Towards

Semantic 3D Maps

Prof. Dr. Andreas Nüchter Jacobs University Bremen Campus Ring 1 28759 Bremen

Acknowledgements

- I would like to thank the following researchers for joint work and inspiration in the past years:
 - Joachim Hertzberg
 - Kai Lingemann
 - Stefan Stiene
 - Hartmut Surmann
 - Oliver Wulf
 - Bernardo Wagner
 - Simone Frintrop
 - Dietrich Paulus
 - Sara Mitri
 - Dorit Borrmann
 - Jan Elseberg
 - Sebastian Thrun
 - Thomas Christaller

Fraunhofer Institut Autonome Intelligente Systeme

About this talk...

(video)

Outline

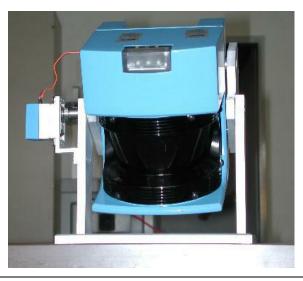
- Introduction
- 3D Robotic Mapping
- Interpretation of Point Clouds
- Semantic Maps
- Conclusion

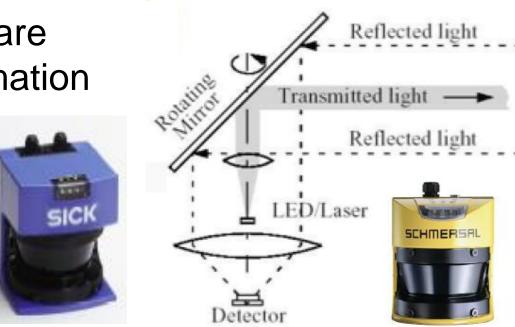
Outline

- Introduction
- 3D Robotic Mapping
- Interpretation of Point Clouds
- Semantic Maps
- Conclusion

3D Laser Scanning

- 2D Laser range finder are standard tools in automation and robotics
- 3D laser scanner for mobile robots based on SICK LMS 200



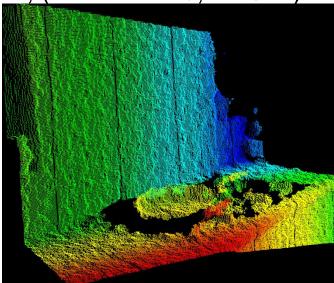


- Based on a laser scanner
- Relatively cheap sensor
- Controlled pitch motion (120° v)
- Various resolutions and modi, e.g., intensity measurement {181, 361, 721} [h] x {128, ..., 500} [v] pts
- Fast measurement, e.g., 3.4 sec (181x256 points)

Kinecting

Microsoft Kinect

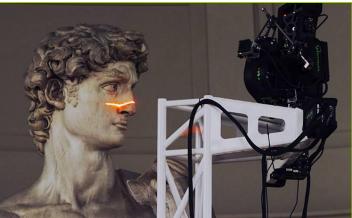
- Video 30 Hz
- RGB video: 8-bit VGA resolution (640 × 480 Pixel)
- Monochrome Video Stream (depth information): 11-bit VGA 2048 depth values
- Depth: 1,2 3,5 <u>m, (enhanced: 0,7 6 m)</u>
- FOV: 57° (h) × 43°(vert)
- Tilt unit 27°
- Cost effective



XBOX 360

Professional 3D Scanners

- Structured light (close range, triangulation)
- Time-of-flight (pulsed laser vs. continuous wave)

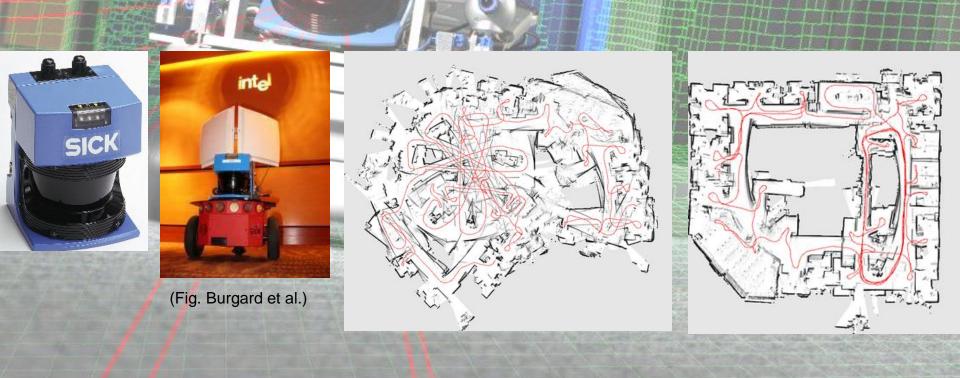


Background Robotic Mapping

- If one knows the pose of a mobile robot precisely, then the sensor readings can be used to build a map.
- The pose of a robot is easy to compute from sensor readings, given a map.
- Simultaneous Localization and Mapping (SLAM)

Background Robotic Mapping

- If one knows the pose of a mobile robot precisely, then the sensor readings can be used to build a map.
- The pose of a robot is easy to compute from sensor readings, given a map.
- Simultaneous Localization and Mapping (SLAM)



Background Robotic Mapping

- If one knows the pose of a mobile robot precise Sen the sensor readings can be used to build a participation of the sensor rea
- The pose of a robot is easy to compute from sensor readings, given a map.
- Simultaneous Localization and Mapping (SLAM)

The Ariadne Robot (2002/2003)

First, we used the 3D information for obstacle avoidance. Later of we did initial 3D mapping experiments.

