordinate system and feature parametrization. Triggroof the right-hand
world coordinate system is indicated B . Three camera positions at timks2 and3 are depicted with optical
centersC; — C3. The corresponding translation¥’© are depicted in cyan. Different orientatiog$’® are
indicated by the wire frames symbolizing the camera casmtPp = ( X;;Vi; zi)T is rst observed from camera
positionC;. Directional vectom ( j; ;) is shown in red and along with the depdhof P;. Between camera
positionC,; andC, little parallax occurred (angle; is small), thusP; is in inverse depth coding and described
by (Xc:i ; Yeii ;zc;i)T + Im( i i), where(Xei; Yei ;zc;i)T denotes the position d;. Directional vectorhﬁ
(see equation (4.24)) is depicted in green. For larger laarél , and positionC3) coding is switched to XYZ.
Directional vectoh$,, ; (see (4.22)) is depicted in blue.

(uysi; vu;i)T can be done according to the distortion functign(h, (fi)) (see equation (2.17)), gaining
distorted image coordinatésg:;; Vq:i )T.

With the steps described above for each point in the state vector, wheX¥Eiancoding or inverse
depth, an expected measurement can be computed. These measureptttiasoeechecked if they are
expected to be inside the next image (De. ug; < width and0 vq4; < height have to be ful lled).
All expected measurements inside the image compdgse) of algorithm 4.1, line 4.

Next the Jacobiamd; of h( ;) needs to be considered. In the remainder of this subsection the
construction of a matri>k-|t°will be discussed, that is closely relatedH. In factH; will sometimes
be identical withH? while sometimesH; will consist of H? missing some rows. How, is actually
constructed fromH 2 will be shown in section 4.5. The dimension i depends on the number of
measurements expected to be inside thlg next image. If the the set of all pointssimlenoted as
Fi = fft;l;ft;z; i ;ft;ngWith Ngim = 13 + fui dim (ft;i ), ft;i 2FiandletM; F ¢; jM tj = Mdim
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be the subset containing &} 2 F which are expected to be on the image sensor, then the dimension
of HOwill be 2mgim  Ngim . With the given notations Jacobi&hwill have the following structure

0 @figt; 1) 1
@t
@Hgt, 2) .
HO= @ ; dim ofgi) _, Ngim; Oti 2M ¢ (4.26)
; @
@K gtm g )
t
Where@mgtj ) = @mf“ is de ned as
|
. @lﬁfn @mft;i ) '
w = @ P{Z ? @ b P_{Z_? (4.27)
@+ i dim (fuc ) ien dim (Fi1 )
where
. @nfi) - @nfy;i) -
dim : =2 13, dim : =2 dim(fg
@t;v @t;i ( t’l)
In the following @éf" nd @mf“ will be analyzed. To simplify notation the subscriptill be omitted

again, but keep in mind that the values will nevertheless be dependént on

First a closer look a@— is taken. This matrix can be interpreted how the camerastateuences
the outcome of the measurement functioff;) for a given pointf; in XYZ or inverse depth encoding.
Sincedim (xy) = 13, the Jacobian dfi (f;) with respect to camera statg willbe a2 13 matrix. This
matrix can be partitioned as

@Kfi) _ ey o)

@ - @WcC @WC O (428)
\

wheredim g'&fic) =2 3anddim g'&fg =2 4.The2 6 zero matrix |n@m 1) just shows that
h (f;) is not dependent on velocitied’ and! € of camera statg, . Forg\'?vfc) and g'\%c) in turn it holds
that

@Nf) _ @ffi) @’

@' = @C @"° (4.29)

o . ety of 430
Similarly 8" can be expressed as

@ffi) _ @ffi) @f (4.31)

@ @° @

Of these Jacobians rst measurement functinofi;) with respect to the direction vecthliC of fj in the
camera coordinate will be examined. For undistorted image coordifiatesvy;i)" the measurement
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function is de ned by equation (4.25), but the nal result of the measwart estimation is distorted by
hg (uu;i;vu;i)T (see equation (2.17)). Consequently this needs to be considered inctiigalg thus
resulting in

@Hf) _ @Hfi) @b(fi)
@F @) @f

(4.32)

@) @k . . L )
The rst Jacoblanm can also be seen a@m which contains the derivatives of the distorted

image coordinate@ig:i; vd;i)T with respect to the undistorted image coordindtes ; vu;i)T. The dis-
torted image coordinates however cannot be directly computed from thstamed coordinates, but
are obtained by Newton-Raphson method (see equations (2.17), (2d§2.21)). Analogously the
Jacobian is not calculated directly but by inversion of Jaco%a@“—, which is given by

Ud;i ?Vd;i)
0 1
1+ kli’g + kzrﬁ + (ud;i U()) ki+2 kzrg
@b _ ki+2kord 2((ugi Uo)dy)? 2 (Vg Vo) d2
- (4.33)
@Ug;i; Vaii)

(Vai Vo) ki+2korg 1+ Karg+ korg +
2(ug;  Uo) 02 ki+2kori 2((Vai Vo) dy)?

with rq as de ned in equation (2.18). From equation (4.25) the second Jac%%ﬁ can be directly
calculated as '

0 1
@b () T 0 i
S = @ ; (1 fhl A (4.34)
@]i 0 mhz;i Ehzji

C C [
Computation of the remaining Jacobiagiw, @'%ic and% has to take into account whethigr

is in XYZ or inverse depth encoding. The encoding determines of whichteguthe Jacobian has to be
calculated. For points in XYZ coding the partial derivatives of equatic2yhave to be calculated while
points in inverse depth require the partial derivatives of equation (4F2¢5t consider the dependency
of the directional vector in the camera coordinate syshnénwith respect to the position of the camera's
optical center in the world coordinate system. This is given by

@&YZ i CcCW
@We = R (4.35)
for pointsf; in XYZ coding, while for points in inverse depth
@S
7@W"C = RV (4.36)

needs to be computed. How the rotation maRix" can be obtained from quaternig¥’ € is shown in
equation (4.23).

Next the Jacobian of the directional vector with respect to the rotation afatreragWc is con-
sidered. This proves to be a bit more complicated than (4.35) and (4.36)otationgV < in uences

AN ANALYSIS OF VISUAL MONO-SLAM



4.4. MEASUREMENT FUNCTION 57

h; via rotation matrixR W (see (4.22) and (4.24)). MatriR W in turn is constructed by function
C
g2r gW¢ . This has to be considered for Jacob@iw resulting in:

@ _ @F @"°
@W¢C - @WC @W°C
C
To calculateé’"TiC the construction oRW by g2r qWC (see equation (4.23)) and its partial deriva-
tives with respect to real and the three imaginary parts of quategiidn need to be calculated. This
results in matrix
@F _ ex(q"°)

@WC @We

(4.37)

2 wcC 2 wcC 2 wcC
g Sedi Si)a, S g (4.39)

whered; denotes the direction vectby before it is rotated into the camera frame (see (4.22) and (4.24)).
Henced; depends on whethéy is in XZY or inverse depth coding and is de ned as:
0 1

Xj
dxyz:i = %byig rWe (4.39)
Zj

for points encoded in XYZ. For points in inverse depth codings given by
00 1 1

Xcii
d = i%@%}yc;ig ek + m(i; i) (4.40)
A

According to equation (4.23) the partial derivativesi@f q"V< with respects to the different parts of
quaterniom*V° are speci ed as

0
W C WC WC
@2r gqWV¢ ¥ % A
7@#/\/(: =2 % q(WC qWC C,‘WC§ (4_41)
0 qWC qWC qWC
qWC qWC q(WC
@]2[’ qWC
7@1‘\/\/0 =2 %qwc C,‘WC qWC§ (4_42)
WC W C WC
0 X G G 1
qWC qWC q’WC
WC
@2r V\(’;]C - % qWc qWC q(WC § (4.43)
@i W C W C W C
o ¥ % 3
@Izr qWC q<WC O.‘WC qWC
@,‘\(NC =2 % qWC OkWC O§W0§ (4_44)
qWC qWC 04\(/VC
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The missing Jacobia% of the conjugate with respect to the quaternion is luckily quite simple:

0 1
1 0 0 0
we Bo 1 0 0
@WC _ E (4.45)
@ 0 1 0
o0 0 1

Finally the Jacobian of the directional vectq‘F with respect to the estimation of poifitis needed

to complete the description &f2. For points in XYZ encoding this is is given by
[

@])c(:YZ i @lgyz I .
== R dim 1 =3 3 4.46
@i @ (4.46)
while the Jacobian for inverse depth encoded points is de ned as
!
@S @c, ac, @ ac .. @
@ T @% Yo Zai @ @ @ dim @, =3 6 (4.47)
with
0 1
c c COS | COS |
&z RCW. @;i:Rcw 0
@x%i; Yeis Zcii @i :
SIn j COS
o 1 00 1 1
sin jsin X
@]C | | @IC [oN]
7@}' =RWE  cos X —@’i' = RW %)?@YC;& welk
CoS j sin Zoi

Cil

c_ . c
The different dimensionality os% and @é;' is caused by the different dimension of the encoding

(3 dimensions for XYZ and 6 for inverse depth) and is also re ected in thecwire of% (see
equation (4.27)).

