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 A B S T R A C T

Light detection and ranging (lidar) is valuable during non-cooperative space rendezvous scenarios. By 
processing the 3D point clouds, it is possible to provide a navigation solution, consisting of an estimate of 
the relative pose of the approached spacecraft. To enable a safe rendezvous, the pose estimation has to be 
precise, but also robust if the output is used as a primary navigation solution. Navigation has to be performed 
in real-time, and onboard computing hardware has a reduced processing capability. Therefore, the real-time 
requirement is a main driver of the design. Additionally, a spacecraft often has a symmetrical shape. In 
this case, the pose estimation method has to account for the fact that multiple attitudes represent the same 
configuration. This work investigates the use of a point-based neural network, or 3D neural network, for the 
pose estimation task. This network is integrated in a full pose estimation pipeline, where every component 
is optimized to achieve real-time requirements on a representative onboard computing hardware. After pre-
processing, the neural network produces a relative position and attitude estimation in a single-stage, where 
the attitude estimation considers the symmetries of the spacecraft. Furthermore, a high-fidelity lidar simulator 
is used, which enables to generate an extensive synthetic dataset. The method is trained and optimized solely 
on synthetic data. After training, the pose estimation is evaluated on real lidar data acquired at a hardware-
in-the-loop rendezvous facility. Results highlight that the method is accurate and robust, without a loss in 
performance when evaluated on real data. Finally, the flight-readiness is demonstrated by runtime evaluations 
on an onboard computer candidate, showing that the method is suited for real-time processing.
1. Introduction

Many modern satellite mission scenarios such as on-orbit servicing, 
active debris removal or inspection rely on the capability of a spacecraft 
to autonomously rendezvous with another satellite or object. Recent ex-
amples include the servicing of Intelsat telecommunication satellites by 
the two Mission Extension Vehicles (MEVs) [1], or the inspection flight 
of a rocket upper stage debris by Astroscale’s ADRAS-J spacecraft [2].

A rendezvous involves two satellites, a ‘‘chaser’’ spacecraft which 
performs the approach, and a passive satellite or object which is 
referred to as ‘‘target’’. Targets include satellites to repair, refuel, or 
even a piece of space debris to be removed. It is assumed in the most 
general case that the target is non-cooperative, i.e., that it does not 
communicate any information about its relative position and attitude 
to the chaser, and is not necessarily attitude controlled. In some cases, 
if the target satellite is inactive, it might be freely tumbling.

In order to rendezvous and perform proximity operations with the 
target, the chaser needs to estimate the relative position and attitude 
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(pose) of the target spacecraft. Due to real-time constraints, the pose 
estimation is required to be performed onboard and autonomously. 
Full pose estimation, i.e., including the relative attitude estimation, is 
typically only needed in the final phase of the rendezvous, when the 
inter-satellite distance is small. This distance is dependent on the target 
size, e.g., it could be below 30 m for a small target, while full pose 
estimation is already started at larger distances for big targets.

Several electro-optical sensors are used to perform relative pose 
estimation, including optical cameras, infrared cameras or lidars [3]. 
Passive sensors such as optical or infrared cameras are sensitive to 
the illumination conditions: They are blended by direct or reflected 
sunlight, or not sensitive enough whenever the satellites are in eclipse 
phase [4,5]. On the contrary, lidars or time-of-flight cameras are active 
sensors which provide their own illumination source. Hence they are 
less sensitive to external light sources. A lidar also provides a direct 
3D information of the target in form of a point cloud which enables 
simple and robust position estimation even at large distances [1]. In 
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addition, the point clouds are free of any background, while optical 
camera images contain stars or portions of the Earth which need to be 
interpreted as background by the pose estimation method.

To perform pose estimation from lidar point clouds, it is assumed 
in this work that a 3D model of the target object is known. It is either 
available prior to the flight, or it is the result of an inspection of the 
target object in a first phase of the mission. The task of pose estimation 
resides in matching the ‘‘source’’ point cloud, collected by the lidar 
sensor in real-time, with the ‘‘target’’ point cloud, which is known and 
sampled from the 3D model. To estimate the 6 Degrees Of Freedom
(DOF) of the relative pose, hand-crafted point cloud association meth-
ods are applied [6–12], but usually come with a high computing time 
which is not adapted for real-time processing.

The emergence of deep learning methods has led to significant 
improvement in terms of precision and efficiency for point cloud match-
ing [13–16]. Yet, some neural network architectures rely on high 
performance computing hardware such as Graphics Processing Units
(GPUs) which might not be available for such missions. In addition, real 
point cloud data contains important disturbances such as motion blur, 
reflections or outliers [17,18]. Hence deep learning methods trained 
on synthetic data simulated under ideal conditions might encounter 
difficulties when evaluated on real data, a problem known as ‘‘domain 
gap’’. Moreover, spacecrafts often have a symmetrical shape. In this 
case, the attitude of the target cannot be estimated unambiguously, and 
neural networks have difficulties estimating the relative pose [19].

This work introduces a deep learning based pose estimation ar-
chitecture, tailored specifically for efficiency and real-time capability 
on computing hardware with limited processing power. The 3D point 
clouds are processed by a point based neural network model which is 
optimized to keep a similar precision while achieving better computa-
tional efficiency than the original model for this application. Using the 
attitude classification strategy developed in our previous work [16], the 
method accounts for potential symmetries of the target spacecraft. The 
network is trained on a fully synthetic dataset, using a lidar simulator 
which models some common disturbances and reflection effects that 
are observed on real data [16]. After training, evaluation is performed 
on a real lidar dataset generated at a hardware-in-the-loop rendezvous 
facility, the EPOS [20]. The runtime is assessed on flight representative 
computing hardware. The results highlight that the method is real-
time capable, robust and able to generalize to real data without a 
performance loss.

The paper is structured as follows: Section 2 reviews the state-of-the 
art, and the proposed pose estimation method is detailed in Section 3. 
In particular, the neural network model optimization and the pose 
estimation logic involving the handling of symmetries are introduced. 
Also, the training method relying on a lidar simulator to generate 
synthetic data is described, as well as the hardware-in-the-loop test 
dataset collected at the EPOS test facility. The results of the different 
runtime evaluations on flight representative hardware and on the real 
lidar datasets are presented in Section 4, and discussed in Section 5. 
Finally, conclusions are drawn in Section 6.

2. Related work

The first lidar sensors for space rendezvous were developed in the 
context of the Space Shuttle program for rendezvous and docking with 
the International Space Station (ISS). Using the TriDAR sensor, Ruel 
et al. [6] designed a polygonal aspect hashing algorithm. It implies to 
extract sets of points from the source point cloud forming polygons, and 
to match them with a database of polygons of the target point cloud, 
which is searched through using a hashing method. The optimal pose 
is found after applying a Random Sample Consensus (RANSAC) voting 
scheme on the different matches. A similar algorithm for matching 
tetrahedrons was developed by Yin et al. [7]. Instead of RANSAC, a 
pose refinement is performed with Iterative Closest Point (ICP) [21] 
for every match, and only pose candidates with a sufficient score are 
232 
retained. Likewise, Klionovska and Frei [8] apply a method to match 
pairs of oriented points when using a time-of-flight sensor for pose 
estimation.

A possibility is to try to find the global ICP optimum by the 
application of a branch-and-bound ICP [22]. This approach is applied 
to spaceborne pose estimation by Liu et al. [23], but is computationally 
expensive. Alternatively, Woods and Christian [9] suggest characteriz-
ing a point cloud using a single point cloud descriptor belonging to the 
family of point feature histograms [24]. The descriptor is then matched 
with an offline built database to retrieve the relative pose. Opromolla 
et al. introduce a model-based template matching method [10]. It 
consists in computing the ICP distance metric between the source 
point cloud and a database of point cloud views from the target seen 
from different orientations. The candidate with the minimum score is 
selected, before ICP refinement is performed. In follow-up work [11], 
the authors accelerate the method using Principal Component Analysis
(PCA) to select the principal axis of the spacecraft. A similar approach is 
applied by Jasiobedzki et al. [25] to match a 3D point cloud constructed 
from stereo images with a template point cloud. Guo et al. [12] suggest 
accelerating the template matching by projecting the 3D point clouds to 
2D binary silhouette images. The matching score between the silhouette 
image of the source point cloud and the images of the database is then 
a binary distance metric which is computed efficiently.

The initial pose estimate might be coarse, and is usually refined 
with ICP or one of its variants [3]. An alternative to ICP for pose 
refinement is the NDT [26], consisting in a probabilistic matching of the 
source and target point clouds. In previous work [18], we introduced a 
smoothed version of the NDT algorithm which shows better efficiency 
and robustness compared to ICP for satellite pose tracking.

With the popularization and success of neural networks, hand-
crafted features and databases are being replaced by learnable features 
or matching logics. In this sense, Schmitt et al. [13] introduce a neural 
network aided polygon matching algorithm. The idea is to extract 
a polygon from the source scan, and to train a neural network to 
retrieve the corresponding polygon in the target coordinate frame. For 
efficiency, the neural network is implemented on a Field Programmable 
Gate Array (FPGA). Despite this acceleration, several polygons must 
be evaluated until a satisfactory match is found. This involves several 
ICP iterations each time, which is time-consuming. To directly estimate 
the parameters of the relative pose without additional matching steps, 
Pensado et al. [14] suggest using a fully connected neural network, also 
called Multilayer Perceptron (MLP). To do so, the source point cloud is 
first projected to a 2D depth image, before this image is flattened and 
processed by the MLP.

Yet, the usual way to process 2D images with neural networks is to 
use Convolutional Neural Networks (CNNs). Very efficient architectures 
have been developed, and are being extensively studied for camera 
based pose estimation [5]. Feature-based approaches rely on identi-
fying features on the 2D image before applying a Perspective-𝑛-Point
(PnP) algorithm to retrieve the relative pose [27–30]. On the other 
hand, in the direct approach, the CNN is trained to directly predict the 
relative pose parameters [31–33]. Because a 3D point cloud projects to 
a 2D depth image, we have investigated the use of CNNs for lidar based 
pose estimation in previous work [16]. The scaled 2D depth image is 
processed by a CNN using MobileNet [34] as a backbone, to directly 
estimate the relative position and perform an attitude classification. 
Instead of processing a single frame at a time, some authors make 
use of recurrent CNNs to process a sequence of lidar depth images in 
the context of rendezvous [35] or lunar landing [36]. However, the 
computing requirements are such that a GPU is required for real-time 
processing.

In recent years, neural network architectures have been developed 
for direct 3D point cloud understanding. A first possibility is to use 
3D convolutions on a voxelized representation of the point cloud [37]. 
Because the complexity explodes when the resolution of the voxel grid 
increases, concepts of efficient and learnable point-wise convolutions 
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Fig. 1. Overview of the point cloud processing pipeline for pose initialization.
have been developed [38,39]. A major evolution in the field of 3D 
point cloud understanding was the introduction of PointNet [40]. This 
network processes each point of a set individually using a shared MLP, 
before a global max pooling operation on all features enables to inter-
pret the relations between points. To be able to capture finer details, 
the follow-up architecture, PointNet++ [41], is a hierarchical stacking 
of multiple PointNets. To further exploit the relationships between 
neighboring points, Dynamic Graph CNN (DGCNN) [42] introduces a 
graph architecture. The graph connects each point with its 𝑘-Nearest 
Neighbors (𝑘-NN), and the network applies a shared MLP to process 
each point with its associated edges, forming an edge feature. A re-
cent interesting approach is PointTransformer [43], which successfully 
applies the self-attention layer of Large Language Models (LLMs) to 
exploit and learn relationships between neighboring points.

