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Abstract—This work in progress paper presents an automated
approach for network coverage prediction in real-world envi-
ronments by combining mobile mapping, 3D mesh generation,
and a ray launching based network simulator. We identify the
challenges and demonstrate the functionality of such a pipeline.
We preview an empirical evaluation in a realistic real-world
environment.
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I. INTRODUCTION

For many years, 3D data processing has been an important

aspect of robotics, automotive technology, surveying, and even

of computer games. In this paper, we use it for predicting

network coverage based on 3D real-world environment data.

To this end, a 3D model of the environment is obtained

from data acquired with a 3D scanning rig, based on multiple

automotive grade LiDARs (Light detection and ranging oder

Light imaging, detection and ranging). Using ray launching

The mobile mapping system was built in the project TASTSINN/VR,
funded by the Federal Ministry of Education and Research due to an enactment
of the German Bundestag under the grant 16SV8159.

within this 3D model, the propagation loss model for a

discrete-event network simulator is computed.

The entire toolchain consists of several open-source mod-

ules: ROS1 nodes for data acquisition, 3DTK – The 3D Toolkit2

for calibration and registration of 3D point cloud data. In

the next step, this data is used in the Las Vegas Surface

Reconstruction Toolkit3 to create a full-size 3D-mesh of the

environment. In the last stage, RaLaNS4 is used to predict

network coverage. This scientific tool works with 3D meshes

as it was initially built to cope with the lack of accurate

simulation models to predict network coverage. We show the

potential to get highly precise simulations when using accurate

3D-models at centimeter scale.

The contributions of this short paper are as follows: We

show for the first time, that it is possible to predict network

coverage on real-world data automatically. To this end, we

present an end-to-end pipeline, cf. Figure 1.

1https://ros.org/
2http://threedtk.de/
3https://www.las-vegas.uni-osnabrueck.de/
4https://sys.cs.uos.de/ralans/index.shtml

Fig. 1. Several open-source tools are combined for mapping, meshing, and ray launching based propagation loss modeling.



Fig. 2. Left: LiDAR scanning rig with four Ouster laser scanners. Right: Rig
mounted on the car of the corresponding author.

Our work is motivated by the need for predicting network

coverage in many applications. For example mobile explo-

ration robots distribute network nodes to ensure communi-

cation with a base station. One application area that relies

on such an extended communication is the exploration of

lunar caves, as we recently proposed [1]. Other examples

include the communication in underground mines and in

factory environments.

II. MOBILE MAPPING TO OBTAIN 3D POINT CLOUD DATA

Laser scanning provides an efficient way to actively acquire

accurate and dense 3D point clouds of environments. Mobile

scanning is currently used for modeling in architecture, ur-

ban and regional planning. Modern systems, like the RIEGL

VMY-2 mobile scanning solution or the Optech Lynx Mobile

Mapper, work along the same basic principle. They combine a

highly accurate Global Navigation Satellite System (GNSS), a

high-precision inertial measurement unit (IMU) and the odom-

etry of the vehicle to compute fully timestamped trajectories.

Using a process called motion compensation, this trajectory is

then used to georeference the laser range measurements that

were acquired by a set of 2D laser scanner also mounted on

the vehicle. The quality of the resulting point cloud depends

on several factors:

• The calibration of the entire system, i.e., the accuracy

to which the position and orientation of each individual

sensor in relation to the vehicle has been determined.

• The accuracy of the external positioning sensors, i.e., the

GNSS, IMU and odometry.

• The accuracy of the laser scanner itself.

As current mobile mapping system are precise, but also very

expensive, we have constructed our own mobile mapping

system on the basis of four Ouster laser range finders, that are

typically used in autonomous driving research. In addition,

we have combined a low-end IMU, and an L1/L2 GPS,

GLONASS, Galileo receiver (u-blox ZED F9) as shown in

Figure 2. The whole scanning rig includes an Intel NUC and

is constructed from item profiles, laser cutted aluminum, and

3D printed parts. Data recording and time stamping on the

NUC was done with ROS [2].

Calibration is an important issue. To determine the pose,

i.e., the geometric position and orientation of each 3D scanner

on the rig, we have acquired a few high-precise 3D scans on

our campus with a RIEGL VZ400 survey grade laser scanner.

Afterwards, we have used the well-known ICP algorithm [3]

from 3DTK to match a laser scan of a scanner of the rig into

this precise reference scan.

After mounting the system on a car, data was acquired on

a path around the computer science building at the University

of Würzburg. The point cloud data of the four scanners was

combined into a single scan using the calibrated poses. The

combined scan was then fed into our SLAM framework, i.e.,

into 3DTK. We apply the ICP and globally consistent scan

matching to create a precise 3D point cloud (cf. [4], [5]).

For evaluating the system, we have compared our obtained

3D point cloud with a reference point cloud, acquired with the

survey grade laser scanner (cf. Figure 3, right).

III. FROM POINT CLOUDS TO 3D MESHES

Polygonal environment representations show many benefits

and automatic reconstruction of polygonal data has drawn a

lot of attention in the robotics community. The polygonal

map generation process consists of two steps: Initial mesh

generation and mesh optimization. The initial surface recon-

struction in Las Vegas is based on Marching Cubes with

Hoppes signed distance function [6]. For the evaluation of the

distance function within the Marching Cubes algorithm, point

normals have to be estimated, which we do using the RANSAC

Fig. 3. Left: 3D point cloud obtained from mobile mapping. Right: Comparison with the reference 3D point cloud.