Keep in mind that the above computations are necessary for eachfgoiatM ¢ (i.e. all points
that are predicted to be on the image sensor at tim&Vhile some Jacobians on the lower level (like
(4.41) — (4.44), (4.45)) can be calculated once and be reused faialsfr; 2 M {, most Jacobians are
dependent on properties Hfand need to be computed for each point individually. Furthermore fdr eac
iteration of the EKF the Jacobians, apart from equation (4.45), need ¢albalated anew, since they
are dependent on tinte

4.5 Feature Matching

Having discussed measurement functiof ;) to gain expected measurements in section 4.4 the actual
matching of features and the constructiotdgffrom H 2will be discussed next. How the actual matching
of features is done depends whether image patches or feature descaitaised to characterize the
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appearance of a feature in an image (see subsections 3.1.1, 3.1.2 ahd-B@ver in either case the
knowledge inherent in the EKF can be exploited to reduce computatiooad.efhe basic idea is quite
simple and intuitive: From measurement functfof ;) an expected positiof g.i v d;i)T for featuref;
is known. Instead of trying to match featurgswith every possible location of the whole image, it is
much more useful to search in an area around image coordingtg d;i)T. Since the covariance in the
EKF encodes information about the uncertainty of a feature position, tistation should be regarded
and in uence the size of the search area: If the feature's 3D posites (#.3) or (4.5)) is well known
(i.e. the uncertainty indicated by; for f; is small, the resulting search area should be small as well, thus
reducing computational load and saving time). Consequently for featuresevthe uncertainty for the
estimated location is high the size of the search region should increaseelpfca successful detection
of featuref; in its speci ¢ search region, the actually measured posiien ; Vq:i )T in the image will be
part of the measurement (see algorithm 4.1, line 4). If the feature could not be matched in its search
region, it will not contribute to the correction of the pose estimation (i.e. it willbepart ofz; and its
estimation will be removed frorh ( ). Analogously the 2 roww are removed fronH9. Now
that the basic idea has been outlined a closer look at the |mplement|ng mathemakesis ta

To get an idea about the uncertainty of the estimated position of feitiréhe image and subse-
guently about the size of its search region tieovation covariances; is calculated. The innovation
covariance is de ned as

St= HY (HT + QP (4.48)

where  is the predicted covariance (see algorithm 4.1, line 2 and subsectionH£3, calculated
according to equation (4.26) a@f denotes a matrix to modulate sensor noise in pixels. The dimensions
of the matrices in equation (4.48) are

dim(S)=2m§,, 2mJ,;dim H? =2m$, ngm
dm ¢ = Ngm Nam; dim Q) =2m§, 2mf,

wherengim denotes the dimension of the current statend mgim is the number of features predicted
to be on the image sensor at timeApart fromQY all terms in (4.48) have been previously discussed,
so a closer look a®? is suf cient to completely determine innovation covariarge Noise matrixQf is
given as

Q= 2 (4.49)

where denotes an identity matrix witdim( ) = 2m3_~ 2m{,_ and 3 species the squared

standard deviation of image noise (i.er models that a point might be displayed at another than its
ideal position). For many camerag = 1 may be assumed, but there for some cameras other standard
deviations need to be used.
Taking a closer look aB; one might notice that for all pointg; 2 M  the uncertainties regarding
their image coordinates are found at the main diagonal (de Mngas in equation (4.26)). Considering
the appearance of the predicted covariangand ofH 2the main diagonal o8; contains the variance in
U andV direction for each featurg; 2 M . This can be employed to de ne the boundaribg;; b,:)
of the search region for each featyre2 IM ¢ inU andV directioln as
bui 2 P St.2i 1,2 1)
by St; (2i; 2i)

(4.50)
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wheres;, (i y denotes the element at positi@inj ) of matrixS;. Since in an EKF everything is modeled
as Gaussian, 2 times the standard deviation constitutes the 95% con denwaliofethe around the
estimated mean. By equation (4.50) we get just these con dence intervaésséarch region can be
either modeled as an ellipse with the estimated points locgtignv d;i)T as its center, radiug;; in U
direction and radius,;; in V direction. Or the more simple approach would be a rectangle with upper
left corner(i g buivai byi)" and lower right corneti g + bui v gi + byi) .

If the feature can be matched inside this search region using an appeauaparison the feature is
considered to be successfully matched. The image COOI’di(\ﬁ{ﬁESJd;i)T denoting the position of the
match are appended to measurement vegtand the feature will contribute towards the correction of
the estimates mean and covariance ;. Otherwise the predicted measurementdgowill be removed
from h( ), since no corresponding measuremenkg;ins present and subsequently rois 1 and
2i are deleted from matrid 2 If all featuresg; 2 M  were successfully or unsuccessfully matched
the remains oH 2 coincides with the nal JacobiaHl; of the predicted measuremerfit$ ;). Having
completed the calculations discussed in this subsection and previously ind43ahe computation of
the Kalman gain and the update step can be addressed next.

Note that the innovation covariance is not needed for the basic EKF algotitlt is frequently used
in applications of the EKF like EKF-SLAM.

4.6 Update Step

Having done all the tedious preparatory work in sections 4.3, 4.4 and 4&cthal calculation of the
Kalman gainK and the update can be kept rather simple. First the Kalman gain (see algdrithm
line 3) will be discussed. To recap that line of the algorithm the Kalman gaintedstas

Ki= (H He (HT+Q * (4.51)
with
dim(Kt) = Ngim  2Mgim; dim(H¢) = 2Mgim  Ndim
dm( )= Ngm Ngim; diM(Qt) =2Mgim  2Mgim

wherengim = dim ( X;) denotes the dimension of the current state vectornagg denotes the number
of matched features.

Apart from the noise matri®; all terms in equation (4.51) were introduced and discussed in previous
chapters. Since matrid; denotes image noise and is apart from the dimensions identical with matrix
QY (see (4.49)) no further description @f is needed and thus the Kalman gain is complete.

The two update steps can now be computed straight forward accordifgptdtan 4.1, lines 4 and
5. Afterwards the resulting mean and covariance ; need to be tweaked a bit which is not part of the
EKF algorithm. So strictly speaking one could argue that is0AL MONO-SLAM no pure EKF is
used. The need for a post-processing oand  arises from the usage of a quaterndi® to denote
the orientation of the camera. Orientations are only represented by utérijoas and after the update
step it is not guaranteed that the estimated meay\'¢t still denotes a unit quaternion. Therefay¥ ©
will be normalized according to

g Or g Oi g Y a Ok
QP+ o7+ g7+ o R+ g+ g+ of QP+ g7+ o7+ of @+ g7+ g+ o

norm(q) = (4.52)
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The mean with the normalized quaternion will be referred tofas
Consequently the covariance matrix needs to be adopted as well. If the current dimension of the
covariance iglim( ¢) = Ngim Ngim, then the adopted covariance is given by

a
0= %o *@"g&‘*fc) o§ %0 i@"‘)g&%“) 0 § (4.53)
0 0

where the covariance incorporating the normalizatiom 8 is denoted as 9, a and  label unit
matrices of dimensiondim( z) =3 3anddim( p) = ngm 7 Nhgim 7 andO indicates zero
matrices of appropriate size.

The Jacoblan@% used in equation (4.53) can be determined from equation (4.52) as
@Orm (Q) — q?+ q2+ q2+ qg %Q (454)
@
with
0 1
F+rq+c GG GG O Gk
Q:E) 4G FrE+ ag G Gk E
GG 4G  F+ o+ G Gk
0 Gk Gk Gk  Frq+q

The modi ed mean { and covariance ? will be used as the old estimation in the next EKF step.