For lidar based pose estimation during rendezvous, Zhang et al. [44] 
introduce a hybrid algorithm mixing a classical ICP matching with 
a deep learning method. The point-to-point association step of ICP 
is performed by a PointTransformer network. Likewise, in their next 
work [15], the authors implement a mixture between a deep learning 
model, and another classical local matching method, Coherent Point 
Drift (CPD) [45]. This time, the network features layers from both 
DGCNN and PointTransformer. It is used at each iteration to assign the 
points of both the source and target point clouds to their associated 
component in a Gaussian Mixture Model (GMM) representation, before 
finding the transformation which maximizes the likelihood for this 
model. The two methods are evaluated on simulated datasets of several 
spacecrafts. However, they involve to run a neural network inference 
at each iteration of the algorithm, which is computationally expensive.

Given the rapid development of neural networks for 3D point cloud 
understanding, we contribute in this work to apply a point-based 
neural network to the problem of lidar pose estimation during space 
rendezvous. Unlike other approaches, we propose to train such a neural 
network to directly estimate the relative pose of the target spacecraft, 
in the form of a position estimation and an attitude classification. 
Furthermore, we focus on optimizing the runtime of the pose estimation 
method in order to achieve real-time performance on space hardware.

3. Methods

3.1. Pose initialization pipeline

The pipeline for pose initialization is illustrated on Fig.  1. The 
overall logic is inherited from [16], with the difference that a 3D 
neural network is used instead of a 2D CNN. The pre-processing is 
also different, as the network directly processes 3D point clouds. The 
different steps will be detailed in the following.
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3.1.1. Point cloud pre-processing
The first step of the pre-processing is to estimate the centroid of 

the point cloud, which will give a first coarse position estimate of the 
target. To have an estimation resilient to potential outliers in the point 
cloud, the centroid is computed as a trimmed mean with a trimming 
factor of 25%, as in [16]. The trimmed mean with a factor of 25% is also 
known as interquartile mean. Given 𝑛 sorted values 𝑎1 ≤ ⋯ ≤ 𝑎𝑛, the 
interquartile mean 𝑎𝐼𝑄𝑀  is defined as the mean of all values remaining 
after having discarded the first and last quartile of the data: 

𝑎𝐼𝑄𝑀 = 2
𝑛

3𝑛∕4
∑

𝑖=𝑛∕4
𝑎𝑖 . (1)

For a point cloud with 𝑛 points with coordinates (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)𝑇  for 
𝑖 = 1,… , 𝑛, the first step is to compute the interquartile mean along 
each coordinate 𝑥𝐼𝑄𝑀 , 𝑦𝐼𝑄𝑀  and 𝑧𝐼𝑄𝑀 . The trimmed centroid is then 
defined as 

𝒄 =
⎛

⎜

⎜

⎝

𝑥𝐼𝑄𝑀
𝑦𝐼𝑄𝑀
𝑧𝐼𝑄𝑀

⎞

⎟

⎟

⎠

. (2)

The trimmed mean is only used to get a coarse estimate of the satellite’s 
position, which will be corrected in the next steps. While the estimate 
is different from the one of a standard centroid, the rejection of 
outliers enables to have a more robust and consistent estimate of the 
main location of all points, independently of outliers such as double 
reflections.

Having determined the centroid, the point cloud is shifted to be 
centered around zero, and only the points within a so-called Region 
Of Interest (ROI) are kept. The target considered in this work, which 
is the spacecraft illustrated on Fig.  2, has a hexagonal body with 
1.6 m diameter, and a length of approximately 1.8 m. It would fit in 
a bounding box of 2 m side, but to ensure that no points are cropped, 
the ROI is defined as a cubic bounding box of 4 m side. Through the 
centering and ROI selection, the point cloud undergoes a normalization 
which is helpful in neural network training [46]. In addition, discarding 
points outside the ROI enables to filter out obvious outliers or ghost 
reflections, effects which are observed with lidar sensors [17,18].

While point based neural networks are theoretically able to handle 
varying input sizes, a standard practice for computationally efficient 
training through batching is to define a fixed point cloud size [40,41]. 
However, the data registered by the lidar might have a variable number 
of points. A typical input size for point-based neural networks is 1024, 
which is used as a baseline for many models when evaluated on 
benchmark datasets [40–43]. This size will be used as point cloud size 
for the neural network in this work. If the source point cloud contains 
more than 1024 points, which is expected to be the most common 
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Fig. 2. View of the full-size satellite mockup mounted at the EPOS facility.

case, the point cloud needs to be down-sampled before being passed 
to the neural network. In the opposite case, we randomly duplicate 
points to ensure that the input size is 1024. The lidar used in this work 
provides a dense point cloud, similarly to current space lidars [47,48], 
so that downsampling is more frequent than having to duplicate points. 
However, if the sensor is expected to provide a very sparse point 
cloud, the model input size should be reduced to avoid unnecessary 
computations.

A standard method for point cloud down-sampling in deep learning 
is Farthest Point Sampling (FPS). It is used in most neural network 
architectures [40–43]. Compared to other methods such as random 
sampling, FPS produces better results when training and testing the 
models [49]. However, it is computationally intensive, especially if the 
input point cloud is large. Even when using a GPU, the sampling step 
with FPS can take up a large part of the total processing time [49]. 
Therefore, we suggest using an accelerated version of the algorithm 
introduced by Han et al. QuickFPS [49]. It is a k-d tree based version 
of the FPS algorithm, and is particularly adapted for implementation 
on a CPU.

3.1.2. 3D neural network backbone optimization
The input point cloud is processed by a neural network backbone 

in order to estimate the relative pose. The considered neural networks 
produce a feature vector as output, which is then typically used for a 
classification task. In our case, this feature vector will be further pro-
cessed to estimate the relative position and attitude of the target. The 
feature vector, which is of different sizes depending on the backbone 
model, is further processed by one Fully Connected (FC) layer of size 
512, as illustrated on Fig.  1. Finally, the network is split in two output 
heads to estimate both the position and the attitude. These output heads 
will be described in detail in the following Sections (3.1.3 and 3.1.4).

We evaluate different point-based neural network backbones for 
this task. All networks were re-implemented in Python using the 
TensorFlow library. For the model comparison, PointNet [40], Point-
Net++ [41], DGCNN [42] and PointTransformer [43] are compared. 
The results of the evaluations (Section 4.3) highlight that PointNet++ 
is the most promising network in terms of accuracy for this application. 
Therefore, we will look into this model more deeply in order to see how 
the model runtime can be optimized.

PointNet++ is a hierarchical stacking of mini-PointNet models. 
PointNet processes input points of size 𝑁 × 𝑐, where 𝑐 is the number 
of channels, which is typically 3 in the beginning for the 3 spatial 
coordinates. Then, each point is processed by the same shared MLP with 
multiple layers to obtain a point cloud of size 𝑁 × 𝑓 , where 𝑓 is the 
number of output features. Finally, a max pooling operation selects, for 
every feature coordinate, the maximum value of all points [40]. After 
this pooling, the output is a flattened feature vector of size 𝑓 .
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Table 1
Layers of the PointNet++ classification model.
 Layer name Output size  
 input scan 𝑁 × 3  
 clustering 𝑁1 × 𝑘1 × (3 + 3)  
 MLP {64, 64, 128} 𝑁1 × 𝑘1 × 128  
 max pool 𝑁1 × 128  
 clustering 𝑁2 × 𝑘2 × (3 + 128) 
 MLP {128, 128, 256} 𝑁2 × 𝑘2 × 256  
 max pool 𝑁2 × 256  
 MLP {256, 512, 1024} 𝑁2 × 1024  
 max pool 1024  

These operations are also at the basis of the PointNet++ model [41]. 
Its layers are listed in Table  1. The different operations are:

• Clustering: The input is a point cloud of size 𝑁𝑖 × 𝑓 , where 𝑓 is 
the feature size of each point, which additionally has 3 position 
coordinates (in the beginning, the features equal the coordinates). 
Given a fixed number of clusters 𝑁𝑒 < 𝑁𝑖 and a value 𝑘 for the 
𝑘-NN algorithm, the clustering applies FPS to select 𝑁𝑒 sample 
points. For each sample point, the 𝑘-NN are selected to form 
a cluster. Finally, the 3D position of each point of a cluster 
relatively to the center of the cluster is concatenated with the 
point feature. Thus, the output consists of 𝑁𝑒 clusters of 𝑘 points 
with each (3 + 𝑓 ) features.

• MLP{...} + max pool: This sequence is a mini-PointNet model 
(with a smaller MLP) applied separately to each cluster of points. 
The sizes between the brackets indicate the sizes of the hidden 
and output layers. Given an input of size 𝑁 × 𝑘 × 𝑐, each cluster 
of size 𝑘 × 𝑐 is seen as a small point cloud processed by a mini-
PointNet. The output, after max-pooling, of processing a cluster 
with a mini-PointNet is a feature vector of size 𝑓 . By aggregating 
the feature vectors for all clusters, the overall output of this 
sequence has dimensions 𝑁 × 𝑓 .

In the original PointNet++ classification model [41], the input has 
𝑁 = 1024 points. Additionally, the number of clusters at each clustering 
step given in Table  1 are 𝑁1 = 512 and 𝑁2 = 128. The clusters 
have sizes 𝑘1 = 32 and 𝑘2 = 64. To optimize the model for runtime, 
an approach resides in optimizing these cluster sizes 𝑁1, 𝑁2, 𝑘1, 𝑘2, in 
order to reduce the number of operations performed by the network. 
However, reducing the number and size of the clusters translates to the 
neural network using less and smaller subregions of the point cloud 
to detect patterns. With less information a decrease in performance 
occurs.

Additional directions are explored to further simplify the network, 
such as reducing the size of the three MLP layers of PointNet++, or 
removing some layers. The result of this optimization is presented in 
Section 4.4. It seeks to achieve real-time efficiency while maintaining 
a good performance in terms of position and attitude error for the pose 
estimation task.

3.1.3. Position estimation
The first prediction head of the network is charged with predicting 

the position of the target’s center of mass relative to the chaser, which 
is denoted by 𝒑. In the pre-processing step, the centroid 𝒄 of the point 
cloud was already computed (2), and the point cloud was centered 
around 𝒄. Hence the network only needs to predict the remaining 
position shift 
𝛥𝒑 = 𝒑 − 𝒄 . (3)

The first layer of the top network (rightmost blue layer in Fig. 
1) is of size 512. The position shift is obtained by processing this 
layer by two fully connected layers of size 128 and 3, illustrated in 
orange. The 3 coordinates are then passed through a tanh activation 
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function [50], followed by a scaling by 𝑙∕2, which is half the length 
of the bounding box. This activation allows for negative values in the 
position prediction, but ensures that the shifted position estimate 𝛥𝒑
will be within the ROI, as each of its coordinates is within [−𝑙∕2, 𝑙∕2].

3.1.4. Attitude classification for a symmetrical target
The second prediction head of the network is tasked with estimating 

the attitude of the target satellite relatively to the chaser. The rotation 
matrix 𝑅 will represent this attitude. A first idea would be to directly 
estimate the parameters of the attitude matrix, or the parameters of a 
lower dimensional representation of the attitude. Such a representation 
should have at least 5 parameters [51], as lower dimensional repre-
sentations are discontinuous, and discontinuous outputs are difficult to 
learn for neural networks.