The motion of the robot 3 DoF

(Video Crash) (Video NoCrash)

The Mobile Robot Kurt3D (2004 – 2009)

- Indoor/Outdoor versions available
- main Sensor:
 3D scanner ⇒ 3D data, 6D poses

Kurt3D is a lightweight (25 kg)

nur fur

 Two 90W (200W) motors, 48 NiMH a 4500mAh, C167 Microcontroller, CAN Controller, Centrino Notebook

The Mobile Robot Irma3D (2010, ongoing)

Technical Data:

- Base: volksbot
- 2D-Laserscanner: SICK LMS-100
- 3D-Scanner: Riegl VZ-400
- IMU: XSens
- Up to 3 color cameras
- Optris Imager PI
- Canon 1000D
- 12" Notebook for control RTLinux + ROS
- Battery capacity 4×7.2Ah@12V

Outline

- Introduction
- 3D Robotic Mapping
- Interpretation of Point Clouds
- Semantic Maps
- Conclusion

The ICP Algorithm

Scan registration Put two independent scans into one frame of reference

Iterative Closest Point algorithm [Besl/McKay 1992]

For prior point set *M* ("model set") and data set *D*

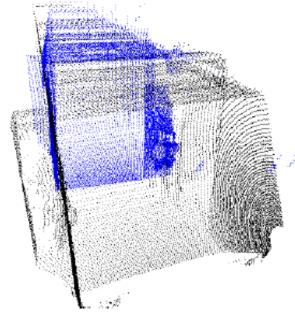
- **1.** Select point correspondences $w_{i,j}$ in $\{0,1\}$
- 2. Minimize for rotation R, translation t

$$E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N_m} \sum_{j=1}^{N_d} w_{i,j} \left| \left| \mathbf{m}_i - (\mathbf{R}\mathbf{d}_j + \mathbf{t}) \right| \right|^2$$

3. Iterate 1. and 2.

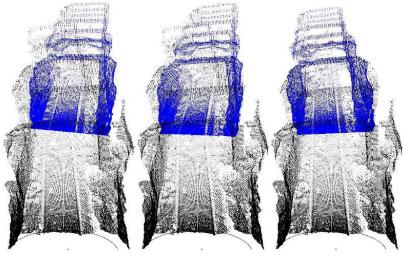
Four closed form solution for the minimization

works in 3 translation plus 3 rotation dimensions



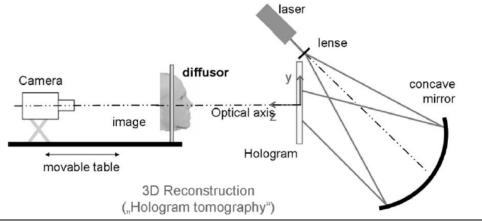
3D Mapping Examples

CMU 3D mapping of abandoned mines



RoboCup Rescue

3D reconstruction in the context of medical imaging



The book all of Pt Angorithm

Scan registration Put two independent scans into one frame of reference

Iterative Closest Point algorithm [Besl/McKay 1992]

For prior point set *M* ("model set") and data set *D*

- **1.** Select point correspondences $w_{i,j}$ in $\{0,1\}$
- 2. Minimize for rotation R, translation t

$$E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N_m} \sum_{j=1}^{N_d} w_{i,j} \left| \left| \mathbf{m}_i - (\mathbf{R}\mathbf{d}_j + \mathbf{t}) \right| \right|^2$$

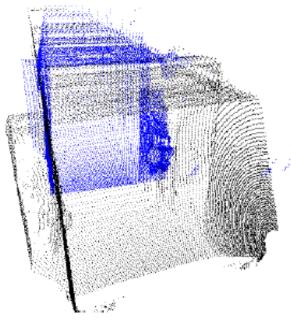
3. Iterate 1. and 2.

Four closed form solution for the minimization

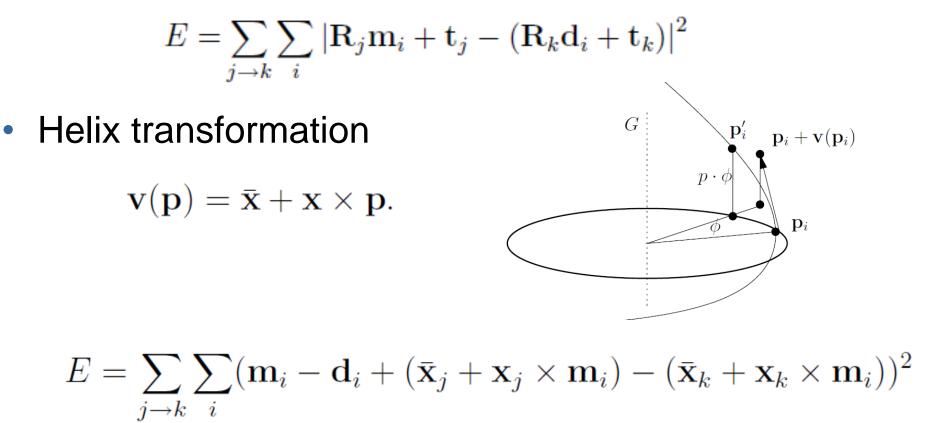
Global consistent registration

$$E = \sum_{j \to k} \sum_{i} |\mathbf{R}_{j}\mathbf{m}_{i} + \mathbf{t}_{j} - (\mathbf{R}_{k}\mathbf{d}_{i} + \mathbf{t}_{k})|^{2}$$