4.7 Feature Linearity

As mentioned in previous sections features in inverse depth encodingeaeilirtheir depth estimation
if initialized without prior knowledge, while XYZ encoded features are nohisTmakes the former
encoding suitable for newly initialized features while the latter should not ée tasrepresent points of
unknown depth in an EKF. This section will substantiate these allegations witematital proof. The
analysis presented here elaborates on the one found in [12, 13].

The approach used by Civera et al. in [12, 13] shows some similarity toettieation of the EKF
from the standard Kalman lter (see section 4.1). Civera et al. examinedhauour of a Gaussian

random variable G ;2 through some functiog. The image of will be a random variable
denoted as . If functiong is linear can also be approximated as Gaussian: G ;2 with
=9( )
._ @ , @d
@ @

where & @ denotes the Jacobian gfwith respect to , evaluated at mean . The interval in which
functiong has to be linear in order to allow for this approximation to be correct depamdise size of
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, of course. The larger , the larger the linear interval gfaround mean needs to be. To determine
if Gaussians are properly mapped by functgit is sensible to analyse the behaviourgoih the 95%
con dence region around , given by interval 2 ; +2 1]
Linearity of a function may be assumed if the rst order derivative of thattion is constant. As in
the linearization of the transition function of the EKF (see equation (4.1)pmder Tailor approximation
is used to determine the rst order derivative of functigin

@g @g |, @g
@( + ) @ +@ (4.55)

where @9 denotes the second order derivative. To analyze the linearity of fungt@ivera et al.

propose to compare the derivative at the center of the con denceragimely at  with the derivative
atthe extrema ( 2 ) oftheinterval. The rstis simply given by

@g
= 4.56
@ (4.56)
while the derivative at the extrema can be expressed as
@9 ., @g
=3 4+ =2 2 4.57

according to the approximation in (4.55).
Combining (4.56) and (4.57) a dimensionless linearity inteis proposed in [12, 13]. Linearity

indexL can be used as a measure of the linearity of a function inintgrval 2 ; +2 Jandis
de ned as
L= —— .
T (4.58)
@

where the numerator consists of the absolute value of the differencedreégeations (4.56) and (4.57).
To gain a dimensionless normalized measure, the denominator consists ofithéwaeevaluated at the
mean (equation (4.56)). Linearity of a function may be assumed if O holds, since this implies that

% 2 0 which in turn means that the rst order derivative at meandoes not signi cantly

differ from the derivative at the endpoints 2  of the 95% con dence region.
Now that a measure of linearity for a given functigrs available by linearity indek next it will be
shown, howL can be used to analyze linearity of XYZ and inverse depth encoding.
Remembering the pinhole camera model (see section 2.1) the location of &peirftx;;yi; z;) is
projected according to

u= —f (4.59)

wheref denotes the focal length. Without loss of generality it may be assdmedl, since other
values off would only scale the following considerations. To analyze the behaviadYdfand inverse
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C Co Cy Co
(a) XYZ coding (b) inverse depth coding

Figure 4.4: Uncertainty propagation from scene potto the image.(a) shows the scene for XYZ encoding,
while (b) displays the same scenario using inverse depth coding.

depth coding two camerd3, andC; with focal length 1 at different positions are used. Both cameras
observe the same poiRt. CameraCq will observe the point for the rst time and initialize the estimated
depth with a default value eithélg or ¢ = % dependent on the encoding method. The parallax angle
between the rays from the optical centersGaf and C; to point P; is approximated by the angle
between the optical axes of the cameras. The estimated distafhmecameraC; is therefore given by
the intersection of the two optical axes. Figure 4.4 depicts this setup. Inltbwiftg the linearity of the
measurement equation (4.59) will be analyzed by the linearity index de neduation (4.58) for both

types of point encoding.

First consideP; in XYZ coding. Depth will be initialized with valudy and the depth error will be la-
beledd (see Figure 4.4a). The location error is assumed to be Gaussian wittOrfiead G 0; 5 )
and the actual depth is given By = dp + d. From Figure 4.4a it can easily be deduced that

Xi = dsin
d; + dcos

Zj
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hold. This allows for
dsin

= ditcos (4.60)

so thatu can be interpreted as a function dependent on Gaudsi@nbsequently the linearity index for
XYZ coding can be calculated. First the rst and second order diéviesofu as de ned in (4.60) with
respect tal are given by

@u d; sin

== Bt 4.61
@d (dy+ dcos )? (4.61)
@u _  2d;sin cos 4.62)

@8 (dy+ dcos )3

Applying equations (4.61) and (4.62) to de nition of the linearity index(see equation (4.58)) the
linearity index for XYZ codingL 4 is given as:

Gu 2
d
Ly= a0 _ 4 dinc0y; (4.63)
Qu dl
@dd=0

Accordingly inverse depth coding can be analyzed. In this case the ingphadstimation will be
do = io while the actual depth will be denoted Rs= % where is assumed to be Gaussian with
mean0( G 0; 2). Itisalsoassumedth& = dg+ d, d= D dg holds for depth location
errord. Therefored is speci ed as

d=D dy= ———
°" (o )
Similarly to XYZ codingx; andz; can be expressed by o, andd; (see Figure 4.4b):
. sin
Xj =dsin = ——
! oo )
zZi=dy+dcos =d;+ _cos
oo )

Now u can be expressed as a function dependent on Gausaiathis given by

sin
u= 010 o y+ cos (4.64)

First and second order derivativewfn equation (4.64) yields

@U 6dlsin

== 4.65

@ (odh(o )+ cos )? (4.69)
2

@u _  23di(cos  di o) (4.66)

@2 (odi(o )+ cos)?
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From equations (4.65) and (4.66) the linearity indlexfor inverse depth is de ned as:

@ _ 4
L = 0 =2 1 “lcos
@u 0 0
@ o
4 d
=2 1 Ccos (4.67)
0 d;

Now that linearity indices are available for both XYZ and inverse depth gpdidoser look at their
implications should be taken. For XYZ coding the 95% con dence regiothfiedepth is de ned by the
initial depth estimationly and the standard deviation of the depth errgas[dy 2 4;do+2 4]. Since
this region should cover a large interval of depth valugsieeds to be quite large. Note that O depth
may be included into this con dence region, but in nity cannot be includeor. inverse depth the 95%
con dence interval is speci ed abﬁ; 0%], where ¢ labels the initial depth estimation in inverse
depth and is the standard deviation of inverse depth erroBince appears in the denominator small
values are suf cient to express a large con dence region. Note thidew depth cannot be included in
this con dence region in nity isincludediD2 [ o 2 ; o 2 ]holds.

If the ViISuAL MONO-SLAM application is considered it is reasonable to assume that the oldserve
parallax is small, which implies  0) cos 1 andg—‘l’ 1. For these valid assumptions linearity
indicesL4 andL are consulted. According to equation (4.63) in this dage 4d—1d holds. Since ¢
needs to be large for the con dence region to cover a large intervatpthdvalued. 4 in turn will also
be large which indicates no linearity in the speci ed interval. For inverseéhdeguation (4.67) can be
approximated ak 0, sincel g—fl’ cos 0 holds under the given assumptions. Thus for inverse
depth coding the measurement equation (4.59) may be assumed linear.

For repeatedly observed points where parallax angiecreases, depth estimation becomes more
accurate, which means thatand respectively may become smaller. Large parallax angles and small
standard deviationg mean that 4 will get smaller. That implies that points with low depth uncertainty
at high parallax may be safely encoded by XYZ representation, sindbdse points the measurement
equation may be assumed linear. On the other handiill still be small for such features, since the

increase of term1 3—2 cos will be compensated by the decreasef%f (keep in mind that ¢ is
constant and the small values of may will further decrease for small depth uncertainty). So inverse
depth coding is suitable for both, newly initialized features at low parallaxeamres with low depth

uncertainty at high parallax.

4.8 Feature Initialization

As discussed in section 4.7 the XYZ parametrization lacks linearity for lowllpareature with large
depth uncertainty. Inference on the depth of a feature is not possiistedne single observation, but
can only be gained by multiple observations if the parallax is large enough.