However, in the case of a symmetrical target object, one config-
uration of the target might be equivalently represented by several 
attitudes. Therefore, only one attitude should be considered valid for 
each configuration. This introduces an additional discontinuity between 
the inputs and outputs, as nearby input point clouds are not represented 
by nearby output rotation matrices anymore [19]. To ensure that 
the neural network learns a continuous function, we suggest using a 
classifier to estimate the attitude of a symmetrical target. In this way, 
the discontinuity is isolated in the post-processing step of the classifier 
scores. The classifier is used for a target with or without symmetries, 
and is identical to [16]. To make the paper self-contained, we recall 
overall logic here.

The first step is to divide the attitude space into a discrete number 
of bins 𝑀 . The sampling is performed with an angular resolution 𝛥𝛼. 
Using a spiral sampling strategy [52], care is taken to have bins which 
sample the attitude space uniformly. Given 𝛥𝛼, the sampling produces 
discrete attitudes 𝑅1,… , 𝑅𝑀 , obtained by following the logic detailed 
in [16]. Similarly to [32], the attitude 𝑅 is then encoded by the labels 
vector 

𝐿(𝑅) =
⎛

⎜

⎜

⎝

𝑙1
...
𝑙𝑀

⎞

⎟

⎟

⎠

, where 𝑙𝑖 = 𝐾 exp
(

−
𝑑(𝑅,𝑅𝑖)2

2𝜎2

)

. (4)

Here, 𝐾 is a scaling constant such that ∑𝑖 𝑙𝑖 = 1. The standard deviation 
𝜎 is dependent on the angular resolution of the attitude sampling, 𝛥𝛼, 
and chosen such that 𝜎 = 2

3
𝛥𝛼. We justified this value empirically 

in [16], finding that it leads to a low conversion error when encoding 
an attitude into a weights vector, before decoding it. Finally, 𝑑 is the 
angular distance function between two attitudes. Given two attitude 
matrices 𝑅,𝑄, it is defined as 

𝑑(𝑅,𝑄) = arccos
(

tr (𝑅𝑇𝑄) − 1
2

)

. (5)

Eq. (4) shows how at training time, the labels that the network 
learns are obtained from the ground truth 𝑅. However, at test time, 
the inverse transformation is required. The network produces a labels 
vector (𝑙1,… , 𝑙𝑀 )𝑇 , which needs to be transformed into an attitude 
matrix to estimate the relative attitude. This is achieved by computing 
the orthogonal projection of the weighted sum of the attitude samples 
on the 3D rotation group 𝑆𝑂(3), as in [31]: 

𝑅 = 𝛱𝑆𝑂(3)

( 𝑀
∑

𝑖=1
𝑙𝑖𝑅𝑖

)

, (6)

where 𝛱𝑆𝑂(3) is the projection function.
For now, the symmetries of the target satellite have not been 

considered. In case the target presents no symmetries, no further mod-
ifications are needed. However, in this work, we consider as a use 
case the symmetrical spacecraft illustrated on Fig.  2. The coordinate 
system of the target is defined on Fig.  3(a). As illustrated on Fig.  3, 
when viewed from the front, the main part of the spacecraft body has 
a hexagonal shape with antennas on three of the corners. Therefore, 
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Fig. 3. (a) Definition of the target coordinate frame. (b) Front view of the target, 
showing a symmetry around the roll axis 𝑋.

a rotation around the roll axis 𝑋 by ±120 deg leaves the spacecraft 
unchanged from an observer point of view.

Given one input attitude of the target 𝑅, from an observer point 
of view, three attitudes 𝑅(1), 𝑅(2), 𝑅(3) equivalently represent this con-
figuration. Only one of them corresponds to the actual attitude 𝑅. We 
say that these attitudes are the symmetrical equivalents of 𝑅 and write 
𝑅(1) ∼ 𝑅(2) ∼ 𝑅(3).

The distance function (5) is modified to define the symmetrical 
distance function 
𝑑𝑠𝑦𝑚(𝑅,𝑄) = min

(

𝑑(𝑅(1), 𝑄), 𝑑(𝑅(2), 𝑄), 𝑑(𝑅(3), 𝑄)
)

. (7)

This distance function is continuous, and it holds 𝑑𝑠𝑦𝑚(𝑅,𝑄) = 0 if and 
only if 𝑅 ∼ 𝑄.

Due to the symmetries of the target, we remove all symmetric 
equivalents from the 𝑀 attitude classes initially defined. These are 
the attitudes with a roll angle outside the range [0 deg , 120 deg]. 
The new number of attitude classes is 𝑚 = 𝑀∕3. With the reduced 
number of attitude classes, the expression of the labeling function (4) 
is modified to replace the classical distance function by the angular 
distance function: 

𝐿𝑠𝑦𝑚(𝑅) =
⎛

⎜

⎜

⎝

𝑙1
...
𝑙𝑚

⎞

⎟

⎟

⎠

, where 𝑙𝑖 = 𝐾 exp

(

−
𝑑𝑠𝑦𝑚(𝑅,𝑅𝑖)2

2𝜎2

)

. (8)

Given an attitude labels vector, the attitude estimation function (6) 
is also modified. The first step consists in finding the maximum index 
of the vector 
𝑖𝑚𝑎𝑥 = argmax

𝑖=1,…,𝑚
𝑙𝑖 . (9)

The corresponding attitude 𝑅𝑖𝑚𝑎𝑥  will serve as reference. For each 
other attitude sample 𝑅𝑖, the symmetric equivalent 𝑅(𝑗𝑖)

𝑖  closest to 
𝑅𝑖𝑚𝑎𝑥  is chosen, i.e., the attitude 𝑅

(𝑗𝑖)
𝑖 ∼ 𝑅𝑖 such that 𝑑(𝑅(𝑗𝑖)

𝑖 , 𝑅𝑖𝑚𝑎𝑥 ) =
𝑑𝑠𝑦𝑚(𝑅𝑖, 𝑅𝑖𝑚𝑎𝑥 ).

Finally, given an angular threshold 𝛽, the attitude estimated from a 
labels vector is 

𝑅 = 𝛱𝑆𝑂(3)

⎛

⎜

⎜

⎜

⎝

∑

𝑖=1,…,𝑚
𝑑𝑠𝑦𝑚 (𝑅𝑖,𝑅𝑖𝑚𝑎𝑥 )<𝛽

𝑙𝑖𝑅
(𝑗𝑖)
𝑖

⎞

⎟

⎟

⎟

⎠

. (10)

The threshold 𝛽 enables to discard attitude samples located too far away 
from the reference attitude, and to avoid ambiguous cases where the 
network would be undecided between two possible attitudes. In the 
experiments, it is set to 𝛽 = 50 deg.

In summary, the attitude prediction head is tasked with predicting a 
‘‘soft labels’’ vector 𝐿𝑠𝑦𝑚. For the experiments of this work, a sampling 
step 𝛥𝛼 = 20 deg is chosen, which corresponds to a number of attitude 
classes 𝑚 = 618. The attitude prediction layer is thus a fully connected 
layer between the last shared layer of dimension 512 and this layer. 
Finally, ‘‘softmax’’ activation [50] is applied to ensure that the labels 
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Fig. 4. Comparison of real and synthetic point clouds: (a) Image of the satellite mockup at the rendezvous facility. (b) Real point cloud registered by the Livox® lidar at the 
facility. Warm colors represent points closer to the sensor. (c) Synthetic point cloud simulated by the lidar simulator for the same pose and integration time.
are normalized. The output 𝐿𝑠𝑦𝑚 predicted by the neural network is a 
continuous function of the possible input target poses. This facilitates 
the training of the network. However, the attitude predicted by the 
network after applying the projection (10) is a discontinuous function. 
Given the target attitude 𝑅, the network prediction 𝑄 is only ensured 
to be symmetric equivalent of 𝑅, such that 𝑄 ∼ 𝑅.

The proposed pose estimation method for a symmetrical object 
does not intend to deliver an unambiguous estimation of the relative 
attitude, but only to find one possible symmetrical equivalent of the 
attitude. In case the object symmetries are perfect, this is the only al-
ternative: it is not possible to find the attitude unambiguously only from 
3D data. On the contrary, if the satellite is not perfectly symmetrical, 
further disambiguation strategies might be explored, but are not within 
the scope of this work.

3.2. Datasets for domain gap bridging

Deep learning methods need a substantial amount of data to be 
trained properly without overfitting, i.e., without loosing their ability 
to generalize to unseen data. Moreover, in the scenario of a rendezvous 
mission, real lidar data of the target might not be available prior to 
the flight. Therefore, the approach developed in this work consists in 
training the method only on simulated data. Because synthetic data is 
generated on demand, this ensures that the method is easily deployable, 
and that as much data as required is used for training.

To demonstrate Simulation To Reality (Sim2Real) transfer, i.e., to 
show that the method is able to generalize to real lidar data, the test 
dataset is a real dataset gathered at the EPOS rendezvous facility with 
a scanning lidar. The datasets used in this work are the same datasets 
that were used to train and test the CNN-based pose estimation method 
developed in [16]. This enables to compare both methods under the 
same conditions. The main characteristics of both the synthetic and the 
real lidar datasets are summarized in the following.

3.2.1. Synthetic training dataset
If synthetic data is simulated under too ideal conditions, then the 

‘‘domain gap’’ with the real data is important. In this case, a learn-
ing based method might be unable to produce good results on a 
real dataset, even though it performs well on synthetic datasets. For 
Sim2Real, an advanced lidar simulator was developed in previous 
work [16]. It is designed specifically to model the effects that arise 
when scanning a target spacecraft with a lidar in close range. Its main 
characteristics are listed in the following.

The lidar simulator is implemented as a ray tracer. Given a 3D 
model of the target, rays emerging from the sensor are propagated to 
see if they cross the 3D mesh. At first, the sensor properties need to 
be modeled. Because the lidar used to collect the test datasets at the 
EPOS facility is a Livox® Mid-40, this sensor’s scan pattern needs to be 
replicated. The characteristics of the non-repetitive rosette scan pattern 
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are reproduced and implemented following the modeling suggested by 
Brazeal et al. [53]. This lidar and scan pattern are taken as a use case in 
this work, but the simulator is implemented in a generic way. If needed, 
it is possible to simulate the scan pattern corresponding to a different 
sensor.

In addition to random noise and measurement errors, the effects 
of laser beam divergence is observed on point clouds. The laser being 
not perfectly directive, it emits not a perfect ray but rather a light 
cone with a very small aperture. Because this light cone hits surfaces 
located at different distances, the point estimated by the sensor is in 
between those distances. To model beam divergence, similarly to [54], 
we simulate that several ‘‘perfect’’ rays are emitted within the laser 
light cone. The measured distance is then defined as the intensity 
weighted average of the different distances measured by the rays.

Compared to a visual camera, a lidar sensor has a high exposure 
time, the scan time, which is in the order of a second. Therefore, 
especially for a fast tumbling target, motion blur is an important 
effect [18]. Motion blur describes the distortion of the point cloud due 
to the relative motion between both satellites during the scan. This 
effect is modeled relatively simply in the simulator, by assuming that 
every ray emitted by the sensor is emitted from a different location, 
dependent on the relative velocity and angular rate.

Satellites are often coated with very reflective material for heat 
shielding, such as golden Multi-layer Insulation (MLI) sheets. Other 
components of the satellite, such as solar panels, have a high re-
flectance. When the laser is reflected and hits other surfaces, the 
lidar registers erroneous measurements and ghost reflections [17,18]. 
Therefore, the reflectivity of the surfaces is taken into account using 
a simplified Phong model [55,56]. Instead of propagating a ray in all 
possible directions when a surface is hit, the simulator only propagates 
the refracted ray. It also assumes that a ray is reflected at most once. 
While this is a strong simplification, the lidar simulator is experimen-
tally found to generate synthetic point clouds which are similar to the 
point clouds gathered at the hardware-in-the-loop facility, as illustrated 
on Fig.  4.