Minimize for all rotations ${\bf R}$ and translations ${\bf t}$ at the same time



Parameterizations for the Rigid Body Transformations



... solving a system of linear equations

Parameterizations for the Rigid Body Transformations

$$E = \sum_{j \to k} \sum_{i} |\mathbf{R}_{j}\mathbf{m}_{i} + \mathbf{t}_{j} - (\mathbf{R}_{k}\mathbf{d}_{i} + \mathbf{t}_{k})|^{2}$$

• Small angle approximation $\sin \theta \approx \theta - \frac{\theta^{3}}{3} + \frac{\theta^{5}}{5} - \cdots$
 $\cos \theta \approx 1 - \frac{\theta^{2}}{2} + \frac{\theta^{4}}{4} - \cdots$
 $\mathbf{R} \approx \begin{pmatrix} 1 & -\theta_{z} & \theta_{y} \\ \theta_{x}\theta_{y} + \theta_{z} & 1 - \theta_{x}\theta_{y}\theta_{z} & -\theta_{x} \\ \theta_{x}\theta_{z} - \theta_{y} & \theta_{x} + \theta_{y}\theta_{z} & 1 \end{pmatrix}$
 $\mathbf{R} \approx \begin{pmatrix} 1 & -\theta_{z} & \theta_{y} \\ \theta_{z} & 1 & -\theta_{x} \\ -\theta_{y} & \theta_{x} & 1 \end{pmatrix}$... solving a system of linear equations

Parameterizations for the Rigid Body Transformations

$$E = \sum_{j \to k} \sum_{i} |\mathbf{R}_{j}\mathbf{m}_{i} + \mathbf{t}_{j} - (\mathbf{R}_{k}\mathbf{d}_{i} + \mathbf{t}_{k})|^{2}$$

- Explicit modeling of uncertainties
- Assumptions: The unknown error is normally distributed

$$W = \sum_{j \to k} (\bar{\mathbf{E}}_{j,k} - \mathbf{E}'_{j,k})^T \mathbf{C}_{j,k}^{-1} (\bar{\mathbf{E}}'_{j,k} - \mathbf{E}'_{j,k})$$
$$= \sum_{j \to k} (\bar{\mathbf{E}}_{j,k} - (\mathbf{X}'_j - \mathbf{X}'_k)) \mathbf{C}_{j,k}^{-1} (\bar{\mathbf{E}}'_{j,k} - (\mathbf{X}'_j - \mathbf{X}'_k)).$$

$$E_{j,k} = \sum_{i=1}^{m} \|\mathbf{X}_j \oplus \mathbf{d}_i - \mathbf{X}_k \oplus \mathbf{m}_i\|^2 = \sum_{i=1}^{m} \|\mathbf{Z}_i(\mathbf{X}_j, \mathbf{X}_k)\|^2$$

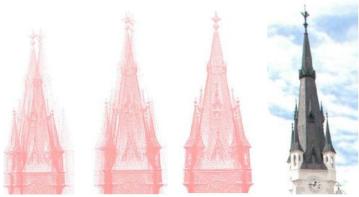
Comparisons of the Parametrizations

Global ICP	Classical Pose GraphSLAM
 Gaussian noise in the "3D Point Cloud" space 	 Gaussian noise in the space of poses
 Locally optimal 	 Gradient descent needed
 ICP-like iterations using new point correspondences 	 ICP-like iterations using new point correspondences needed as well

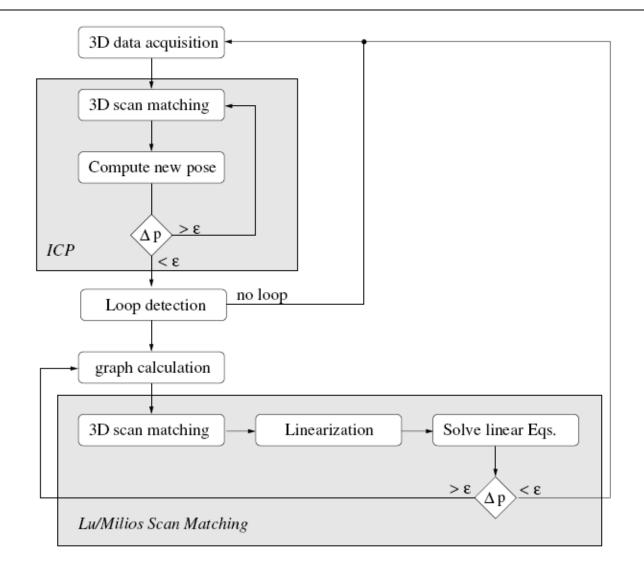
Riegl Laser Measurement GmbH

(Video courtesy of Riegl)

(Video 1) (Video 2) (Video 3)