This however would mean that potential features would have to be ololsevee a certain time until
the uncertainty concerning their depth is reasonably low, before thepeadded into the EKF. Such
an approach is somewhat undesirable, since the potential featurewrieedbserved like real features
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before they are added to the state veatoor discarded. Thus while needing about as much computa-
tional effort as features added to the EKF these feature candidatesd¢omnbute to the estimation of
the camera state or the estimation of other features. Secondly one cowdl@gauch an initialization
phase is not part of “pure” EKF and should be avoided, but the validlityi@argument is doubtful, since

in the update step of MUAL MONO-SLAM the EKF has already been tinkered with (see section 4.6).
While it was shown in section 4.7 that XYZ parametrization is not suitable to initiadiatufes without
prior knowledge it also proved that the inverse depth is linear at both lobhayh parallax. Therefore
features in inverse depth coding can be initialized from just one obsemetic be directly added into
the EKF. This way they are able to immediately contribute to the estimation of the canoperties,
even if they are at low parallax. From equation (4.24) follows that feataréow parallax (i.ed; = +

is large) may not contribute much to the estimation of the camera's positién but will nevertheless
provide information about the camera's orientateph® .

In the absence of further knowledge the initial inverse depth with its carcdanterval for a new
initialized feature should include 0 (meaning in nite depth) even though this st negative depth
values will be included int the con dence interval. In nite depth in terms ofaanera just means that
no parallax of the feature will be observed. However if the camera trtasséand enough parallax is
produced the features depth estimation (via inverse depth) will graduallyiwm@nd the feature will
start to contribute more to the estimation of the camera position.

Having stated that new features should be initialized in inverse depth egosidma depth estima-
tion that includes in nity a closer look at the actual initialization will be taken in tolofving. It is
assumed that by means of a corner detector or a feature descriptsufseetions 3.1.1 and 3.1.2) the
Iocation(ud;i;vd;i)T of the new feature was already detected. A new feagyureill be initialized by
function

-
yi=y rYCa¥Ciuaiivai) s 0 = Xei Yei Zei i i i (4.68)
whererWC denotes the position of the optical center of the canwts; its orientation and o indicates
the initial inverse depth estimation.

As already stated in subsection 4.2.3 the rst three coordinates of aédatunverse depth encoding
specify the camera center at its rst observation so the initializatiomgf yci andzc; is straight
forward:

.
Xei Yei Zei =r"© (4.69)

Acquiring azimuth ; and elevation ; involves a bit more mathematics. First the undistorted image
coordinates(uu;i;vu;i)T are calculated vié, (ud;i;vd;i)T (see equation (2.13)). Afterwards the direc-
tional vectorh"V is calculated, pointing from the cameras optical center towards the feitoeg®n in
the world coordinate fram@/. " is de ned as

0 1 0 1
hx (UO uu;i) du
W= @WK =qg2r g B(vo vuy) LK (4.70)
hy 1

whereg2r qWC¢ is the rotational matrix constructed from quaternipff € (see equation (4.23)).
Thoughh%W is no unit vector, according to the pinhole camera model it still points in thetairec
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of the feature which will be at locationhW for some (unknown) 2 R*. From the directional vector
hW azimuth ; and elevation ; can be deduced, since it holds
| 0
! o arctanq hy; hyY
_ — A 4.71
i arctan  hW; (hW)?+(hW)? (4.71)

That leaves the estimated inverse deptlas the sole not yet de ned parameter of equation (4.68).
This will be simply set to the prede ned initial depth estimation, i.e.= . In [13] Davison et al.
report that an initial depth ofy = 0:1 works well.

Thus by equation (4.68) the initial values for featyteare well de ned and can be appended to the
state mean ;. Subsequently the covariance needs to be adapted to the new feature as well. For the
moment the covariance before the addition of the new feature will be eeféoras 29, while ¢ will
denote the updated covariance, already incorporating information aboly added featurg;. If the
dimensions of 99 werengim Ngim the dimension of  will be Ngim +6  Ngim +6, since the associated
mean . of the covariance was extended by 6 dimensions. The addition of fegttmecovariance 9@
can be described by

1
fd 0 0
=JBo o okuT (4.72)
0 0 2
with
dim( )= Ngim +6  Ngm +6; dim 2 = ngm  Ngim;

dim(J) = ngim +6  Ngm +3; dim(Q;)=2 2

where matrixJ is constructed by agim  hgim identity matrix and the partial derivatives of function
y (see equation (4.68)) and will be discussed in detail in equation (4.73)tixMg, isa2 2 ma-
trix, containing the variance of the image measurement noise and is congtliketenatrix QY (see
equation (4.49)). The entry? is the squared standard deviation of the estimated inverse depth, so
in uences the con dence interval of the inverse depth. The authofd 8f mention repeatedly that O
should be included in the con dence interval of the inverse depth, thusdimg features at in nity.
Therefore they propose forp = 0:1 a standard deviation of = 0:5, resulting in 95% con dence
interval of[ 0:9; 1.1] for inverse depth.

Next a closer look at the structure of matdixwill be taken.

0

J = @y ‘ @y (473)

@y @y
a@vc @vwe 0 0 ‘ Quaiva) @
where denotes agim  Ngim identity matrix. Next the Jacobians in the second row] ofvill be

analyzed. From equation (4.69) follows directly
!
@y _ , (dm()=3 3 dm©)=3 3 (4.74)

@WC
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Unfortunately Jacobia@@w—% is a bit more complicated and its structure is given by

gvc= 000 gl gwe 0 sdim —ge

=6 4 (4.75)

where the zero matrices correspond to the Jacobiargiof..i, Zc;; and ; with respect taqW ¢, indi-
cating that these components of featyrere not dependent on the camera'’s rotation. That Ieﬁ%@

and@‘@Tic to be determined. These can be stated as:

@ @ @Y
@"C = @V @Wc (4.76)
@i @ a@a%
@We = @W @W¢ (4.77)

where@1WC denotes the Jacobian of directional vedidf from camera to feature in world coordinates
with respect to the orientation of the camera. W% is derived from equation (4.70), botgiw
and @@\,‘v can be deduced from equation (4.71). The resulting Jacobians &iedBes

0w 1
o (Y YZ+(RYT)?
= 0 (4.78)
o S |
@ w

(AW )Z+( AW )2

0 Y . 1
((hy)2+( hW)2+< hW)z) (hY)Z+(h¥)2
(hW )2+( hW )2+( hW )2 (479)
hW hy 0
(hY)2+(hW )2+(hY)2)" (hW)2+(h¥ )2
y
@Y _ ex(@"°) w @2(a"°) w @2r(a"®) pw %hw (4.80)
@WC @#° ef* @ '
wcC
The appearance of equation (4.80) is quite similar to equation (4.38) anmmbbidns%,

wcC wcC (]
@2@;(;/0 ), @‘zé(g,c ) d@zé(gjc )are in fact calculated according to equations (4.41) — (4.44).

A very interesting property compared to other EKF based visual SLAMriglhgos is the fact, that
the inverse depth parametrization used in this approach enables the EKFKkavitltout any prior
knowledge about the scene. Usually the initial state of an EKF includes aerwhgiven features with
known 3D position, to allow for camera state estimation and to better estimate the hochfeatures
initialized later. The WYsuAL MoNO-SLAM algorithm presented here works just as well without such
information. It is impossible to correctly infer the positions of features xectgiven unit scale like
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meters for example without any additional knowledge, though. This is duestartibiguity of a small
movement of a single camera observing a close object and a large camemmembwhile observing a
distant object in terms of the information gathered by the camera. Howevarapereated by MsUAL
MoNo-SLAM without any additional knowledge will be consistent in itself. If fareoof the features
in the map the exact position in an existing coordinate system is known, a actdedan be calculated.
If all features in the map are scaled accordingly by this factor the resuftaptwill closely correspond
to a map created by algorithms with prior knowledge.

Since the estimated positions of the features in the created map will settle to afssaheeovalue
the algorithm proves quite robust to different values of the initial inveegghd o (given in the same
meaningless scale). A crucial point however seems to be the inclusion mifyirin the con dence
interval (i.e. 0 should be contained in the con dence interval of the irvdepth).