The real point cloud shown in Fig.  4(b) contains 9679 points, 
while the synthetic point cloud simulated for the same pose and scan 
time (0.9 s) contains 11 362 points. This is mostly explained by the 
difference between the properties of the real and simulated MLI: on 
the real point cloud, more points which would be located on the MLI 
become invisible to the sensor compared to the simulated point cloud. 
In addition, the MLI is folded, while it is assumed to be flat in the 
simulator. To quantify the similarity between both point clouds, we 
use the Chamfer distance [57], which is the average of the distance of 
each point of one cloud with its closest point in the second cloud. The 
Chamfer distance between the real and simulated point clouds in Fig. 
4 is of 4.6 cm. As a comparison, the distance between two real point 
clouds rotated with respect to each other by 1 deg is of only 1.4 cm. The 
higher distance between the real and simulated point cloud is explained 
by the difficulty to model reflections accurately.
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The reflectivity properties of the materials on the target cannot be 
exactly known, and the modeling of the reflection effects is imperfect. 
Therefore, following a ‘‘domain randomization’’ [58] approach, the 
reflectivity properties of each material on the target are randomized 
within a certain range. The baseline for these values is derived from 
the satellite materials reflectivity analysis of Nakajima et al. [59], and 
we provide further detail of the range in [16]. For each new simulated 
point cloud, the material properties are different. At test time, the real 
properties of the materials will only be one of the multiple variations 
of these properties learned by the model during training.

Using the lidar simulator, an extensive synthetic dataset of 500 
000 point clouds is generated. This dataset is used for training pose 
estimation in close range. The target is positioned at a random range 
to the chaser, selected uniformly between 2.5 m and 20 m, and the 
attitude is randomized ensuring a uniform distribution in the attitude 
space. The position within the field-of-view of the sensor is also selected 
at random, following a normal distribution centered around the sensor’s 
principal direction. The standard deviation of the angle between the 
target’s position and the lidar’s principal direction is a third of the 
sensor’s field-of-view. Finally, for simulating motion blur, the relative 
velocities during a scan are bound to maximally 3 cm/s and 5 deg/s. 
The dataset is split into 400 000 point clouds used for training, and 100 
000 for validation.

3.2.2. Test dataset from the EPOS facility
The test data is collected at the EPOS rendezvous facility [20]. This 

facility is located at the German Aerospace Center (DLR) in Oberpfaf-
fenhofen, Germany. It consists of two robotic arms which move with 
6 degrees of freedom and each carry a charge. For this test, the first 
arm holds a mockup of the target satellite, as illustrated on Fig.  2. The 
second robotic arm holds a sensor plate on which different sensors, 
amongst which the Livox® lidar, are attached. Additionally, this arm 
is mounted on a linear rail, so that a translational movement up to a 
relative distance of 25 m is simulated.

On the raw point clouds captured by the lidar, all the surroundings 
of the facility such as the robotic arm, the floor, ceiling and curtains, 
are visible. These elements are cropped out in a pre-processing step 
in order to replicate space conditions. Also, the frame rate of the 
lidar is dynamically adjusted so that after this pre-processing step, 
all point clouds of the target contain approximately 10 000 points. 
Existing lidar sensors for space usually have a dynamically adaptable 
field-of-view [47,48], so that it is expected that all point clouds have 
approximately the same density. The resolution varies depending on the 
type of sensor considered: it is adaptable for Jena Optronik’s scanning 
RVS® 3000 lidar [47], and it is 128 × 128 pixels for ASC’s GSFL-16KS 
Flash lidar® [48], so that 10 000 points is an achievable number of 
points.

Four datasets were collected at the EPOS facility at different dis-
tances between the target and sensor: 5 m, 10 m, 15 m and 20 m. For 
each of these distances, the target was oriented so that it takes as many 
attitudes as possible, and multiple point clouds were recorded. Yet, 
because of the limitations of the robotic facility, not all attitudes are 
simulated. In particular, the test dataset contains no views of the target 
satellite ‘‘from behind’’, i.e., where the sensor would be placed on the 
−𝑋 direction in Fig.  3(a). When dividing the attitude space into bins 
of 20 deg resolution, the EPOS datasets contain poses covering 18% 
of all attitude bins, while the training data covers 100% of the bins. In 
total, aggregating the four EPOS datasets, the test dataset contains 8648 
lidar scans, with ground truth poses. The facility is calibrated with an 
accuracy of 1.56 mm in position and 0.2 deg in orientation [20]. The 
ground truth pose associated with a point cloud is considered to be the 
pose at the end of the scan time. In case of fast tumbling target leading 
to strong motion blur, strategies to correct the distorted scan should be 
investigated [18], but are not in the scope of this study.
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Fig. 5. Different types of data augmentation: (a) Reference point cloud; (b) Jitter and 
deformation; (c) Region dropout; (b) Outliers.

3.3. Training

As mentioned in the previous sections, the neural network is trained 
only with the synthetic point clouds of the training dataset. While 
several parameters of the simulator are randomized, adding further ran-
domization and variation to the input point clouds during training adds 
robustness to the network: this is the process of data augmentation. In 
this work, we use different types of data augmentation layers, shown on 
Fig.  5. Data augmentation is applied to all point clouds during training.

The first type of modification of the point cloud performed during 
training is similar to the training procedure of [42]. It consists in the 
addition of jitter and deformation, as illustrated on Fig.  5(b). Jitter is 
the addition of noise on the position of the individual points, following 
a normal distribution with a standard deviation of 1 cm. Deformation 
involves expanding or shrinking the point cloud with a different dilata-
tion factor along each axis, set here to ±15%. This deformation enables 
to account for the potential inaccuracies of the target’s 3D model, by 
learning to recognize variable geometries.

To account for additional reflection effects and avoid that the neural 
network relies only on specific regions of the point cloud, region 
dropout is also performed, as shown on Fig.  5(c): a region around a 
point is selected and all points from this region are removed. This 
region dropout is only performed with a 50% probability, and applied 
with a variable radius between 20 cm and 80 cm. To ensure that the 
point cloud still contains 1024 points after this dropout, other points are 
randomly duplicated. Finally, some points are randomly removed while 
outliers are added within the bounding box of the target, as illustrated 
on Fig.  5(d). This is also only performed with a 50% probability, and 
at most 50 outliers are added.

In addition to data augmentation, a dropout layer is added after 
the fully connected layer of size 512, before the two output heads. 
This layer has a dropout ratio of 0.3, which is applied only during 
training. Using dropout layers in the last FC layers before classifica-
tion is common to regularize the weights of the network and avoid 
overfitting [40,42].

As in [16], the network learns to minimize the sum of two losses: 
for the attitude classification, the cross-entropy loss between the real 
labels (𝑙1,… , 𝑙𝑚)𝑇  and the predicted labels (𝑙1,… , 𝑙𝑚)𝑇  is computed. For 
the position, the mean squared error between the real position shift 𝛥𝒑
and the prediction 𝛥𝒑 is used. In total, the loss is 

loss = −
𝑚
∑

(

𝑙𝑖 log 𝑙𝑖
)

+ 𝜆
‖𝛥𝒑 − 𝛥𝒑‖2

, (11)

𝑖=1 3
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where 𝜆 is a weighting coefficient between both losses which was 
tuned to 𝜆 = 10 in our experiments. This weight also has a physical 
interpretation: with 𝜆 = 10, and for the attitude sampling resolution 
𝛥𝛼 = 20 deg, numerical evaluations show that an error of 1 deg between 
the true and the estimated attitude leads approximately to the same 
increase in the cost function (11) as a 3 cm error on the position 
estimation.

The network is trained on 400 000 synthetic point clouds with a 
batch size of 32, using the Adam optimizer [60] with cosine decay and 
an initial learning rate of 10−3. The number of epochs is set to 35. No 
additional termination criteria is used, and the training stops after all 
epochs are complete.

3.4. Pose refinement

The neural network does not require an a priori estimate of the 
relative pose to provide a pose estimation. Therefore, the proposed 
method is used for pose initialization. Once the initial pose is found, 
it is possible to refine it with a local registration method such as 
ICP or NDT. In [18], we introduced a smoothed version of the NDT 
algorithm tailored specifically for efficiency in the prospect of onboard 
implementation. We showed that this method is precise and fast when 
compared to ICP. This method will be used to refine the initial pose 
estimate delivered by the neural network in a post-processing step.

4. Results

4.1. Computing hardware for runtime evaluation

The objective is to select a neural network model and optimize it for 
runtime, in order to have a real-time capable pose estimation method. 
The processing time of an algorithm strongly depends on the type of 
hardware it is evaluated on. If a GPU is used, runtime is usually not an 
issue. On a CPU however, the processing time strongly varies from one 
platform to another.

Onboard computers developed for space have to be resilient to 
difficult thermal, radiation and power conditions. This resiliency usu-
ally comes at the cost of processing power, so that space onboard 
computers typically have much lower processing power than processors 
used for ground applications. For complex processing or AI applications 
in space, Commercial Off-The-Shelf (COTS) System-on-Chip (SoC) are 
becoming increasingly popular [61,62]. In particular, DLR is develop-
ing an onboard computer based on an AMD Zynq® 7000 SoC [62]. 
Therefore, the Zynq 7000 is used as a reference platform for runtime 
evaluation after training. It consists of a CPU unit paired with an 
FPGA. However, for practical reasons (ease of implementation, faster 
development and flexibility), only the CPU is used for evaluating the 
pose estimation methods. The neural networks are written in Python, 
and trained on a GPU. Only after training, they are evaluated in C++ 
using the TensorFlow Lite library. The pre- and post-processing of the 
network’s results is also implemented in C++.

To enable computationally intensive AI applications, the field of on-
board computing is also going in the direction of testing and validating 
GPUs for space applications [63,64]. In this work, we assume that such 
a platform is not available, and take the Zynq 7000 CPU as a reference 
onboard computer for our evaluations.

For all evaluations, the ground truth relative attitude and position 
(𝑅,𝒑) are compared to the values (𝑅,𝒑) estimated by the pose initializa-
tion. Since the method aims at finding one of the symmetric equivalents 
of the real attitude, the angular and position error are defined as 
follows:

• angular error: 𝑑𝑠𝑦𝑚(𝑅,𝑅);
• position error: ‖𝒑 − 𝒑‖.
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Table 2
Evaluation of different pre-processing methods when paired with PointNet. The runtime, 
computed on the Zynq 7000 CPU, is shown as mean ± standard deviation. The success 
rate (error below 5 deg and 15 cm) is evaluated on the synthetic validation dataset.
 Sampling method Validation success [%] Pre-proc. time [ms] 
 random 89.07 𝟏𝟓 ± 𝟏  
 octree + random 90.86 35 ± 1  
 FPS 93.04 1785 ± 111  
 QuickFPS [49] 93.04 118 ± 6  

4.2. Pre-processing

The first evaluation concerns the sampling method used in the pre-
processing step. The synthetic and real point clouds contain in average 
about 10 000 points each. However, the neural network expects a fixed 
number of points as input, which is set to 1024 in this work. Therefore, 
several strategies are used to downsample the point clouds:

• Random sampling: Points are randomly removed or duplicated to 
obtain 1024 points;

• Octree downsampling + random sampling: The point cloud is 
first downsampled using an octree with a certain voxel size 
(here 4 cm). Because the resulting point cloud does not have a 
deterministic number of points, random sampling is additionally 
applied afterwards;

• FPS: A standard implementation of FPS;
• QuickFPS: A k-d tree version of FPS as in [49]. The maximum 
number of points per cell for the k-d tree subdivision of QuickFPS 
is set to 200.