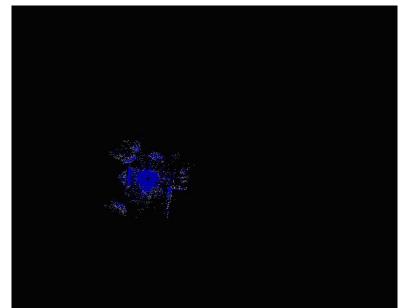


Closed Loop Detection and Global Relaxation

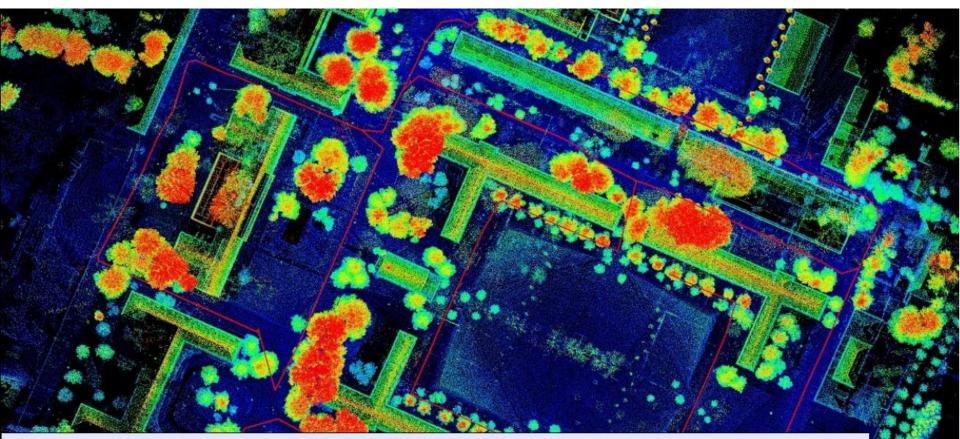


6D SLAM – Full Example

• Leibniz University Hannover (RTS)



3D Point Cloud Processing – Emerging Trends



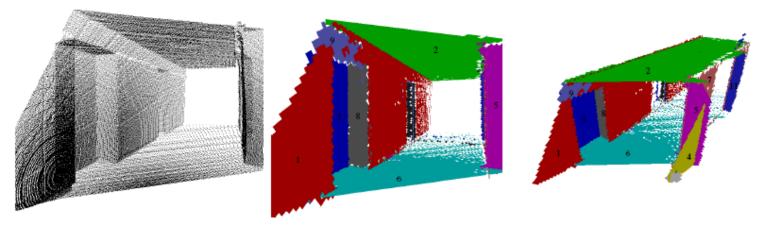
- 122 Scans @ more than 2 Billion points
- 4 coordinates per point, 8 bytes per coordinate => 59.6 Gb
- Compressed only 8.8 Gb @ ~100 micron precision

Outline

- Introduction
- 3D Robotic Mapping
- Interpretation of Point Clouds
- Semantic Maps
- Conclusion

Scene Interpretation

Plane extraction using a novel RANSAC+ICP

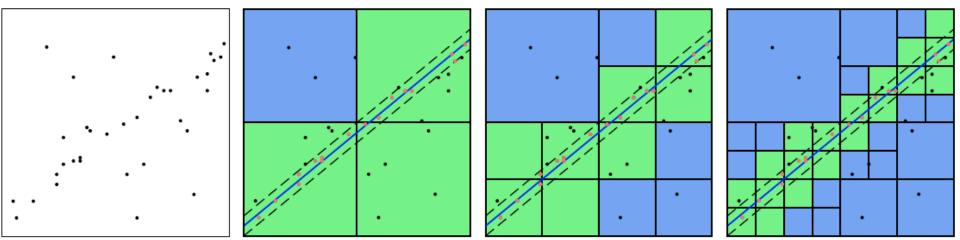


 Semantic net for assigning meaningful labels to the planes



Detecting Shapes with RANSAC

- Improve selection of sample points
 - Choose points with higher likelihood if in close proximity
 - Lower number of draws required
- Speed up validation of hypothesis



AVERAGE COMPUTING TIME IN ms OF RANSAC.

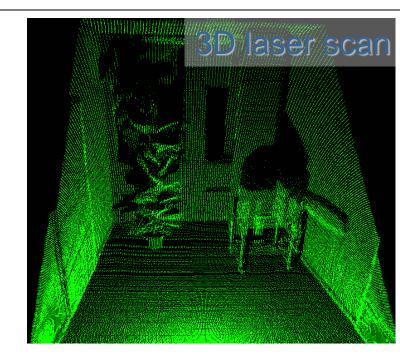
Data set	no octree	octree	speedup
Kurt3D	1666.57	176.69	9.43
Kinect	6905.94	429.32	16.08
city	388551.55	11084.81	35.05

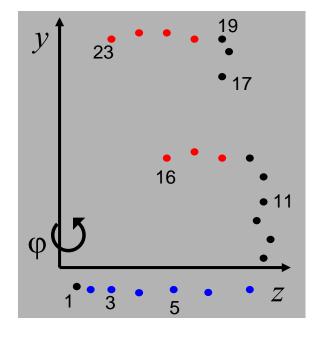
R. Schnabel, R. Wahl, and R. Klein. Efficient RANSAC for Point-Cloud Shape Detection. *Computer Graphics Forum*, 2007.