Fig. 4. Left: Generated mesh. Right: Postprocessed and cropped mesh.

algorithm [7] from a k-neighborhood, where we adopt the k

automatically according to the local point distribution [8].

For our application, we decided to go for the Marching

Tetraeder method and not for the Standard Marching Cubes.

Usually, the Marching Cube implementation delivers good

results, but the generated meshes can show holes even in dense

data. The Marching Tetraeder version delivers more consistent

results in such cases, but produces more triangles.

If the point density in the input data is high enough to

reconstruct connected surfaces, a planar clustering algorithm

is applied. This algorithm clusters connected planar regions

within the meshes using a grass fire approach that compares

the normals of adjacent triangles. The extracted cluster are

then optimized by moving all vertices into a common local

regression plane. This planar optimization is an efficient noise

filter as it compensates fluctuations of the triangle vertices re-

sulting from slightly different signed distance function values

coming from sensor noise.

With the optimized mesh from the Las Vegas toolkit we still

obtain too many faces for further processing. Thus, we use

the CGI-tool Blender to crop the scene to the part of interest,

which is given in Figure 4, right.

IV. APPLICATION OF A RAY LAUNCHING BASED

PROPAGATION LOSS MODEL FOR NS-3

RaLaNS, a propagation loss model for ns-3 that is based

on ray launching, has been presented in [9] and [10]. RaLaNS

is divided into two applications: The first contains the actual

ray launching and generates a matrix containing the signal

strengths for various combinations of transmitter and receiver

positions. The resulting matrix is used in the second compo-

nent which is a PropagationLossModel for ns-3.

For simulation, the rays are first launched radially symmet-

rical and an initial energy is equally distributed onto the rays.

Then, the ray launcher determines for every ray where it hits

an object or gets close to an edge. The direction and energy

of the ray is adjusted depending on the effect that occurs.

Whenever one of these events occurs, a new ray segment is

generated. This is repeated for all the rays until a predefined

number of iterations is reached. In this process, the path for

each ray is generated and stored as a list of ray segments. The

maximum list length is equal to the number of iterations. In a

second step, a receiver represented by a sphere is placed in the

world. All rays that hit the sphere are collected and the total

energy is calculated. This is a simplification of the receiver

antenna. Figure 5 bottom shows the result of the simulation

with RaLaNS with the signal source used for the simulation at

Point-ID 5. The obstruction of the radial signal spread by the

building is apparent. The 15 positions marked in the image

are used to evaluate the modeling results.

V. RESULTS, CONCLUSION, AND FUTURE WORK

To check whether the coverage model is close to the real

environment reference measurements were made. A Netgear

R7000 router with DD-WRT installed is used as a sender. To

be as close as possible to the 2.4 GHz simulation the router

uses channel 1 with channel width HT40 and transmission

power of 100 mW. Figure 6 shows the setup of router and its

position next to the building. We used channel 1 to be as close

as possible to the 2.4 GHz simulation and a channel width

HT40 and transmission power of 100 mW. Figure 6 shows the

setup of router and the building.

For the measurement a Samsung Galaxy S4 (jfltexx) with

LineageOS 17 was used. The measurements were made at

Fig. 5. Mesh processed in the RaLaNS tool in a bird’s eye view and the
location of the points evaluated in Figure 7. The sending router was positioned
at Point-ID 5.



Fig. 6. Router used to perform validation measurements and its position next
to the building.

15 positions mainly in the lower right where the edge of the

building is expected to lead to diffraction.

The resulting values are presented in Figure 7. Points 1

and 12 were excluded from the statistical evaluation as the

number of rays was too low to generate valid simulated

values at these positions. The regression line being parallel

to the central diagonal clearly indicates that the simulated

values differ from the measured values mainly by an offset

of 29.7 dB. As outlined in [9], this is the expected behavior

because sender and receiver antenna gains are not explicitly

simulated. After correcting for this offset, the measured values

correlate well with the simulated values with an R
2 of 0.756

and a Root Mean Squared Error (RMSE) of 7.8 dB. Higher

errors occur for the points 4, 5, and 6 close to the router

which may be attributed to the variability in the near field of

the router’s antennas and to reflections from the wall because

the different material properties were not considered in the

simulation. Figure 6 shows that the router was positioned next

to glass facades which could have caused these effects. Higher

errors also occur for the points far away, especially 12 and

14. These may be attributed to inaccuracies of the model due

to the limited number of rays which would lead to wrong

diffraction. In the case of point 1, errors mainly stem from

signal translucent walls or glass not being simulated well.

This paper presents a pipeline that includes mobile mapping,

3D modelling and network coverage estimation aiming at

combining and automating these steps. We have shown a 3D

model obtained from sensor data can form an input for a

network simulator.

Needless to say, a lot of work remains to be done. In

future work, we aim at elaborating the presented pipeline such

that the data is processed automatically. Furthermore, similar

experiments are planned for indoor environments, especially

for factory environments.

While processing point cloud data into a mesh and then

into a network simulator, we are wondering, if one could

potentially skip the meshing part. Simulating networks in

raw point clouds should be possible, given current progress

in the area of 3D point cloud classification. With a point

classification as surface point, corner point, or edge points

ray launching simulations with reflection, diffraction, and

scattering at building should be possible. Also the influence

of reflective surfaces [11] could be analyzed and incorporated

into the pipeline.
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Fig. 7. Measured signal strength vs. simulated.
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