Table  2 presents a comparison of these different methods, when 
used for pre-processing the point clouds at training and testing time. 
For this evaluation, PointNet is used as a backbone model. The trained 
model with the pre-processing method is evaluated on the synthetic 
validation dataset. To quantify the performance of a model, a success 
criteria is defined, which corresponds to a position and attitude error of 
the estimation below 15 cm and 5 deg. When the initial error is below 
this threshold, it is expected that the estimate will converge towards a 
precise pose estimate after the refinement step.

While random sampling is the fastest pre-processing method, FPS 
leads to a better model accuracy. The octree downsampling paired 
with random downsampling also leads to a significantly lower accuracy 
compared to FPS. Therefore, the efficient, k-d tree based implementa-
tion of the FPS algorithm is chosen as a pre-processing method for all 
subsequent evaluations.

4.3. Base model selection

To select the neural network backbone, several state-of-the art 
models, presented in Section 2, are compared: PointNet, PointNet++, 
DGCNN and Point Transformer. These networks are re-implemented 
in Python using the TensorFlow library. The different networks are 
indifferently inserted in the pose estimation pipeline, with the only 
difference that Point Transformer has an output feature layer of size 
512, while the other networks have a feature layer of size 1024. 
The results when training and testing these networks on the synthetic 
datasets are presented in Table  3.

From all evaluated models, PointNet++ presents the best accuracy, 
with a success rate on the validation dataset of 99.23%. The evolution 
of the training and validation losses for this model during the training 
process are presented in Fig.  6. Due to the use of data augmentation and 
dropout regularization, the validation loss is lower than the training 
loss.

However, the precision of PointNet++ also comes at the cost of an 
important inference runtime when evaluated on the onboard-
representative hardware. Selecting this model as a baseline, we will 
analyze in the following Section 4.4 how the model’s parameters are 
adapted to reduce the runtime.
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Table 3
Success rate (error below 5 deg and 15 cm) and runtime (on the Zynq 7000 CPU) of 
different 3D network models when evaluated on the synthetic validation dataset. The 
runtime is shown as mean ± standard deviation, and does not include pre-processing.
 Model name Validation success [%] Runtime [ms] 
 PointNet [40] 93.04 𝟐𝟔𝟒 ± 𝟎  
 PointNet++ [41] 99.23 1719 ± 1  
 DGCNN [42] 98.82 2455 ± 0  
 Point Transformer [43] 98.31 676 ± 0  

Fig. 6. Training and validation loss when training PointNet++ for 35 epochs with data 
augmentation.

4.4. Optimized PointNet++ model

The original PointNet++ when evaluated on the Zynq CPU, takes 
about 1.7 s to run an inference, which is considered too long for real-
time pose estimation in this case. While the exact timing requirements 
vary depending on the mission, it is typically desired to provide a pose 
estimation solution with at least 1 Hz. This is also in line with the 
expected frame rate of a space qualified scanning lidar. Accounting for 
pre-processing time and margin, we seek a runtime of the model below 
0.5 s.

Given a fixed number of input points 𝑁 = 1024, optimizing the 
model for runtime involves reducing the number of operations per-
formed in the model. In Table  1, we provided an overview of the layers 
of the PointNet++ model. A first possibility to reduce the model size is 
to tune the parameters associated with the two clustering operations: 
the first clustering produces 𝑁1 clusters of 𝑘1 points, and the second 
one 𝑁2 clusters of 𝑘2 points.

The original PointNet++ model has sizes 𝑁1 = 512, 𝑘1 = 32 and 
𝑁2 = 128, 𝑘2 = 64. We find out that reducing these parameters leads 
to an important reduction of the runtime, while the performance loss 
is less drastic. We explore several variations of these parameters. Fig. 
7 presents the results of this parameter variation, where only the best 
models, which had a high success rate compared to their runtime, are 
presented. For each model identified by its two clusters 𝑐1 = (𝑁1, 𝑘1)
and 𝑐2 = (𝑁2, 𝑘2), the model is positioned on the graph depending on 
its success rate on the validation dataset, as a function of its runtime 
on the Zynq CPU.

With a decreasing number of clusters and cluster size also comes 
a decrease in performance. Therefore, the choice of the suited model 
on Fig.  7 strongly depends on the mission requirements. For the case 
of the study, the selected model has a number of first clustering layer 
with dimensions (𝑁1, 𝑘1) = (256, 16), and the second one with size 
(𝑁2, 𝑘2) = (64, 16). This model (in green on Fig.  7) shows to be a suited 
compromise between runtime and accuracy. The average runtime of 
this model on the Zynq CPU is of 420 ms, so less than 0.5 s, with a 
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Fig. 7. Average runtime on the Zynq 7000 CPU vs accuracy on the synthetic validation 
dataset of different PointNet++ models. The labels 𝑐1 = (𝑁1 , 𝑘1) and 𝑐2 = (𝑁2 , 𝑘2)
indicate the number of clusters and the cluster size of the first and second clustering 
layers, respectively.

Table 4
Ablation study of the optimized network: comparison of the optimized PointNet++ 
model with the same model where one component has been modified. The success 
rate (error below 5 deg and 15 cm) is evaluated on the synthetic validation dataset, 
and the runtime shown as mean ± standard deviation on the Zynq 7000 CPU.
 Model name Validation success [%] Runtime [ms] 
 reference (optimized) 99.08 420 ± 0  
 – shrinkage 𝛼𝑀𝐿𝑃 = 7∕8 99.01 392 ± 0  
 – one FC layer less 98.30 420 ± 0  
 – input points 𝑁 = 768 98.91 387 ± 0  

success rate (initial estimate below 5 deg and 15 cm) on the synthetic 
validation dataset of 99.08%. In the following, this model will be 
referred to as the optimized reference model.

A further direction for optimization is to modify the width of 
the MLP layers. In the reference configuration of Table  1, Point-
Net++ contains three shared MLP layers of dimensions {64, 64, 128}, 
{128, 128, 256}, and {256, 512, 1024}. Reducing the sizes of these MLP 
layers is also considered. To do this, a shrinking factor 𝛼𝑀𝐿𝑃 ≤ 1 is 
introduced, by which all the MLP dimensions are multiplied. When 
𝛼𝑀𝐿𝑃 = 1, the configuration corresponds to the default configuration. 
In Table  4, we present the success rate on the synthetic validation 
dataset, and runtime, of the optimized model with reduced cluster sizes, 
compared with the same model where a shrinkage factor 𝛼𝑀𝐿𝑃 = 7∕8
has been applied.

While reducing the width of the network enables to reduce the 
runtime accordingly, the performance also decreases by 0.07% when 
using a shrinking factor 𝛼𝑀𝐿𝑃 = 7∕8 compared to the reference model. 
Reducing the width of the MLP layers also reduces the number of 
parameters of the network. It is a modification that is to be considered 
if the runtime is to be further optimized, but is not retained here as 
the performance also decreases. Another possibility to strongly reduce 
the number of parameters of the network, is to remove one of the top 
layers. In the third line of the ablation study presented in Table  4, the 
Fully Connected (FC) layer of size 512, which is between the feature 
vector and the two classification heads, has been removed. However, 
the performance drop compared to the reference model is significant, 
by around 0.8%, highlighting the importance of this intermediate layer 
between the feature vector and the output heads. In addition, removing 
the fully connected layer does not visibly reduce the runtime, which is 
dominated by the evaluations in the previous layers of the network.

Finally, it is also possible to reduce the number of input points to 
the model, 𝑁 . This could also be a mission requirement in case the 
point clouds collected by the sensor are very sparse. On the last line 
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Fig. 8. Distribution of position errors before and after NDT refinement, when evaluat-
ing the method on the EPOS dataset. Whiskers extend to the 1st and 99th percentiles.

of Table  4, the reference model has been modified to take as input a 
point cloud of size 𝑁 = 768 (25% less points than the reference model, 
where 𝑁 = 1024). As it is observed, the performance drops to 98.91%, 
mainly because the network has less information as input. The decrease 
in runtime is mainly due to the fact that the first clustering step is 
performed with less points, and is less computationally expensive. The 
following layers have the same size as the model with 1024 points.

4.5. Results on real dataset

After tuning and training the model on synthetic data, evaluation is 
performed on the EPOS test dataset containing real lidar scans. For this 
evaluation, the NDT pose refinement presented in Section 3.4 is applied 
after an initial estimate has been provided by the neural network. The 
NDT algorithm is set with following parameters, which are further 
detailed in [18]: the voxel grid size for computing the distributions, 
as well as the maximum point-to-cell distance, are set to 7.5 cm. The 
iterative algorithm stops either once 30 iterations have been performed, 
or if the increment to perform is below 0.05 deg and 1 mm. Finally, 
before being registered, the source point clouds are downsampled with 
a voxel filter of 2 cm.

We evaluate the pose estimation method, using the optimized Point-
Net++ model presented in the previous Section 4.4 as a backbone. This 
model has dimensions (𝑁1, 𝑘1) = (256, 16) and (𝑁2, 𝑘2) = (64, 16). The 
distribution of errors of the method on the EPOS dataset before and 
after the NDT refinement step is presented on Figs.  8 and 9. The attitude 
error (Fig.  9) is computed using the symmetrical distance function 
(7). The boxes extend to the first and third quartile, and the orange 
line represents the median. The whiskers extend to the first and 99th 
percentiles, while outliers are marked with crosses.

From Figs.  8 and 9, it is seen that the refinement step helps to 
correct initial estimates, and to reduce the error spread. After the 
refinement step, 99% of the estimate have a position error below 9 cm, 
and an attitude error below 2 deg. Interestingly, in most cases where 
the attitude prediction is wrong, it is wrong by an error of 60 deg. 
This indicates that due to the hexagonal shape of the target, the neural 
network might confuse two possible configurations of the hexagon if 
the three antennas could not be clearly identified in the point cloud, 
see Fig.  3.

We compare our method with the CNN based pose estimation that 
we introduced in previous work [16]. This second method is trained 
and tested on the same datasets, and also combined with NDT for pose 
refinement. Additionally, we evaluate the results of our method when 
using the original (baseline) PointNet++ model as a backbone. The 
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Fig. 9. Distribution of angular errors before and after NDT refinement, when evaluating 
the method on the EPOS dataset. Whiskers extend to the 1st and 99th percentiles.

result of this comparison is presented in Table  5. It includes the results 
of the runtime evaluation of the three methods on the Zynq 7000 CPU.

From Table  5, it is seen that the position errors of the three methods 
are very similar. However, the two PointNet++ based models out-
perform the CNN based method when it comes to robustness of the 
attitude estimation. Overall, the method presented in this work, using 
the optimized network combined with NDT refinement, predicts a pose 
with an error below 15 cm and 5 deg for 99.79% of the point clouds 
of the EPOS dataset. This number even increases to 99.83% when 
using the original PointNet++ model, not optimized for runtime. Yet, 
the baseline model is more than four times slower than the optimized 
model.