Semantics by Point Labeling

• Classification of 3D points $p_{i,j} = (\varphi_i, z_{i,j}, y_{i,j})$ is in the *i*-th vertical scan the *j*-th

point (start counting from the bottom)

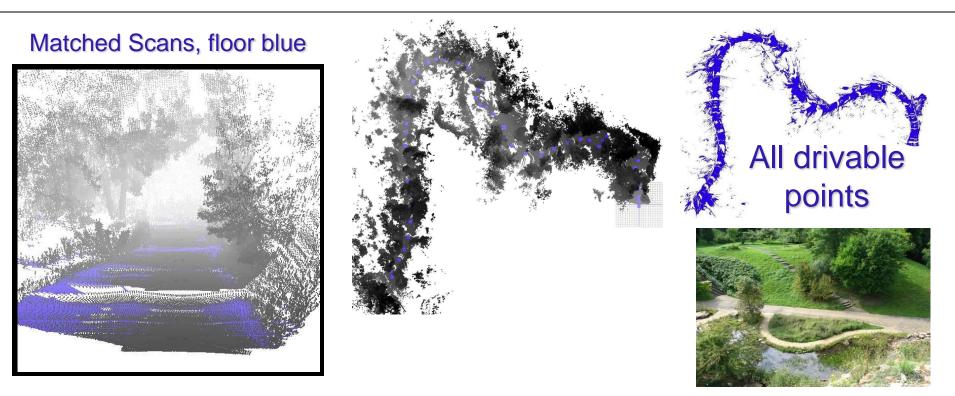




"**drivable points**" Flat angle in scanning order

 $\left| \alpha_{i,j} \right| < \tau$

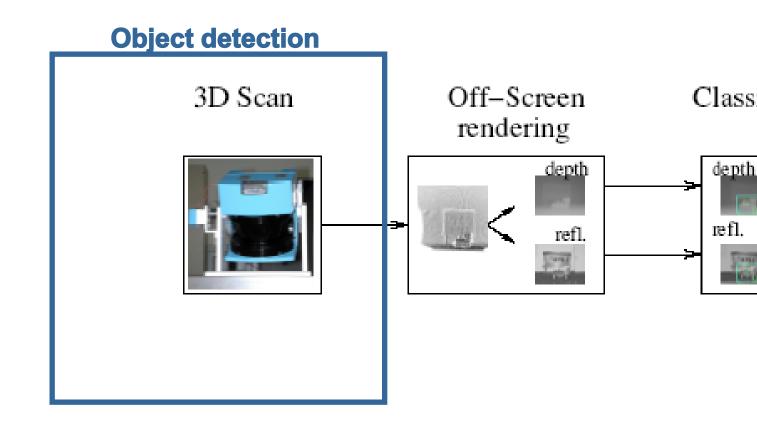
Drivable Surface Classification



- Unfortunately not all robots are equipped with a 3D scanner
- Classification based on camera images and 2D laser scans for path planning in natural environments

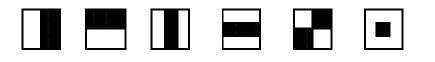
(Video 1) (Video 2) (Video 3) (Video 4)

Finding Objects in 3D Point Clouds



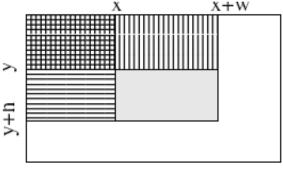
Feature Detection Using Integral Images

• Efficient representation of images using integral images $I(x,y) = \sum_{x'=0}^{x} \sum_{y'=0}^{y} N(x',y')$



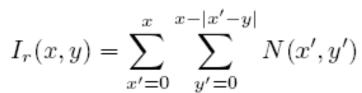
Calculate features in integral images

$$F(x, y, h, w) = I(x, y) + I(x + w, y + h) - I(x, y + h) - I(x + w, y).$$



Rotated features can be calculated with rotated integral images

$$\diamond \diamond \diamond \diamond \diamond \diamond$$



Learning a Classifier (1)

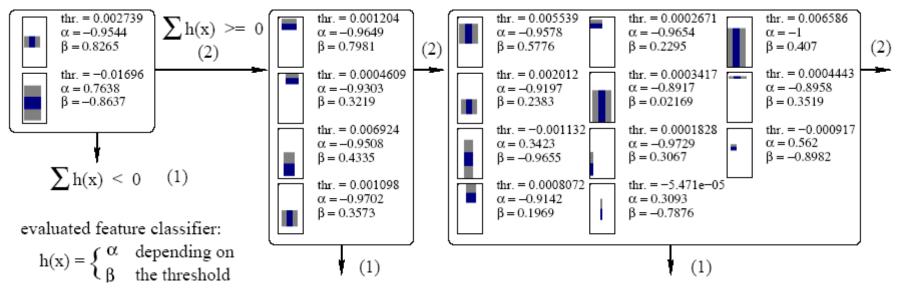
- Learn objects from 3D-Scans
- Create a classification window that contains all possible features
- Learn combination of features using Ada-Boost [Viola und Jones 01, Freund und Schapire 96]

thr. = 0.002739 $\alpha = -0.9544$ $\beta = 0.8265$ thr. = -0.01696 $\alpha = 0.7638$ $\beta = -0.8637$

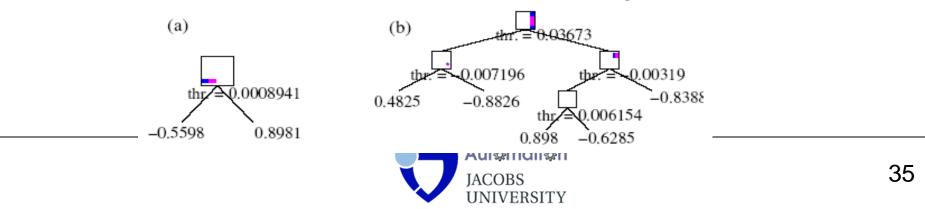
 Objects of different sizes are detected by rescaling the classifier window.

Learning a Classifier (2)

 Last but not least use a cascade to lower the false detection rate.