4.9 Feature Conversion

As discussed in section 4.8 a new feature will be initialized in inverse depthgdd principle inverse
depth coding is suitable for low parallax features at large distances clasaity as well as for close
features showing high parallax. This is re ected by equation (4.24) #atcope with distant features
(i,e. i 0)and close features features. Please note that features at O deptth = il , i=1)
can not be modeled. However in practice such a feature will never belettin the EKF since a depth
of 0 would imply that the feature's location corresponds to the camera'sabmtgmter (which would
result either in a broken camera or a feature location outside the cametd'sf view). Still features
in XYZ encoding have one property that makes them preferable comgafedtures in inverse depth.
A feature in XYZ coding simply needs 3 dimensions less to be representeite tMls might not seem
much at rst glance the run-time of the EKF is speci ed @s k%* + n? (see [47]) wheré& denotes
the dimension of the measurement vecatpandn denotes the dimension of the current state vector.
Ultimately the size of a feasible map in8AL MoNoO-SLAM in terms of features is bounded by the
time available between the capture of two camera images. Of this time one share ugid mainly for
image related operations like feature matching and another share will béy#®eelvisualization of the
current estimations. The remaining time has to suf ce to perform all operatoassary for the several
EKF steps (see algorithm 4.1). Therefore whenever it is safe to domVeature from its inverse depth
encoding to the more compact XYZ representation this should be done.em@nder of this section
will be split in two parts: Firstly subsection 4.9.1 presents a simple mechanisiptiragithe linearity
index introduced in section 4.7 to determine if a point in inverse depth codingsafaly be converted
to XYZ. Afterwards subsection 4.9.2 shows how the actual conversiataaplished.

4.9.1 Linearity Threshold

As discussed in section 4.7 the linearity index (equation (4.63)) provides a measure to estimate lin-
earity of the measurement function for a feature in XYZ encoding. Thezed sensible method to
determine if a feature may be converted from inverse depth to XYZ is to ttdimmarity indexL 4 for

this feature and compatey with a given threshold. IE 4 is smaller than the threshold the feature can be
converted safely using the methods described in subsection 4.9.2, othdmwils stay in inverse depth.
To calculatel g4 three variables are needed, namely the estimated digpthe standard deviationy of
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the depth con dence interval and the cosine of parallax angldow these values can be obtained by a
pointy; in inverse depth coding will be shown step by step:
First pointy; in inverse depth is converted g in XYZ via equation (4.5). The ra;zl‘>’<"YZ from
camera to the point can be calculated according to equation (4.39). Thetestieptid; of the feature
of xj is the euclidean norm of the vector from camera to paint{ kdXYZ k). With the help of ; and
i the needed standard deviatiogy can be obtained. If the mean of the inverse deptf y; is stored
at positionn in mean vector {, then the standard deviation is de ned as

q

- 2 .
T t(nn)

2
where & (nm)

from directional vectom ( i; ) (see equation (4.6)) ant}¥,, ascos = m( i; )" d¥%, kd®,, k L.
ThusL 4 can be computed by

refers to the element at positi¢n; m) of covariance ;. Finallycos can be calculated

d 2
t(nin) r d¥,
La=4———m(i; i)
ikd\)QVYZ k kd¥<sz k

By computing linearity index 4 for each point in inverse depth coding the linearity for the cor-
responding XYZ point is obtained. lf4 is below a speci ed linearity index, then the point should be
converted to reduce computational load for this point in future iteratiorigt Banversion is described in
subsection 4.9.2. The authors of [12,13] recommend a linearity threshétd conversionol.;  0:1.
This value was experimentally determined by a simulation for using differdnesdor , d; and 4.
The details of the simulation are omitted here. For details please refer to [12,13

4.9.2 Conversion Mechanism

In order to switch a point from inverse depth encoding to XYZ representéhe current mean; and
covariance ; of the EKF have to be modi ed. The former is fairly simple and can be donesirygu
equation (4.5), but the latter requires the computation of the Jacobian )quamely@: . This can be
obtained from equations (4.5) and (4.6) as

0
100 %cos(i)cos(i) iisin(i)sin( i) Ssin()cos( i)

g = %O 10 0 L cos (i) Lsin( i) (4.81)

| 0 0 1 <+sin(i)eos(i) Lcos(i)sin( i) %cos(i)cos( )
If the mean before the point conversion is denotedoé& = (xy;fo iy f ) W|th dimen-
siondim O'd = Ngim , Mean  after the conversion will bey = (xy;fq;:::; X000 ) and its

dlmen3|ond|m od = ngm 3. Consequently covarlla_pce{?Id has to be modi ed to create the new

covariance ¢ mcorporatlng the converted point.dfjm = Fi d|m (ft;; )+ 13 denotes the dimension-
ality of the camera and all points before pairandbyim, = J: i+1 dim (fii) gives the dimensionality
of all points behind point in the state vector, then covariancecan be expressed as:

(=3 odgT (4.82)
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with
0 1
. 0 0
1=B0 & of:dim@3)= ngm 3 Ngm (4.83)
0 0

where 5 and , denote identity matrices of dimensiagin  agim andbgim  byim respectively an@d
indicate zero matrices of appropriate dimensions.

4.10 Point Deletion

While not playing a part in theoretical descriptions of EKF and its applicaienSLAM, the deletion
of features plays an important part in practice. Without any deletion méeshastate vectox; would
be ever-growing which slows down the performance of the EKF. Reliaatifes which are matched
repeatedly should of course not be deleted, but there may be featar@sltihepeatedly not be matched
after their initialization. Such features will not contribute to the state estimationyiwag, but result
in additional computational effort. If such features are removed fronsthie vector, new promising
features may be added without endangering run-time constraints impogedrbframe rate of image
retrieval.

A sensible mechanism to detect if a feature should be deleted is to measuatidheff successful
matches to the number of match attempts. If this ratio is below a given thresholexémple 50%),
the feature will be deleted. Though this mechanism is quite simple it presdalds features outside
of the current eld of view. To add to robustness the matching ratio shonllgllme considered, after an
initial number of matches was attempted. Of course this basic idea can beaskiandrious manners.
For example if a certain number of successful matches are recordaddature its match ratio may be
reduced (since the high number of matches implies that for certain camétianmthe feature is quite
stable and thus improves the overall estimation).

The deletion from the EKF itself is much more simple than the addition of a new é&altupoint
fti is to be deleted it just needs to be removed from the current mean and Hreacoe. If the index of
the rst entry of featurdy; isj and its last entry ig + dim ( fi; ) these dimensions will just be removed
from  and columns and rows—j + dim( fi;) will be removed from covariance.

Although not explicitly designed to do so the deletion mechanism may introduce sEbustness to
a non static environment. If some distinct features are detected on a moyewy thiey will be added
to the EKF like any other feature. However if the estimation of the camera movésngable enough
a feature on a moving object will repeatedly not be matched in its predictechsesgion and thus be
deleted again after a short time.
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Chapter 5

Evaluation

While chapter 4 and the previous chapters covered the theoretical rbackigfor ViSuAL MoONO-
SLAM, this chapter is devoted to a practical evaluation of the discussed nsetliact a simulation
of VISUAL MONO-SLAM is brie y introduced in section 5.1 along with the created GUI to visualize
the results. Afterwards section 5.2 shows the experiments conducted alitmegyes as input.

All code produced for the evaluation was written@AC++. To keep things simple, visualization
was done in ®ENGL, mainly usingGLUT and GLUI ( [44] provides a good starting point for more
information concerning ®@ENGL andGLUT). Grabbing images from cameras and most of the image
processing tasks were done by or based eEKCV.

5.1 Simulation

Like for many other applications a simulation ofSUAL MONO-SLAM can become a valuable eval-
uation tool, since it provides a closed environment without any unknowenpeters. From the rather
lengthy description of the principle description ofSWAL MONO-SLAM in chapter 4 the reader might
have already guessed that the actual implementation®M. MoNO-SLAM also requires a lengthy
amount of source code. Usually the larger a program becomes the taegpossibility for bugs and
unforeseen side effects becomes. Considering that image procefteimpas to handle noise (see chap-
ter 3) and the nding the correct thresholds often requires both time aeduning it may be hard too
determine if and in which part of the source code an error might be lodatedsimulation environment

it becomes possible to disregard image processing and various noisednblyi¢émage processing to
evaluate the basic uAL MONO-SLAM algorithm.