5. Discussion

5.1. Relevance of the different processing steps

The proposed pose estimation pipeline consists of several steps, all 
of which have their importance. In particular, the importance of the 
FPS as a sampling method during pre-processing was presented in Sec-
tion 4.2. The neural network was also optimized to remove parameters 
and dimensions which do not significantly affect the performance, with 
results presented in Section 4.4. The relevance of data augmentation 
during training is evaluated on the real dataset. In the first two lines of 
Table  6 we compare the success rate of the reference model optimized 
for runtime, with the same model trained without data augmentation.

Without data augmentation, the performance decrease is of around 
0.6%, demonstrating that the proposed data augmentation method en-
ables to increase the robustness of the network when evaluated on real 
lidar data. While this shows the relevance of using data augmentation, 
the gap between the model trained with and without data augmentation 
is much smaller than what is observed when using a CNN instead of a 
3D network for this task [16].

In addition, we evaluate the importance of using a trimmed centroid 
(2) instead of a standard centroid (i.e., mean) during pre-processing. 
The result of the model where a standard centroid is used both during 
training and evaluation is presented on the third line of Table  6. 
Using a standard centroid leads to a strong performance loss, as the 
overall accuracy drops by over 16% compared to the reference model. 
This is explained by the fact that the real point clouds contain a 
high proportion of outliers and ghost reflections, which are located
e.g., at twice the distance of the sensor to the satellite. Compared to 
the trimmed centroid, the regular centroid is less robust, and affected 
by these outliers. By not discarding them, the selected ROI is less 
guaranteed to contain all relevant points.
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Table 5
Precision and runtime comparison of three methods evaluated on the EPOS lidar dataset, after NDT refinement. The baseline corresponds to the original PointNet++ model, while 
the optimized version uses the model optimized for runtime. The runtime is evaluated on the Zynq 7000 CPU.
 Method Position error [cm] Attitude error [deg] Success rate [%] Runtime [ms] (avg. ± stddev.)
 Median 99th %ile Median 99th %ile (<5 deg and 15 cm) Pre-proc. Initialization Refinement Total  
 CNN based [16] 6.63 8.87 0.74 59.7 97.94 24 ± 1 737 ± 0 347 ± 101 1108 ± 101 
 ours (baseline) 6.64 8.87 0.74 1.85 99.83 118 ± 6 1719 ± 1 345 ± 114 2182 ± 114 
 ours (optimized) 6.63 8.87 0.73 1.82 99.79 118 ± 6 420 ± 0 341 ± 109 𝟖𝟕𝟗 ± 𝟏𝟎𝟗  
Table 6
Ablation study: success rate (error below 5 deg and 15 cm) when 
evaluated on the EPOS test datasets of the reference model compared 
to the same model where only the listed component was removed.
 Model name Success rate [%] 
 reference (optimized) 99.79  
 – no data augm. 99.20  
 – standard centroid 83.18  
 – no NDT refinement 98.50  

The gain in precision added by the NDT refinement step was already 
presented in Section 4.5. The last line of Table  6 summarizes the 
importance of the NDT refinement. Without this step, the performance 
decreases by over 1%.

Point clouds are visualized either as a loose collection of 3D co-
ordinates, or as a 2D depth image, especially when a matrix based 
sensor such as a time-of-flight lidar is used. In the same way, during 
processing, it is possible to either directly process the 3D point cloud, 
as in this work, or process the depth image using a CNN [14,16]. 
While both methods are effective, we have observed in this work 
the superiority of using point-based neural networks for this task, as 
highlighted by the comparison presented in Table  5.

5.2. Applicability to onboard implementation

Neural networks are inherently adapted for real-time requirements, 
as they perform a deterministic number of operations to evaluate an 
input. Therefore, the runtime of a neural network is nearly always 
the same. Yet depending on the selected model and the computing 
platform, the runtime is high. In this work, the runtime was optimized 
for a specific computing platform, the AMD Zynq® 7000, which is a 
potential candidate for an onboard computer. However, for other types 
of onboard computers, it might not be needed to optimize the model, 
or on the opposite to further optimize it.

In this work, we have proposed a way to significantly reduce the 
runtime of a standard architecture, PointNet++, without a consequen-
tial loss in performance. The inference time of the optimized model 
compared to the baseline is reduced by more than a factor 4, see column 
‘‘initialization’’ of Table  5. For the PointNet++ architecture, reducing 
the number of clusters, and cluster sizes, is an efficient way to reduce 
the runtime while maintaining a good performance. Depending on the 
requirements on the model runtime, further optimization might be 
performed. The final result is a trade-off between the desired runtime, 
and the model’s accuracy.

For a rendezvous mission, testing with real lidar data prior to the 
mission might not be possible. If data is collected in a hardware-in-the-
loop facility, the data could also be included in the training process 
to form a hybrid training dataset. Still, a domain gap between the data 
collected in the facility and flight data might be observed. The approach 
presented in this work consists in using only synthetic data for training. 
This enables to quickly generate a training dataset as large as desired, 
and requires only to have a 3D model of the target. By training and 
optimizing the model solely on synthetic data, and testing it on real 
point clouds, we have shown that the pose estimation method is robust 
and able to bridge the ‘‘domain gap’’, i.e., that no noticeable difference 
is observed between the results obtained on synthetic and real data.
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With 99% of the pose estimates having a position error below 9 cm 
and an attitude error below 1.9 deg, the method was shown to be 
precise, reliable and fast enough on onboard hardware for real-time 
pose estimation. While the training is done with Python, the model is 
evaluated on the hardware in C++, using the TensorFlow Lite library. 
The optimized model contains around 1.7 million parameters, taking up 
7.1 MB of space, which is usually not a problem for onboard storage.

The presented pose initialization method does not intend to replace 
pose tracking methods such as ICP or NDT, but is necessary as a com-
plement to a pose tracking method, which requires an initial estimate 
to converge. In operational scenarios, pose initialization is run during 
the first target acquisition when entering close range. Afterwards, a 
tracking mode is entered, where the previous navigation estimate is 
used as an initial estimate for the current scan [3]. Given its precision, 
the method might also be used as a consistency check to be run 
periodically.

6. Conclusion

In this work, we introduced a method for lidar based pose esti-
mation of a non-cooperative spacecraft during space rendezvous. In 
a single stage, a neural network computes an estimate of both the 
relative position and the attitude, given an input point cloud. The 
attitude classification logic is adapted to account for estimating the 
pose of a symmetrical spacecraft, where several attitudes might rep-
resent the same configuration. A refinement method is further applied 
to increase the precision of the initial estimate. The network is trained 
and optimized for runtime on synthetic data. Evaluation on onboard 
representative computing hardware and on a real lidar dataset shows 
that the method is flight-ready: it is precise, efficient and reliable, with 
over 99.7% of the pose estimates on real data having an error below 
5 deg and 15 cm.

While being tested on a real dataset, the lidar sensor used in this 
work originates from the automotive domain: further work might in-
clude tests with a space-representative lidar sensor, and possibly other 
target satellites with a different shape. Finally, a strategy or measure 
to detect potential erroneous initial estimates could be investigated.

CRediT authorship contribution statement

Léo Renaut: Writing – original draft, Software, Methodology, In-
vestigation, Formal analysis, Conceptualization. Heike Frei: Writing – 
review & editing, Validation, Supervision, Methodology, Investigation. 
Andreas Nüchter: Writing – review & editing, Validation, Supervision, 
Methodology, Investigation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.



L. Renaut et al. Acta Astronautica 232 (2025) 231–243 
References

[1] M. Pyrak, J. Anderson, Performance of Northrop Grumman’s Mission extension 
vehicle (MEV) RPO imagers at GEO, in: Autonomous Systems: Sensors, Processing 
and Security for Ground, Air, Sea and Space Vehicles and Infrastructure 2022, 
vol. 12115, SPIE, 2022, pp. 64–82, http://dx.doi.org/10.1117/12.2631524.

[2] Astroscale, Astroscale’s ADRAS-J continues to make history: Successfully 
demonstrates fly-around observations of space debris, 2024, [Press release]: 
https://astroscale.com/astroscales-adras-j-continues-to-make-history-successfully-
demonstrates-fly-around-observations-of-space-debris/.

[3] R. Opromolla, G. Fasano, G. Rufino, M. Grassi, A review of cooperative 
and uncooperative spacecraft pose determination techniques for close-proximity 
operations, Prog. Aerosp. Sci. 93 (2017) 53–72, http://dx.doi.org/10.1016/j.
paerosci.2017.07.001.

[4] L.P. Cassinis, R. Fonod, E. Gill, Review of the robustness and applicability of 
monocular pose estimation systems for relative navigation with an uncooperative 
spacecraft, Prog. Aerosp. Sci. 110 (2019) 100548, http://dx.doi.org/10.1016/j.
paerosci.2019.05.008.

[5] L. Pauly, W. Rharbaoui, C. Shneider, A. Rathinam, V. Gaudillière, D. Aouada, A 
survey on deep learning-based monocular spacecraft pose estimation: Current 
state, limitations and prospects, Acta Astronaut. (2023) http://dx.doi.org/10.
1016/j.actaastro.2023.08.001.

[6] S. Ruel, T. Luu, A. Berube, Space shuttle testing of the TriDAR 3D rendezvous 
and docking sensor, J. Field Robot. 29 (4) (2012) 535–553, http://dx.doi.org/
10.1002/rob.20420.

[7] F. Yin, W. Chou, Y. Wu, G. Yang, S. Xu, Sparse unorganized point cloud based 
relative pose estimation for uncooperative space target, Sensors 18 (4) (2018) 
1009, http://dx.doi.org/10.3390/s18041009.

[8] K. Klionovska, H. Benninghoff (now Frei), Initial pose estimation using PMD 
Sensor during the rendezvous phase in on-orbit servicing missions, in: 27th 
AIAA/AAS Space Flight Mechanics Meeting, 2017.

[9] J.O. Woods, J.A. Christian, LIDAR-based relative navigation with respect to non-
cooperative objects, Acta Astronaut. 126 (2016) 298–311, http://dx.doi.org/10.
1016/j.actaastro.2016.05.007.

[10] R. Opromolla, G. Fasano, G. Rufino, M. Grassi, A model-based 3D template 
matching technique for pose acquisition of an uncooperative space object, 
Sensors 15 (3) (2015) 6360–6382, http://dx.doi.org/10.3390/s150306360.

[11] R. Opromolla, G. Fasano, G. Rufino, M. Grassi, Pose estimation for spacecraft 
relative navigation using model-based algorithms, IEEE Trans. Aerosp. Electron. 
Syst. 53 (1) (2017) 431–447, http://dx.doi.org/10.1109/TAES.2017.2650785.

[12] W. Guo, W. Hu, C. Liu, T. Lu, Pose initialization of uncooperative spacecraft by 
template matching with sparse point cloud, J. Guid. Control Dyn. 44 (9) (2021) 
1707–1720, http://dx.doi.org/10.2514/1.G005042.

[13] C. Schmitt, J. Both, F. Kolb, RVS3000-3D: LIDAR meets neural networks, in: 
International Symposium of Artificial Intelligence, Robotics and Automation in 
Space, (Jun. 4, 2018), 2018, pp. 1–7.

[14] E.A. Pensado, L.M.G. de Santos, H.G. Jorge, M. Sanjurjo-Rivo, Deep learning-
based target pose estimation using LiDAR measurements in active debris removal 
operations, IEEE Trans. Aerosp. Electron. Syst. 59 (5) (2023) 5658–5670, http:
//dx.doi.org/10.1109/TAES.2023.3262505.

[15] S. Zhang, W. Hu, W. Guo, C. Liu, Neural-network-based pose estimation during 
noncooperative spacecraft rendezvous using point cloud, J. Aerosp. Inf. Syst. 20 
(8) (2023) 462–472, http://dx.doi.org/10.2514/1.I011179.