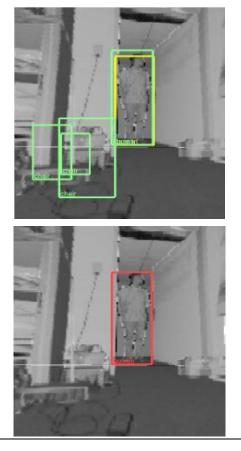


Improvement: Use Classification and Regression Trees!



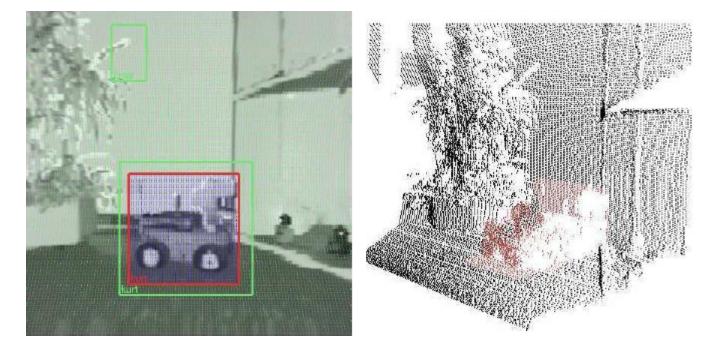
Object Detection

- Use the cascade for detection in the depth and reflectance image
- Logical AND yields reliable detection (false detection ~ 0%)



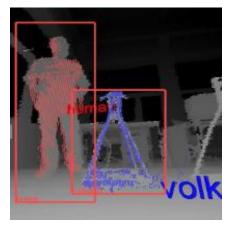
Localize the Objects (1)

Get object points via ray tracing



Localize the Objects (2)

• Fit objects in point cloud using an ICP variant



- For prior point set M ("model set") and data set D
 - **1.** Select point correspondences $w_{i,j}$ in {0,1}
 - 2. Minimize for rotation R, translation t

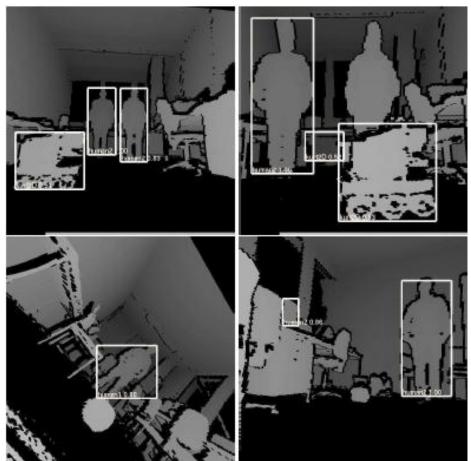
$$E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N_m} \sum_{j=1}^{N_d} w_{i,j} \left| \left| \mathbf{m}_i - (\mathbf{R}\mathbf{d}_j + \mathbf{t}) \right| \right|^2$$

3. Iterate 1. and 2.

Point Semantic for Object Detection

- Point labeling removes the ground
- Extract contour features
- Learning
- Detect objects
- Map building with labeled objects

 Task: Detect Objects in depth images



Identifying 3D Google Warehouse Models (1)

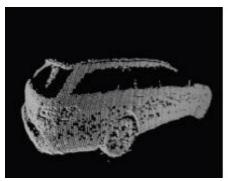
Task: Recognize "Audi A4" in laser scan data

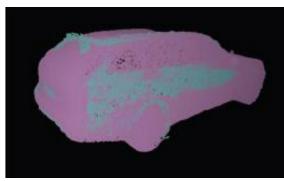
• Input: String "Audi A4", 3D laser scan

• Output: Pose of the object with 6 DoF

Identifying 3D Google Warehouse Models (2)

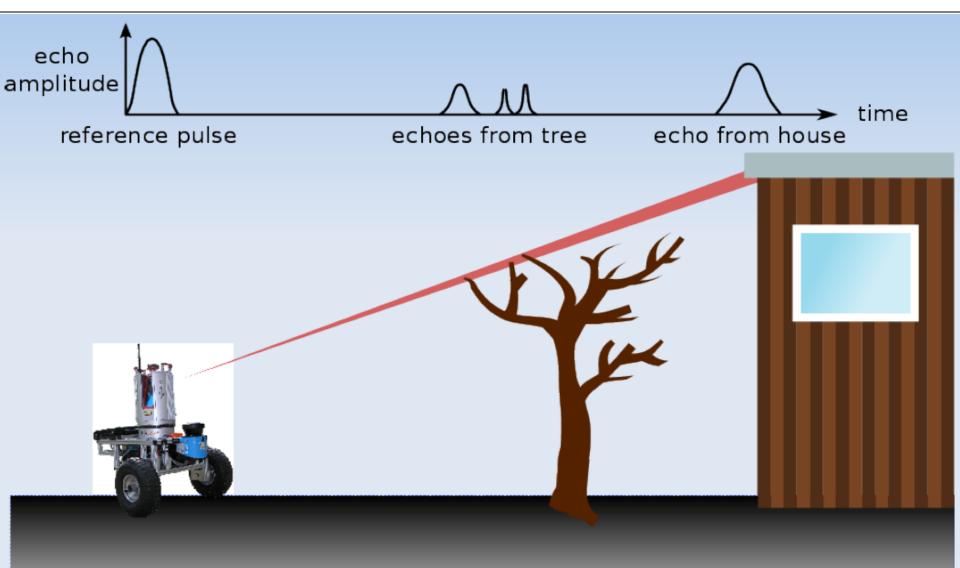
- Algorithm:
 - Query Google's data base and download all models
 - Convert the models in point cloud data
 - Segment your 3D scan and remove obvious objects
 - Match the models into the segmented scan with a modified version of ICP (scale of the models is unknown!)
 - Design an evaluation function to find the best match