5.1.1 Simulation Setup

To avoid processing of real camera images and leave as much souecilentical for both simulation
and real application a virtual camera was constructed. SinseAL MONO-SLAM was implemented
usingC/C++, visualization and virtual camera were implemented PEQGL. The virtual camera ba-
sically consists of a vectot, to de ne its position, orientation and velocities (see equation (4.2)) which
enables the simulation to compare the actual camera state with the camera statecebirtiaaeE KF.
Furthermore the virtual camera depicts the 2 dimensional projection of a smedered in @ENGL that
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Figure 5.1: Virtual camera calibration(a) depicts a short calibration sequence for a virtual camermate lthat
the calibration sequence used for a virtual camera mighulie ghort, since distortion coef cients andk, will

be 0. (b) shows the estimated extrinsics for the calibration sequielepicted in (a). Estimated extrinsics were
obtained by the MTLAB toolbox [6].

corresponds to the image perceived by a camera de ned accordingttir xg. Surprisingly at it may
seem at rst, a virtual camera also has to be calibrated. Remember that thgoahiof the simulation

is to evaluate the methods used in the real world application in a determinedrenemt Therefore
the measurement function discussed in section 4.4 used to predict expeaiedrements should not be
modi ed. Of course a virtual camera de ned inF@NGL will not exhibit lens imperfections like a real
camera. Therefore the distortion coef cieks andk, (see equations (2.13) and (2.17) may safely be

assumed to be 0 and the image ceftey; Vo) is located at Width-; height  owever a virtual camera

will still have one property that cannot be deduced easily or directlyesponds to the parameters used

in OPENGL to de ne the projection properties. To predict the measurement foremgioint in the state
vector the focal length is needed (see equation (4.25)). Similar to a real camera the virtual camera
can be calibrated by observation of a chessboard, with the only differtat the chessboard is now a
virtual chessboard rendered irr&NGL and projected from different viewing positions. An example for
the calibration of a virtual camera is depicted in Figure 5.1.

In the simulation the virtual camera will observe a scene containing virtuafraria. Virtual land-
marks are speci ed by their 3D coordinates in the world coordinate framéhd visualization they are
shown as solid white sphere. As perceived coordinates of a virtuamlaridthe projection of its 3D
coordinates for the scene depicted by the virtual camera is used. Tomsknates can be easily ob-
tained by QPENGL. If the received coordinates are inside the search region of tbeiatd feature, the
feature resembling the virtual landmark inSWAL MoONO-SLAM is matched. Otherwise the feature
is not successfully matched. Thus the need for a matching mechanisndriagtie real application
can be avoided in the simulation. Otherwise the simulation works just like the pphtation, newly
observed landmarks may be initialized as new features, features catetszldand if the linearity index
for a feature in inverse depth is below the given threshold, the featuréevidbnverted. The estimated
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map and virtual camera perspective for the simulation are depicted in Figurdbe estimations for
each landmark are shown by wired ellipsoids. The color of the ellipsoidsategiche current state of the
corresponding feature: Green ellipsoids were predicted to be insidettetimage and matched suc-
cessfully, red ellipsoids were not successfully matched and gray inditeethe feature was predicted
to be outside of the current image. Visualization for points in XYZ encodingraéght forward and
their uncertainty can be easily calculated by the variances found on the ragondl of the covariance
matrix. The indicate association between a landmark and its correspondingefeboth are labeled with
the same number. To visualize features in inverse depth coding these needdaverted with their
corresponding covariance to XYZ representation as discussed inrsécdioDue to the linearity issues
with features in XYZ showing low parallax (see section 4.7) the visualize@niaty estimation for
features in inverse depth might sometimes show odd behaviour with vastlginogaimcertainty ellip-
soids. However this is just a visualization issue, since inverse depthdeahat should not be converted
to XYZ according to their linearity index, need to be converted in order taalizeithem. The estimated
camera position and orientation is marked by a blue cone, where the pinhobatedat the center of
its at side (i.e. the top of the cone indicates the opposite of the viewing directildmre estimated path
of the camera is drawn in yellow.

The simulation can be in uenced via a graphical user interface. The atedllows for manipulation
of the virtual camera by determining its linear and angular velocities. This ealohe either for a
predetermined number of frames or repeatedly until another command id.igsseooth return to the
origin in a given number of steps is implemented employing SLERPS introducé®jnd determine
the proper quaternion rotations. Furthermore several viewing opticaidesthe user to switch on and
of the display of uncertainty ellipsoids for XYZ or inverse depth featuresthe like. The view on the
estimated map can be in uenced either via sliders in the GUI or by a rst-peskooter like navigation.
Since MsuAL MONO-SLAM estimates the positions of all features and the camera pose without any
prior knowledge usually the estimates differ from the virtual landmarks antbca, but a consistent at a
meaningless scale (see section 4.8). To better compare the overall amys@stthe estimated map with
the given virtual landmarks a scale vector for all features can be cedwasily, since the 3D positions
of the virtual landmarks are exactly known. To estimate the scale vectotidegosition estimations
are randomly determined and compared with the positions of the corresgondiral landmarks. The
resulting scale vector is then used to scale the visualization of all feature gstisnaccordingly.

5.1.2 Simulation Results

The simulation yields generally good results for the estimation of both, inveysth énd XYZ coded
features. Also the error in the estimated positions compared to the known psdfiche estimated
landmarks is reasonable for features that have been observed fthaarjust a few frames. In Table 5.1
the scaled estimates for some selected features are presented. To ohtaingbeashown in Table 5.1 the
virtual camera moved over a total of 210 frames, which is a rather shquesee. The exact velocities
and number of frames de ning the movement of the virtual camera are simoVable 5.2. Still for some
features enough parallax was detected so that they could safely beriaohio XYZ coding. To give an
overall view the displayed features were selected according to thregecritandmark depth, position
in the initial image and how often the feature was observed during the 2h@draequence. Note that
due to the random element in the scale vector not necessarily the babtgpestmation compared with
the original value might be obtained (for example if a newly initialized featurelecged to contribute
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(a) Estimated map (b) Virtual camera view

Figure 5.2: Simulation view: (a) shows the estimated map. Landmarks are depicted as whigeesplihe 95%
con dence region for the estimation is illustrated by wirdtipses. The estimated camera position is marked by a
blue cone, where the pinhole is in the center of the at side(b) the view from the virtual camera is depicted.
Note that this view is not exactly the view from the blue conda), since that is the estimation of the camera.
However the camera estimation should not differ signi dafitom the state of the virtual camera. No ellipsoids
are displayed in (b), since the estimated con dence regitmnsot belong to the observed scene.

to the scale vector). To further evaluate the experiment in the simulation thetdrgj®f the virtual
camera and the EKF estimation of the trajectory have been logged. Figuredw8 a comparison of
the trajectories projected in th€Z -plane (Figure 5.3a) andY -plane (Figure 5.3b), respectively. The
estimation error in the trajectory peaks at the end of the rst camera moveseguénce at frame 100
(see Table 5.2). This can be explained by the camera movement: Befime 0 the camera observes
new features and adds them to the current state vector, while some of thef@aitiaes begin to drift
out of the eld of view. Afterwards the changing velocities move the camesagh a way that various
features are re-observed. Re-observations of this kind improvegsbiseation (similar like real loop
closing) and therefore the pose error gradually becomes smaller.

During experimenting with the simulation it became apparent the rotations of thmliamera,
induced by angular velocities play an important part isWAL MONO-SLAM. Position estimates ob-
tained if the virtual camera was just subject to linear velocities were lessaedhan movements fea-
turing both types of velocities. An interesting effect can be observed isithelation for small linear
velocities in the absence of angular velocities: In this case the predictedmaot@of the virtual cam-
era differ in the sign of the actual movements, i.e. if the camera is moving alopp#ita/e X -axis the
EKF estimates a movement in direction of the negaXvaxis. Subsequently the features are estimated
behind the camera, since these positions would correspond to the estintagra caovements. Inves-
tigation of this phenomena has not come up with a satisfactory explanation owtilfFor a hand-held
camera this effect may not prove important, since hand-held devices willalfeature small rotations.
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Landmark frame 100  frame 120 frame 180 frame 210
description positon mean 3D mean 3D mean 3D mean 3D
ID: 1, low X 0 -0.03 -0.04 -0.03 -0.03
depth, centered, y 0 0.01 8 0.01 4 0.01 4 0.01 4
always observed z 5 5.07 5.21 4.92 491
ID: 10, high X 0 -0.23 -0.26 -0.33 -0.34
depth, centered, y 15 1432 8 14.73 8 14.82 8 14.858
always observed z 100 9217 95.28 96.87 97.20
ID: 20, medium x -25 -13.43 -14.24 -24.81 -24.97
depth, lower right, y 5 271 8 2.83 8 499 8 5.01 8
sometimes observed z 20 10.67 11.22 19.92 20.03
ID: 7, medium x 30 2941 30.65 29.20 29.42
depth, upper left, y 20 19.70 8 20.29 8 19.53 8 19.67 8
often observed z 30 29.35 30.35 29.46 29.67
ID: 37, low x 15 15.27 15.53 14.51 14.54
depth, not in initial view y 0 -0.02 8 0.00 8 0.00 8 0.01 4
seldom observed z 5 5.14 5.12 4.85 4.85
ID: 43, medium X -45 - - -52.06 -48.99
depth, notin initial view, y 20 - - - - 23.13 8 21.70 8
seldom observed z 30 - - 35.36 32.99