[16] L. Renaut, H. Frei, A. Nüchter, CNN-based pose estimation of a non-cooperative 
spacecraft with symmetries from lidar point clouds, IEEE Trans. Aerosp. Electron. 
Syst. (2024) http://dx.doi.org/10.1109/TAES.2024.3517574.

[17] Q. Wang, T. Lei, X. Liu, G. Cai, Y. Yang, L. Jiang, Z. Yu, Pose estimation of 
non-cooperative target coated with MLI, IEEE Access 7 (2019) 153958–153968, 
http://dx.doi.org/10.1109/ACCESS.2019.2946346.

[18] L. Renaut, H. Frei, A. Nüchter, Lidar pose tracking of a tumbling spacecraft using 
the smoothed normal distribution transform, Remote. Sens. 15 (9) (2023) 2286, 
http://dx.doi.org/10.3390/rs15092286.

[19] G. Pitteri, M. Ramamonjisoa, S. Ilic, V. Lepetit, On object symmetries and 6D 
pose estimation from images, in: 2019 International Conference on 3D Vision, 
3DV, IEEE, 2019, pp. 614–622, http://dx.doi.org/10.1109/3DV.2019.00073.

[20] H. Benninghoff (now Frei), F. Rems, E.-A. Risse, C. Mietner, European proximity 
operations simulator 2.0 (EPOS) - A robotic-based rendezvous and docking 
simulator, J. Large- Scale Res. Facil. JLSRF (2017) http://dx.doi.org/10.17815/
jlsrf-3-155.

[21] P. Besl, N.D. McKay, A method for registration of 3-D shapes, IEEE Trans. 
Pattern Anal. Mach. Intell. 14 (02) (1992) 239–256, http://dx.doi.org/10.1109/
34.121791.

[22] J. Yang, H. Li, D. Campbell, Y. Jia, Go-ICP: A globally optimal solution to 3D 
ICP point-set registration, IEEE Trans. Pattern Anal. Mach. Intell. 38 (11) (2015) 
2241–2254, http://dx.doi.org/10.1109/TPAMI.2015.2513405.

[23] L. Liu, G. Zhao, Y. Bo, Point cloud based relative pose estimation of a satellite in 
close range, Sensors 16 (6) (2016) 824, http://dx.doi.org/10.3390/s16060824.

[24] R.B. Rusu, N. Blodow, Z.C. Marton, M. Beetz, Aligning point cloud views using 
persistent feature histograms, in: 2008 IEEE/RSJ International Conference on 
Intelligent Robots and Systems, IEEE, 2008, pp. 3384–3391, http://dx.doi.org/
10.1109/IROS.2008.4650967.
242 
[25] P. Jasiobedzki, M. Greenspan, G. Roth, H. Ng, N. Witcomb, Video-based system 
for satellite proximity operations, in: 7th ESA Workshop on Advanced Space 
Technologies for Robotics and Automation, ASTRA 2002, ESTEC, Noordwijk, the 
Netherlands, 2002.

[26] P. Biber, W. Straßer, The normal distributions transform: A new approach to 
laser scan matching, in: Proceedings 2003 IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453), vol. 3, IEEE, 
2003, pp. 2743–2748, http://dx.doi.org/10.1109/IROS.2003.1249285.

[27] B. Chen, J. Cao, A. Parra, T.-J. Chin, Satellite pose estimation with deep 
landmark regression and nonlinear pose refinement, in: Proceedings of the 
IEEE/CVF International Conference on Computer Vision Workshops, 2019, http:
//dx.doi.org/10.48550/arXiv.1908.11542.

[28] K. Cosmas, A. Kenichi, Utilization of FPGA for onboard inference of landmark 
localization in CNN-based spacecraft pose estimation, Aerospace 7 (11) (2020) 
159, http://dx.doi.org/10.3390/aerospace7110159.

[29] Y. Hu, S. Speierer, W. Jakob, P. Fua, M. Salzmann, Wide-depth-range 6D 
object pose estimation in space, in: Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition, 2021, pp. 15870–15879, http:
//dx.doi.org/10.48550/arXiv.2104.00337.

[30] K. Black, S. Shankar, D. Fonseka, J. Deutsch, A. Dhir, M.R. Akella, Real-
time, flight-ready, non-cooperative spacecraft pose estimation using monocular 
imagery, in: 31st AIAA/AAS Space Flight Mechanics Meeting, 2021, http://dx.
doi.org/10.48550/arXiv.2101.09553.

[31] S. Sharma, S. D’Amico, Neural network-based pose estimation for noncooper-
ative spacecraft rendezvous, IEEE Trans. Aerosp. Electron. Syst. 56 (6) (2020) 
4638–4658, http://dx.doi.org/10.1109/TAES.2020.2999148.

[32] P.F. Proença, Y. Gao, Deep learning for spacecraft pose estimation from 
photorealistic rendering, in: 2020 IEEE International Conference on Robotics 
and Automation, ICRA, IEEE, 2020, pp. 6007–6013, http://dx.doi.org/10.1109/
ICRA40945.2020.9197244.

[33] T.H. Park, S. D’Amico, Robust multi-task learning and online refinement for 
spacecraft pose estimation across domain gap, Adv. Space Res. (2023) http:
//dx.doi.org/10.48550/arXiv.2203.04275.

[34] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, 
R. Pang, V. Vasudevan, et al., Searching for MobileNetV3, in: Proceedings of the 
IEEE/CVF International Conference on Computer Vision, 2019, pp. 1314–1324, 
http://dx.doi.org/10.1109/ICCV.2019.00140.

[35] O. Kechagias-Stamatis, N. Aouf, V. Dubanchet, M.A. Richardson, DeepLO: Multi-
projection deep LIDAR odometry for space orbital robotics rendezvous relative 
navigation, Acta Astronaut. 177 (2020) 270–285, http://dx.doi.org/10.1016/j.
actaastro.2020.07.034.

[36] Z. Chekakta, A. Zenati, N. Aouf, O. Dubois-Matra, Robust deep learning LiDAR-
based pose estimation for autonomous space landers, Acta Astronaut. 201 (2022) 
59–74, http://dx.doi.org/10.1016/j.actaastro.2022.08.049.

[37] D. Maturana, S. Scherer, VoxNet: A 3D convolutional neural network for 
real-time object recognition, in: 2015 IEEE/RSJ International Conference on 
Intelligent Robots and Systems, IROS, IEEE, 2015, pp. 922–928, http://dx.doi.
org/10.1109/IROS.2015.7353481.

[38] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, B. Chen, PointCNN: Convolution on X-
Transformed points, Adv. Neural Inf. Process. Syst. 31 (2018) http://dx.doi.org/
10.48550/arXiv.1801.07791.

[39] H. Thomas, C.R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, L.J. Guibas, 
KPConv: Flexible and deformable convolution for point clouds, in: Proceedings 
of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 
6411–6420, http://dx.doi.org/10.1109/ICCV.2019.00651.

[40] C.R. Qi, H. Su, K. Mo, L.J. Guibas, PointNet: Deep learning on point sets for 
3D classification and segmentation, in: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, 2017, pp. 652–660, http://dx.doi.org/
10.1109/CVPR.2017.16.

[41] C.R. Qi, L. Yi, H. Su, L.J. Guibas, PointNet++: Deep hierarchical feature learning 
on point sets in a metric space, Adv. Neural Inf. Process. Syst. 30 (2017) 
http://dx.doi.org/10.48550/arXiv.1706.02413.

[42] Y. Wang, Y. Sun, Z. Liu, S.E. Sarma, M.M. Bronstein, J.M. Solomon, Dynamic 
graph CNN for Learning on Point Clouds, ACM Trans. Graph. (Tog) 38 (5) (2019) 
1–12, http://dx.doi.org/10.1145/3326362.

[43] H. Zhao, L. Jiang, J. Jia, P.H. Torr, V. Koltun, Point transformer, in: Proceedings 
of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 
16259–16268, http://dx.doi.org/10.1109/ICCV48922.2021.01595.

[44] S. Zhang, W. Hu, W. Guo, 6-DoF pose estimation of uncooperative space 
object using deep learning with point cloud, in: 2022 IEEE Aerospace Confer-
ence, AERO, IEEE, 2022, pp. 1–7, http://dx.doi.org/10.1109/AERO53065.2022.
9843444.

[45] A. Myronenko, X. Song, Point set registration: Coherent point drift, IEEE Trans. 
Pattern Anal. Mach. Intell. 32 (12) (2010) 2262–2275, http://dx.doi.org/10.
1109/TPAMI.2010.46.

[46] J. Sola, J. Sevilla, Importance of input data normalization for the application of 
neural networks to complex industrial problems, IEEE Trans. Nucl. Sci. 44 (3) 
(1997) 1464–1468, http://dx.doi.org/10.1109/23.589532.