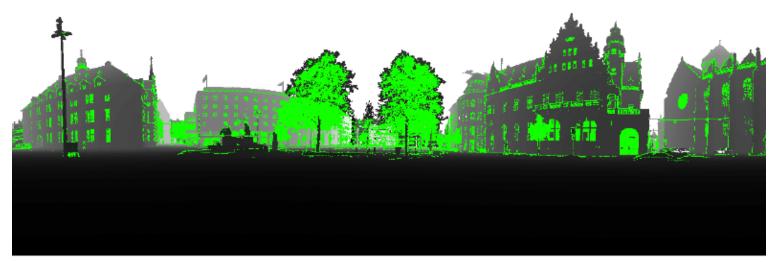


(video)

Full Wave Analysis

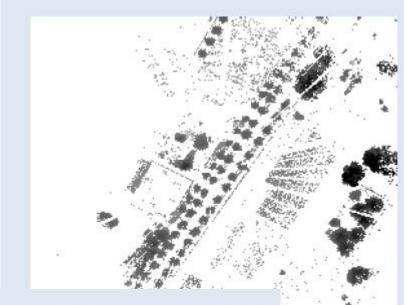


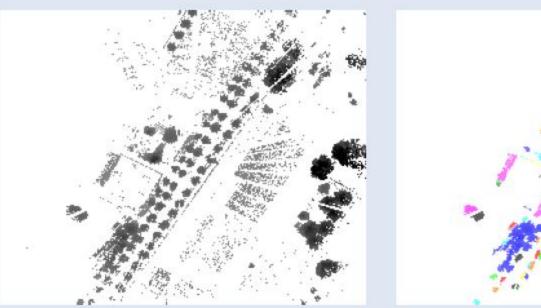
Multiple Echos



Vegetation Detection

- 1. Extract inner echos
- 2. Extract ROI
- 3. Classify regions





Vegetation Detection

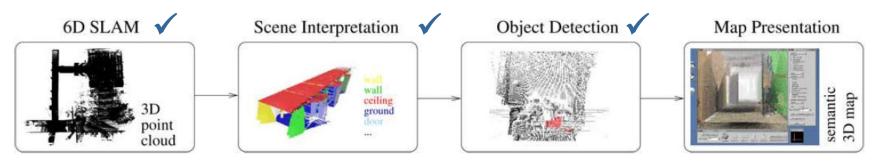
Vegetation Detection

Outline

- Introduction
- 3D Robotic Mapping
- Interpretation of Point Clouds
- Semantic Maps
- Conclusion

Definition / Discussion

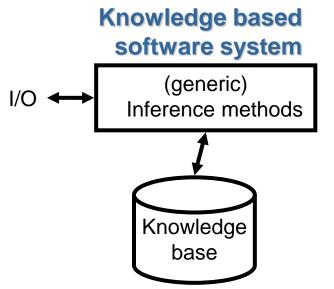
 A semantic 3D map is a metrical map that contains in addition to geometrical information semantic label of the data points.



• Map presentation as video

(Video)

Where does knowledge come from? Where does it go?

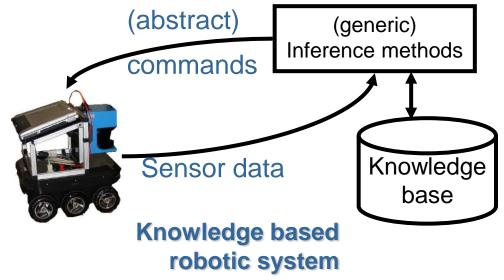


Example expert system:

- Knowledge Engineer sets up knowledge base (off-line)
- User causes input and edit the output

Example robot:

- Knowledge Engineer creates
 knowledge base off-line
- Input of KBS comes from sensors
- Output drives the robot



Robots in natural environments must translate sensor data into symbols and inferences eventually into control data!

Symbol Grounding

S. Harnad: *The Symbol Grounding Problem* Physica D 42:335–346, 1990 cogprints.org/3106/01/sgproblem1.html

How is meaning of a symbol to be grounded in something other than just more meaningless symbols?

Is that an important question?

- Some (AI) say: No, at the best that's a technical problem!
- Some (Philosophy, Cog. Sci.) say: That's the point, at which artificial intelligence systems are doomed to fail!
- Some (AI, Cog. Sci., Robotics people, Nüchter) say: That's currently the most interesting point in fundamental research in AI

Specialization: Object anchoring

S. Coradeschi, A. Saffiotti: An Introduction to the Anchoring Problem Robotics & Autonomous Systems 43(2–3):85–96, 2003

www.aass.oru.se/~asaffio/Papers/ras03.html

- Anchoring (object anchoring): the process of creating and maintaining the correspondence between symbols and sensor data that refer to the same physical objects
- Anchoring problem: the problem of how to perform anchoring in an artificial system
- Specialization with symbol anchoring in general: Is related only to physical objects, e.g., no abstract objects like weather or no attributes ("red")