Table 5.1: Position estimates from simulation. The table shows thenaséd positions for some selected features
during the simulation. The columns labeled 3D indicate & feature was already converted to XYZ encoding.
The scene with the virtual landmarks is depicted in FiguBa5For a speci cation of the time steps please refer
to Table 5.2. If no estimation is given then the feature wasobserved until the corresponding time step.

frames v vy v 1 ¢ VA
0-99 1.300 0.500 -0.670 -0.050 0.120 -0.060

100-119 0.200 -1.700 0.400 0.100 -0.250 0.180
120-179 -2.300 -0.800 -1.500 -0.200 -0.130 -0.150
180-209 0.133 1.067 4967 0533 0.026 0.318

Table 5.2: Virtual camera velocities de ning the movement for the esties presented in Table 5.1. The velocities
from frame 180—209 describe a return to the origin.
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Figure 5.3: Camera trajectories in simulatio(a) shows a trajectory in th&Z -plane,(b) in the XY -plane. The
velocities for the camera of the trajectories are given inl@#&.2. The real trajectory of the virtual camera is shown
as a red line, while the green line shows the estimates ofrdimpless YsuaAL MONO-SLAM. Multiplying the
estimated trajectory with a scale vector results in the bagctory. LetterdA, B, C andD mark the changes
in camera velocities, according to Table 58 marks the position at fram@ (and frame 210)B the position at
frame100, C at120andD at180.

5.2 Real Data Experiments

Evaluating experiments with real data proved to be much harder than expérnigha the simulation.
In subsection 5.2.1 the qualitative results using two different image segsi@neated by the authors
of [13,16,20] have been used as input fasWAL MONO-SLAM. Afterwards in subsection 5.2.2 results
for real-time ViSUAL MONO-SLAM using a HErRcULESWebCam Classic are discussed. For real-time
estimation feature comparison is done by image patch matching, were patsimsldf 1land21 21
were tested. As a comparison measure for image patches the normalizedamreation (see equation
(3.16)) was used. The expected amount of predicted features wasl fetthat means that new features
will be initialized if less tharLOfeatures are predicted to be in the currentimage. The amount of features
was determined experimentally - less features led to qualitatively worse pdspoaition estimates,
more features did not signi cantly improve the estimation but only increase atatipnal load.

For complete image sequences SURF-features were tested as an ad#dmatiage patches. For
real-time estimation SURF could not be tested, since the neitherrtaa@V implementation of SURF-
features nor the original implementation performs fast enough for featraction at 15 — 30 Hz.

5.2.1 Given Image Sequences

Two image sequences created by the authors of [13, 16, 20] haveubedrto test the working of the
VISUuAL MONO-SLAM implementation. Both feature images of sB20 240pixels and were obtained
by a 30fps re-wire camera with known intrinsic camera parameters. Onednsaguence depicts
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6

(a) Camera image (b) Detail from scene

Figure 5.4: Detected features in outdoor scene. (&) the last frame of the outdoor scene is shown. Detected
features in the current frame are marked by a black number.gféen squares indicate the area where the image
patch was matched. Blue ellipses indicate the 95% con deeg®n. However the con dence regions are hardly
visible in the depicted scene, since they are smaller andehidy the matched regions (which indicates good
predictions). Sub gurgb) provides an image detail of (a) and contains all featuresrired to in Table 5.3. For
better readability feature IDs are colored red.

an outdoor scene with varying lighting conditions showing a street with somseirtahe foreground
and some distant features near the horizon. The sequence is quitejsstopt;oviding 180 frames.
The second image sequence is longer, comprisdd00frames. It shows an indoor lab environment,
containing mostly features showing high parallax that can quickly be cmu/gry XYZ from their initial
inverse depth encoding. Since for the scenes shown in the image seguenknown scale is provided
the evaluation can only be a qualitative, not quantitative. It should be tloé¢davison et al. do not
publish an quantitative analysis of the estimated 3D positions for real imag:da 16, 20] either.

Using image patches for feature matching in both image sequences the vidediraated state
of the camera matches well with the movements done in the image sequence. rdsallgehe depth
estimation seems to be consistent in the scenes. For example in the outdaarceefpatures located
on a car in the foreground differ in thercoordinate signi cantly from features on objects in the middle
or background as shown in Figure 5.4 and Table 5.3. Furthermorettdraims and translations of the
camera seen in the image sequence, similar rotations and translations cood@bed for the estimated
camera. A plot of the estimated camera trajectory during the sequence is pidtigdre 5.5.

To illustrate the progress of the location estimate the estimates for selected aegraepicted in
Figure 5.6. Note that in the initial frame (Figure 5.6a) the uncertainty ellipsoigls/ery large and
overlapping, due to large uncertainty about the feature depth. Hov@veeliably matched features
the uncertainty quickly converges (Figure 5.6b). It should be noteditivatg the outdoor sequence no
feature is converted from inverse depth to XYZ representation. Thisddathe fact that in this short
image sequence no feature is observed over the whole sequence andnther of successful matches
was not suf cient to push the linearity index below the threshold:df (for the de nition of linearity
index, its analysis and meaning please refer to sections 4.7 and 4.9).
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Figure 5.5: Camera trajectory for outdoor sequence. During the seguveccamera is rst moved a bit to the
right and afterwards to the left and in the direction of thgative Z-axis. During this movement the viewing
direction is rotated slightly around the-axis. Afterwards the camera is moved roughly back to itsahposition.
(a) shows the estimated plot in th€Z -plane which qualitatively ts the observed camera trapegtwell. In (b)
the trajectory in thXY -plane is plotted. While during the sequence rst an upwardeneent of the camera could
be noticed in the end it is moved downward again. This is asected in the plotted trajectory. A comparison
with the ground truth as in the simulated case (see Figuddsridt possible.

Similar results could be obtained for the indoor sequence. This sequmiicg much longer than the
outdoor sequence and being in an indoor environment with no farawéyrés provided much parallax
for every stable feature. In fact at the end of the indoor sequererg &ature in the estimated map is
encoded in XYZ. Two exemplary frames from the indoor sequence gietdd in Figure 5.7. Using
image patches o1 11 or 21 21 pixels did not have any signi cant in uence on camera pose
estimation or the estimated positions of feature locations.

Using SURF features instead of image patches showed less promising.résuitggh SURF fea-
tures are generally considered stable and have successfully bekfousbject recognition task single
SURF features proved not to be as locally stable as image patches. Farrebfggnition tasks it might
not be crucial if a matched SURF feature might be detected one or two pfk&lsro its actual location,
but in an application like VSUAL MONO-SLAM such an error may af ict the current pose estimation
and subsequently the predictions and estimations for the next frame. Sonfetituess can be observed
to slightly move around in the image, which is rather fatal for the state estimatiamigs for faulty
feature matching for SURF features are depicted in Figure 5.8.

5.2.2 Real Time Estimation

Results obtained using the given image sequences with image patch matchingneeuraging with
respect to the obtained maps, so that the same method was tried in real-time. §erratraeval a
HErRcuULESWebCam Classic was used, where the native resolution was downscak@l t@40pixels
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Position in scene Feature ID X y z
rearview mirror 2 0.5652818 -1.136854  7.700869
Car rim 6 -0.8424688 -2.723368  7.394391
headlight 7 -2.616124  -1.217564  7.140176
right 0 -19.60458 3.135008 22.95719
Background center 5 -9.627525 2.788888 27.84539
left 8 -1.600957 3.779855 31.05553

Table 5.3: Position estimates for selected features of the outdoaresexg. The feature IDs refer to the number
depicted in Figure 5.4b. Of special interest is the last molishowing the estimate of tteecoordinate. From

a qualitative standpoint the depth estimates obtains thea@d estimations: The coordinates of the features
located on the car in the foreground are similar and diffgnistantly from the estimates of the features located
in the background. Judging from Figure 5.4b feature 8 of tkbround features #8 is the farthest, while feature
#0 is the closest. This is resembled in the estimates of tteordinates.