http://dx.doi.org/10.1117/12.2631524
https://astroscale.com/astroscales-adras-j-continues-to-make-history-successfully-demonstrates-fly-around-observations-of-space-debris/
https://astroscale.com/astroscales-adras-j-continues-to-make-history-successfully-demonstrates-fly-around-observations-of-space-debris/
https://astroscale.com/astroscales-adras-j-continues-to-make-history-successfully-demonstrates-fly-around-observations-of-space-debris/
http://dx.doi.org/10.1016/j.paerosci.2017.07.001
http://dx.doi.org/10.1016/j.paerosci.2017.07.001
http://dx.doi.org/10.1016/j.paerosci.2017.07.001
http://dx.doi.org/10.1016/j.paerosci.2019.05.008
http://dx.doi.org/10.1016/j.paerosci.2019.05.008
http://dx.doi.org/10.1016/j.paerosci.2019.05.008
http://dx.doi.org/10.1016/j.actaastro.2023.08.001
http://dx.doi.org/10.1016/j.actaastro.2023.08.001
http://dx.doi.org/10.1016/j.actaastro.2023.08.001
http://dx.doi.org/10.1002/rob.20420
http://dx.doi.org/10.1002/rob.20420
http://dx.doi.org/10.1002/rob.20420
http://dx.doi.org/10.3390/s18041009
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb8
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb8
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb8
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb8
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb8
http://dx.doi.org/10.1016/j.actaastro.2016.05.007
http://dx.doi.org/10.1016/j.actaastro.2016.05.007
http://dx.doi.org/10.1016/j.actaastro.2016.05.007
http://dx.doi.org/10.3390/s150306360
http://dx.doi.org/10.1109/TAES.2017.2650785
http://dx.doi.org/10.2514/1.G005042
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb13
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb13
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb13
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb13
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb13
http://dx.doi.org/10.1109/TAES.2023.3262505
http://dx.doi.org/10.1109/TAES.2023.3262505
http://dx.doi.org/10.1109/TAES.2023.3262505
http://dx.doi.org/10.2514/1.I011179
http://dx.doi.org/10.1109/TAES.2024.3517574
http://dx.doi.org/10.1109/ACCESS.2019.2946346
http://dx.doi.org/10.3390/rs15092286
http://dx.doi.org/10.1109/3DV.2019.00073
http://dx.doi.org/10.17815/jlsrf-3-155
http://dx.doi.org/10.17815/jlsrf-3-155
http://dx.doi.org/10.17815/jlsrf-3-155
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1109/TPAMI.2015.2513405
http://dx.doi.org/10.3390/s16060824
http://dx.doi.org/10.1109/IROS.2008.4650967
http://dx.doi.org/10.1109/IROS.2008.4650967
http://dx.doi.org/10.1109/IROS.2008.4650967
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb25
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb25
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb25
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb25
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb25
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb25
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb25
http://dx.doi.org/10.1109/IROS.2003.1249285
http://dx.doi.org/10.48550/arXiv.1908.11542
http://dx.doi.org/10.48550/arXiv.1908.11542
http://dx.doi.org/10.48550/arXiv.1908.11542
http://dx.doi.org/10.3390/aerospace7110159
http://dx.doi.org/10.48550/arXiv.2104.00337
http://dx.doi.org/10.48550/arXiv.2104.00337
http://dx.doi.org/10.48550/arXiv.2104.00337
http://dx.doi.org/10.48550/arXiv.2101.09553
http://dx.doi.org/10.48550/arXiv.2101.09553
http://dx.doi.org/10.48550/arXiv.2101.09553
http://dx.doi.org/10.1109/TAES.2020.2999148
http://dx.doi.org/10.1109/ICRA40945.2020.9197244
http://dx.doi.org/10.1109/ICRA40945.2020.9197244
http://dx.doi.org/10.1109/ICRA40945.2020.9197244
http://dx.doi.org/10.48550/arXiv.2203.04275
http://dx.doi.org/10.48550/arXiv.2203.04275
http://dx.doi.org/10.48550/arXiv.2203.04275
http://dx.doi.org/10.1109/ICCV.2019.00140
http://dx.doi.org/10.1016/j.actaastro.2020.07.034
http://dx.doi.org/10.1016/j.actaastro.2020.07.034
http://dx.doi.org/10.1016/j.actaastro.2020.07.034
http://dx.doi.org/10.1016/j.actaastro.2022.08.049
http://dx.doi.org/10.1109/IROS.2015.7353481
http://dx.doi.org/10.1109/IROS.2015.7353481
http://dx.doi.org/10.1109/IROS.2015.7353481
http://dx.doi.org/10.48550/arXiv.1801.07791
http://dx.doi.org/10.48550/arXiv.1801.07791
http://dx.doi.org/10.48550/arXiv.1801.07791
http://dx.doi.org/10.1109/ICCV.2019.00651
http://dx.doi.org/10.1109/CVPR.2017.16
http://dx.doi.org/10.1109/CVPR.2017.16
http://dx.doi.org/10.1109/CVPR.2017.16
http://dx.doi.org/10.48550/arXiv.1706.02413
http://dx.doi.org/10.1145/3326362
http://dx.doi.org/10.1109/ICCV48922.2021.01595
http://dx.doi.org/10.1109/AERO53065.2022.9843444
http://dx.doi.org/10.1109/AERO53065.2022.9843444
http://dx.doi.org/10.1109/AERO53065.2022.9843444
http://dx.doi.org/10.1109/TPAMI.2010.46
http://dx.doi.org/10.1109/TPAMI.2010.46
http://dx.doi.org/10.1109/TPAMI.2010.46
http://dx.doi.org/10.1109/23.589532


L. Renaut et al. Acta Astronautica 232 (2025) 231–243 
[47] C. Schmitt, M. Windmüller, M. Schwarz, M. Möller, RVS® 3000-3D LiDAR–
next stop: Gateway, in: Proceedings of the 44th Annual American Astronautical 
Society Guidance, Navigation, and Control Conference, Springer, 2022, pp. 
489–496, http://dx.doi.org/10.1007/978-3-031-51928-4_29.

[48] B.A. Sornsin, B.W. Short, T.N. Bourbeau, M.J. Dahlin, Global shutter solid 
state flash LIDAR for spacecraft navigation and docking applications, in: Laser 
Radar Technology and Applications XXIV, vol. 11005, SPIE, 2019, pp. 229–240, 
http://dx.doi.org/10.1117/12.2519178.

[49] M. Han, L. Wang, L. Xiao, H. Zhang, C. Zhang, X. Xu, J. Zhu, QuickFPS: 
Architecture and algorithm co-design for farthest point sampling in large-scale 
point clouds, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 42 (11) (2023) 
4011–4024, http://dx.doi.org/10.1109/TCAD.2023.3274922.

[50] C.E. Nwankpa, W. Ijomah, A. Gachagan, S. Marshall, Activation functions: 
comparison of trends in practice and research for deep learning, in: 2nd 
International Conference on Computational Sciences and Technology, 2021, 
http://dx.doi.org/10.48550/arXiv.1811.03378.

[51] Y. Zhou, C. Barnes, J. Lu, J. Yang, H. Li, On the continuity of rotation 
representations in neural networks, in: Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition, 2019, pp. 5745–5753, http://dx.
doi.org/10.1109/CVPR.2019.00589.

[52] S.T. Wong, M.S. Roos, A strategy for sampling on a sphere applied to 3D 
selective RF pulse design, Magn. Reson. Med. 32 (6) (1994) 778–784, http:
//dx.doi.org/10.1002/mrm.1910320614.

[53] R.G. Brazeal, B.E. Wilkinson, H.H. Hochmair, A rigorous observation model for 
the Risley prism-based Livox Mid-40 lidar sensor, Sensors 21 (14) (2021) 4722, 
http://dx.doi.org/10.3390/s21144722.

[54] L. Winiwarter, A.M.E. Pena, H. Weiser, K. Anders, J.M. Sánchez, M. Searle, B. 
Höfle, Virtual laser scanning with HELIOS++: A novel take on ray tracing-based 
simulation of topographic 3D laser scanning, Remote Sens. Environ. 269 (2022) 
112772, http://dx.doi.org/10.1016/j.rse.2021.112772.

[55] B.T. Phong, Illumination for computer generated pictures, in: Seminal Graphics: 
Pioneering Efforts that Shaped the Field, 1998, pp. 95–101, http://dx.doi.org/
10.1145/360825.360839.

[56] B. Jutzi, H. Gross, Normalization of lidar intensity data based on range and 
surface incidence angle, Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 38 
(2009) 213–218, http://dx.doi.org/10.24406/publica-fhg-362664.
243 
[57] H. Fan, H. Su, L.J. Guibas, A point set generation network for 3D object 
reconstruction from a single image, in: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, 2017, pp. 605–613, http://dx.doi.org/
10.1109/CVPR.2017.264.

[58] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, P. Abbeel, Domain 
randomization for transferring deep neural networks from simulation to the real 
world, in: 2017 IEEE/RSJ International Conference on Intelligent Robots and 
Systems, IROS, IEEE, 2017, pp. 23–30, http://dx.doi.org/10.1109/IROS.2017.
8202133.

[59] Y. Nakajima, T. Sasaki, N. Okada, T. Yamamoto, Development of LiDAR 
measurement simulator considering target surface reflection, in: Proceedings of 
the 8th European Conference on Space Debris, Darmstadt, Germany, 2021, pp. 
20–23.

[60] D. Kingma, J. Ba, Adam: A method for stochastic optimization, in: Interna-
tional Conference on Learning Representations, ICLR, 2015, http://dx.doi.org/
10.48550/arXiv.1412.6980.

[61] G. Furano, G. Meoni, A. Dunne, D. Moloney, V. Ferlet-Cavrois, A. Tavoularis, J. 
Byrne, L. Buckley, M. Psarakis, K.-O. Voss, et al., Towards the use of artificial 
intelligence on the edge in space systems: Challenges and opportunities, IEEE 
Aerosp. Electron. Syst. Mag. 35 (12) (2020) 44–56, http://dx.doi.org/10.1109/
MAES.2020.3008468.

[62] D. Lüdtke, T. Firchau, C.G. Cortes, A. Lund, A.M. Nepal, M.M. Elbarrawy, Z.H. 
Hammadeh, J.-G. Meß, P. Kenny, F. Brömer, et al., ScOSA on the way to orbit: 
Reconfigurable high-performance computing for spacecraft, in: 2023 IEEE Space 
Computing Conference, SCC, IEEE, 2023, pp. 34–44, http://dx.doi.org/10.1109/
SCC57168.2023.00015.

[63] B. Zhang, Y. Wu, B. Zhao, J. Chanussot, D. Hong, J. Yao, L. Gao, Progress 
and challenges in intelligent remote sensing satellite systems, IEEE J. Sel. Top. 
Appl. Earth Obs. Remote. Sens. 15 (2022) 1814–1822, http://dx.doi.org/10.
1109/JSTARS.2022.3148139.

[64] T. Herbst, O. Balagurin, T. Greiner, T. Kaiser, H. Kayal, A. Maurer, T. Schwarz, 
6U+ CubeSat SONATE2: Operation of an optical AI payload in low earth orbit, 
in: 75th International Astronautical Congress, IAC, 2024.

http://dx.doi.org/10.1007/978-3-031-51928-4_29
http://dx.doi.org/10.1117/12.2519178
http://dx.doi.org/10.1109/TCAD.2023.3274922
http://dx.doi.org/10.48550/arXiv.1811.03378
http://dx.doi.org/10.1109/CVPR.2019.00589
http://dx.doi.org/10.1109/CVPR.2019.00589
http://dx.doi.org/10.1109/CVPR.2019.00589
http://dx.doi.org/10.1002/mrm.1910320614
http://dx.doi.org/10.1002/mrm.1910320614
http://dx.doi.org/10.1002/mrm.1910320614
http://dx.doi.org/10.3390/s21144722
http://dx.doi.org/10.1016/j.rse.2021.112772
http://dx.doi.org/10.1145/360825.360839
http://dx.doi.org/10.1145/360825.360839
http://dx.doi.org/10.1145/360825.360839
http://dx.doi.org/10.24406/publica-fhg-362664
http://dx.doi.org/10.1109/CVPR.2017.264
http://dx.doi.org/10.1109/CVPR.2017.264
http://dx.doi.org/10.1109/CVPR.2017.264
http://dx.doi.org/10.1109/IROS.2017.8202133
http://dx.doi.org/10.1109/IROS.2017.8202133
http://dx.doi.org/10.1109/IROS.2017.8202133
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb59
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb59
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb59
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb59
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb59
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb59
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb59
http://dx.doi.org/10.48550/arXiv.1412.6980
http://dx.doi.org/10.48550/arXiv.1412.6980
http://dx.doi.org/10.48550/arXiv.1412.6980
http://dx.doi.org/10.1109/MAES.2020.3008468
http://dx.doi.org/10.1109/MAES.2020.3008468
http://dx.doi.org/10.1109/MAES.2020.3008468
http://dx.doi.org/10.1109/SCC57168.2023.00015
http://dx.doi.org/10.1109/SCC57168.2023.00015
http://dx.doi.org/10.1109/SCC57168.2023.00015
http://dx.doi.org/10.1109/JSTARS.2022.3148139
http://dx.doi.org/10.1109/JSTARS.2022.3148139
http://dx.doi.org/10.1109/JSTARS.2022.3148139
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb64
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb64
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb64
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb64
http://refhub.elsevier.com/S0094-5765(25)00163-8/sb64

	Deep learning on 3D point clouds for fast pose estimation during satellite rendezvous
	Introduction
	Related work
	Methods
	Pose initialization pipeline
	Point cloud pre-processing
	3D neural network backbone optimization
	Position estimation
	Attitude classification for a symmetrical target

	Datasets for domain gap bridging
	Synthetic training dataset
	Test dataset from the EPOS facility

	Training
	Pose refinement

	Results
	Computing hardware for runtime evaluation
	Pre-processing
	Base model selection
	Optimized PointNet++ model
	Results on real dataset

	Discussion
	Relevance of the different processing steps
	Applicability to onboard implementation

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References