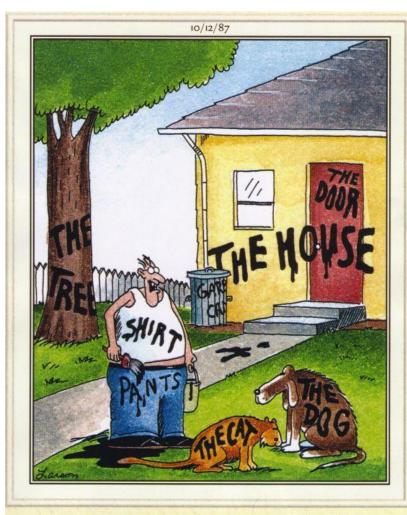
Outline

- Introduction
- 3D Robotic Mapping
- Interpretation of Point Clouds
- Semantic Maps
- Conclusion

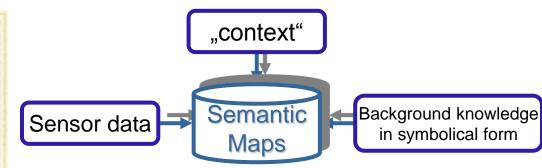
Conclusions

- Practical (on-line, on-board) variant of ICP for high-resolution point sets
- Generating overall consistent 3D maps with global relaxation
- Tested on various data sets (including borrowed ones, e.g., CMU mine mapping)
- Interpretation of 3D maps resulting in 3D object maps
- Integrated into robot controller for 3D environment mapping
- RoboCup Rescue as evaluation for our mapping approach
 - 2004 second place, SSRR 2005 best paper award, 2005 6th place
- However, there is still no theory about "Semantic Maps in Robotics"

Conclusion – Semantic Maps

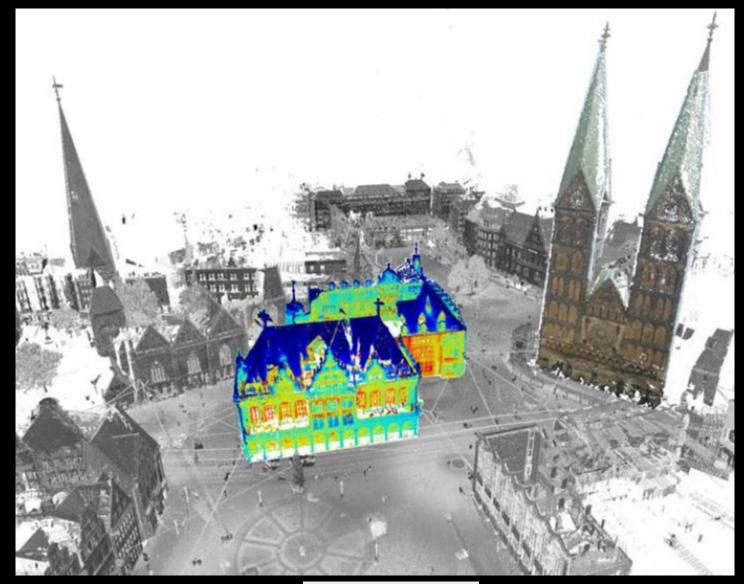


"Now! ... That should clear up a few things around here!"



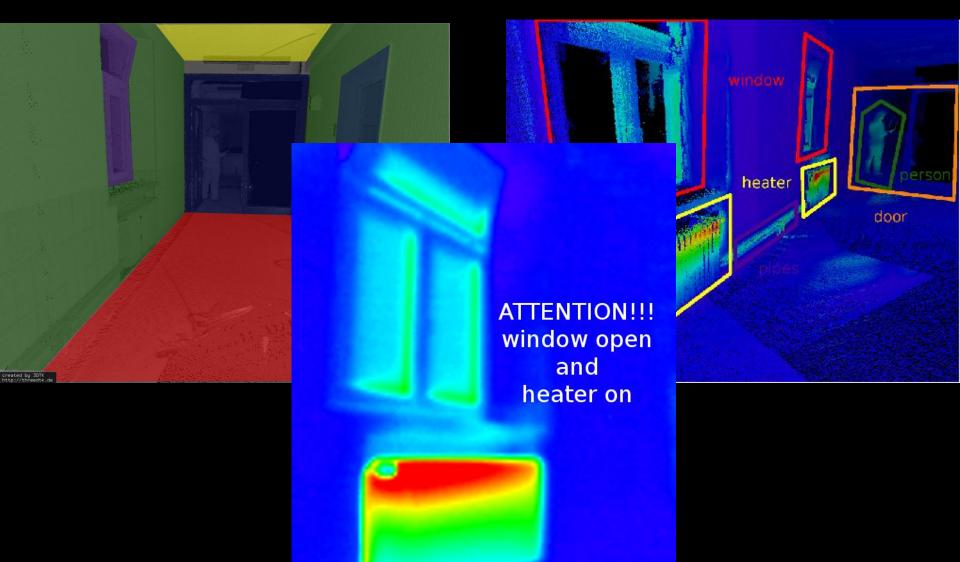
- For constructing semantic maps a robot uses sensor and semantic information to
 - interpret the sensor data (e.g., for disambiguation)
 - conclude additional semantic information (that extrapolates the sensor values, contradicts the sensors values)
 - acquire goal-directed new sensor information (e.g., attention based control, active vision)

Recent Work



(video)

Recent Work



References

• Please visit my homepage @

www.nuechti.de

• Please visit our youtube page @

www.youtube.com/user/AutomationAtJacobs

Please check out our Open Source project
 3DTK – The 3D Toolkit

http://slam6d.sourceforge.net