and camera calibration parameters were determined by tkie M8 toolbox (see [6]). However real-
time results with the HRcuLESWebCam Classic do not achieve comparable quality as with the given
image sequences. One main difference between the camera used bynzadbon [13, 16, 20] and the
low-cost HERCULESWebCam Classic is the actual number of frames provided by the camerale Wh
Davison et al. report a stable frame rate of 30 fps which means a new imalgiiised every 33 ms the
time to retrieve a new image with theei#cuLesWebCam Classic uctuates. While the manufacturer
claims frame rates of “up to 30 fps” the actually obtained frame rate is rou@flysl Unfortunately that
does not imply that a new image will be obtained ever 66 ms, as one could guests but retrieval
times between 45ms and 118 ms have been recorded. Keep in mind that the tireerbgt images
in uences the prediction of the next camera pose (see section 4.3) anthdiilte larger uncertainty
about the features expected position. Furthermore the perceivedefeattoved less stable than the
features obtained in the given image sequences. Sometimes “moving feaiordarly to the effect
observed for SURF features on the image sequences could be ahseitheequally bad effect on the
estimated camera pose. And once the error in the pose estimation becomegapeMan stable features
will not be matched anymore, since they will not be at their expected positidhe image. Increasing
the threshold for the response (see 3.1.1) inhibits this effect, but led tadespted features in the rst
place. This reduced amount of information gained by the features waat4ba pose estimation, so that
the ultimate effect is the same as for “moving features”. At the moment it is nat, eldy these effects
could not be observed in the given image sequences, but a rst gumdd be that the image quality
obtained by the HRcuLESWebCam Classic is worse than the images in the sequences. Using the native
resolution of640 480 pixels seemed to lead to more image noise, resulting in an even faster lost pose
estimation.

Therefore at the moment no meaningful results can be presented fagahtme estimation, but
it should be noted that used thresholds and parameters coming into playoatsvearts of the algo-
rithm in uence the outcome greatly. Fine-tuning of these values proves tefyetime consuming and
sometimes more art than science.
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(a) Frame 0 (b) Frame 50

(c) Frame 100 (d) Frame 150

Figure 5.6: Progress of map estimation for outdoor sequence. The @llipsllustrate feature uncertainty, esti-
mated camera pose is depicted by a blue cone. Green ellisadig¢ate a successfully matched feature, red means
no successful match and gray ellipsoids are not predictée ton the image sensor. While the estimated map in
(a) does not convey much information, due to large uncertaimtyeich feature, estimation quickly improves as
seen in(b). Re-observation of features can signi cantly improve thestimated positions as seen for feature #0
(the feature close to the positive-axis) in the different estimation ifc) and(d).
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@)

Figure 5.7: Exemplary frames from the indoor sequence. Red indicatesasessful matching attempts, while
green indicates successful matches.

@) (b) (©) (d)

(e) U] (9) ()

Figure 5.8: False matches using SURF. The top rda)  (d)) depicts so called SURF features extracted by
OPENCV. The OPENCV implementation was inspired by the original surf papdrifdt is not equivalent and
performs oftentimes worse. In the second rd@) & (h)) results from the original SURF implementation are
shown. All matches were considered successful and theréektcation is in the center of the green square. In
both cases signi cant movement of the depicted featuretippstan be observed. Therefore in the context of
VISUAL MoONO-SLAM these features are not suitable.
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Chapter 6

Discussion and Outlook

This thesis provides a detailed analysis aBVAL MONO-SLAM along with the underlying methods
from image processing in chapter 3 and camera models in chapter 2. Tihedeasof the extended
Kalman Iter was brie y introduced in section 4.1 and elaborated by the exemplpplication MSUAL
MoNoO-SLAM in the remainder of chapter 4. The achieved results using RENOV and GPENGL
based implementation were presented in chapter 5.

While qualitatively encouraging results could be obtained for two given imageences, the current
implementation did not yield useful results applied on a stream obtained by edsttJSB camera.
Further parameter tuning and testing will be needed to enable stable posetieatimahe real-time
scenario which is crucial to a properly workingSUAL MONO-SLAM implementation.

To improve results for the given image sequences and a working real-tiplieatjon the image
patch matching should be addressed further. In the current implementtiaimex image patches
are just compared to the patches from other images inside the 95% coe degion of its associated
features. While this yields reasonably good results in many cases, it stdl $achke desirable properties:
Matching will not be rotational invariant nor will image patches be matched ifitfierence between
the current point of view and the point of view of the rst observatiogdraes to large. Two strategies
could be employed to address this problem: Firstly one could wsgiable image patclinstead of a
constant one. This would mean that for every successful match of ae ipadch, the patch stored along
with the feature will be replaced by the matched patch from the current infdigee orientation and
point of view of an image patch will usually change continuously and naiglyr over a sequence of
received frames this could provide rotational invariance along with tabas to changes in point of
view and scale. However if the camera performs a loop motion then the vairadde patch will less
likely be matched at the loop closing, than a constant image patch. Secondly patdnes could be
transformed according to the currently estimated camera pose. This wquideréor each image patch
to have a unique orientation which could possibly be obtained by directiectdsm ( i; ;), dependent
on azimuth ; and elevation ; at feature initialization. With this orientation for an individual feature,
its estimated position and the estimated camera pose one could try to transformdbeoeieh to best
resemble expected patch under the current point of view. However $oesholds will be needed for
this approach since the transformation will likely result in a blurred patcthatofor small changes in
the point of view this technique may actually provide worse results than the simgitehing approach.
Furthermore if the estimation of the feature position has a large uncertainty &satures just after
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initialization, such a transformation will reduce the probability of successfatiching. Eventually a
combination of both, variable image patches and image patch transformatioertagne cial. On
the other hand other methods apart from image patches should be testelll & mgcently developed
feature descriptor like ENSURE [2] might be interesting, since its authors claim real-time capabilities
and robust matching.

Also the number of features matched for one frame could be addredsedrd features than the
desired number for stable estimation are predicted to be visible in the cuaierd,fone could limit the
amount of features that will actually be searched in the image, thus redtmingutational effort. The
uncertainty of the expected features could be used as a heuristic takelisatures: If the uncertainty of
a feature is large observation of this feature will usually have more impatieooverall estimation than
the observation of a feature whose position is already well known. ®aiaries with a high uncertainty
should be preferred compared to low uncertainty features.

Extending the simulation could also provide some additional insights. Up untiimage noise has
not been regarded in the simulation - for every observable featurdecparatch can be obtained. In-
troducing the user with the ability to experiment with different image noises ordfse of the transition
function might be interesting. In addition a different method to in uence theamnt of the virtual
camera apart from the values for the 6 velocities is needed. To simulatersioakments of a hand-held
camera a nhoise function affecting the velocities should be implemented, assveetlimpler method of
input to direct the camera instead of tediously inserting the desired velocitids Wwe bene cial.

Different transition functions in simulation as well as in the real applicatiodcbe used to model
scenarios different to the hand-held camera. For example if a camera isadamtop of a robot, ac-
tions in uencing the robots pose like steering commands should be incéggldrathe state transition to
improve a priori pose estimation. In this case one could also think of samsionfwith other sensors like
laser based range nders or time-of- ight cameras. While range sdenovide better depth measure-
ments, thus yielding good information about translational movements, rotatienslebly estimated
by VisuaL MoNO-SLAM. Even if the detected rotation is not accurate it might serve as agusts
used in scan matching approaches, since these generally yield bettes tlesucloser the initial pose
estimation is to the actual pose.

If fully operational for real-time operation, gUAL MONO-SLAM could provide a powerful tool as
a stand alone application for hand-held cameras and mounted on a mobtii@ledfimm for 6DSLAM
with sparse 3D maps. Furthermore in the domain of mobile robotics the estimateswedlig ViSUAL
MoNO-SLAM could be used in a sensor fusion approach together with otheosseto improve overall
map quality. This could either be done by combining odometry and or gyro @smpaasurements to
in uence the state transition of MUAL MONO-SLAM or by employing the camera pose estimation of
VISUAL MONO-SLAM as an initial pose estimation for scan matching approaches.

As a nal remark it should be mentioned that creating a fully operationaigarof VisuaL MONO-
SLAM, yielding results comparable to those of Davison et al., requires & btk in two respects.
Firstly the software infrastructure needs to be created, before anyimgéarexperiments may be con-
ducted. In this respect the overall robustness of the EKF may sometimasdectually a disadvantage,
since it may cover eventual implementation bugs. Secondly the determinationcafs/parameters and
thresholds like image patch size or the required number of features needmtirpatience.
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