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a b s t r a c t

It is hard to imagine living in a building without electricity and a heating or cooling system these days.
Factories and data centers are equally dependent on a continuous functioning of these systems. As ben-
eficial as this development is for our daily life, the consequences of a failure are critical. Malfunctioning
power supplies or temperature regulation systems can cause the close-down of an entire factory or data
center. Heat and air conditioning losses in buildings lead to a large waste of the limited energy resources
and pollute the environment unnecessarily. To detect these flaws as quickly as possible and to prevent
the negative consequences constant monitoring of power lines and heat sources is necessary. To this
end, we propose a fully automatic system that creates 3D thermal models of indoor environments. The
proposed system consists of a mobile platform that is equipped with a 3D laser scanner, an RGB camera
and a thermal camera. A novel 3D exploration algorithm ensures efficient data collection that covers the
entire scene. The data from all sensors collected at different positions is joined into one common refer-
ence frame using calibration and scan matching. In the post-processing step a model is built and points of
interest are automatically detected. A viewer is presented that aids experts in analyzing the heat flow and
localizing and identifying heat leaks. Results are shown that demonstrate the functionality of the system.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Imagine a technology that automatically creates a full 3D ther-
mal model of an environment and detect temperature peaks in it
(cf. Fig. 1). Such a system would be a big step in monitoring and
inspection of existing buildings and technical assets as well as in
achieving energy efficiency in building construction. For example,
data centers and factories rely on correct functioning of their infra-
structure. Damaged pipes and cables or other parts endanger their
functionality, cause pauses in the work flow and may lead to harm-
ful fires. In many cases leaks and overheating could be detected in
their early stages by use of thermography thus preventing further
damage. Building construction has undergone major changes in
recent years. The importance of energy efficiency has attracted
notice. To meet the Passivhaus, the Zero-energy building, or even
the Energy-plus building standard modern building design makes
use of all available heat sources including electrical equipment or
even the body heat from people and animals inside the building.

While this leads to changes in the way buildings are designed it
also poses the question how existing buildings can be modified
to meet these standards and to eliminate heat and air conditioning
losses. According to the Action Plan for Energy Efficiency [13] of
the European Commission the largest and cost-effective energy
savings potential lies in residential (�27%) and commercial
(�30%) buildings. The system proposed in this article is meant to
aid in reaching these savings.

The current state of the art for analyzing temperature related
issues is thermal imaging. Fouad and Richter present a guideline
for thermography in the building industry in Germany [20]. To
detect thermal bridges of exterior building walls outdoor thermog-
raphy is commonly used. Thermal bridges lead to a loss of energy
and can cause humidity and mold growth. Only a few images are
necessary to capture the entire building but at the expenses of
the resolution. To detect flaws in the construction a difference of
15 K is necessary between indoor and outdoor temperature to
come to significant conclusions. It is desired that the weather con-
ditions remain stable over a longer period of time, making the
morning hours in the winter months ideal.

Keeping stable conditions is easier to achieve for indoor ther-
mography. The analysis of back-ventilated walls and roofs is only
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possible from indoors. Thermal bridges at exterior walls and inte-
rior walls connecting heated and unheated rooms, pillars that
interrupt the thermal insulation of a building, air leaks at windows
and doors and the moisture penetration at basement walls are the
common applications for indoor thermography, that focus on
energy efficiency in existing buildings. Other applications aim at
documenting and examining the run of heating pipes, detecting
blocked pipes and construction units in a building to eliminate
flaws, to make room for improvements and, in some cases, to
ensure safety. For new buildings or the energetic restoration of
existing buildings it has also become common to perform ther-
mography before, during and after the construction phase for qual-
ity management.

Monitoring and analysis of the data for a large building is
tedious. For indoor thermography the room should be prepared
at least six hours before the inspection to achieve best results. A
constant temperature is desired for this period. Furniture has to
be moved away from the walls to allow their inspection. The differ-
ence between indoor and outdoor temperature has to be at least
10 �C. During the inspection each room is examined with the ther-
mal camera. For each picture the inspector has to note the exact
position and orientation from where the picture was taken [19].
After the inspection the images have to be analyzed taking into
account the room temperature, the humidity, the material of the
wall and the angle from which objects are seen. For some applica-
tions, e.g., inspection during construction or renovation, it is also
necessary that the changes are documented over time, thus asking
for comparability between independently acquired datasets [20].

Thermal images document the precise temperatures without
any spatial dimensions. To identify a heat source and measure its
extent it is necessary that the expert analyzes the scene on-site
which is time-consuming and in cases even dangerous. For applica-
tions that require repeated thermography over time, comparison of
the 2D data is only possible to some extent. Successfully modifying
a building with respect to thermal issues involves extensive plan-
ning. This planning would greatly be improved by the existence of
a geometrically correct thermal model. We propose a robotic sys-
tem that creates a full 3D model of the environment with color
and thermal information (cf. Fig. 1) enabling an expert to fully

analyze the recorded scene offline on a computer. Furthermore,
regions of interest, e.g., regions with temperature peaks or drastic
changes in temperature, are automatically detected and pointed
out to the user, increasing the efficiency of the analysis. The spatial
accuracy of the model enables one to measure the extent of the
area in question and its immediate localization in the building.

Our system creates a 3D thermal model of the area autono-
mously. The full 3D model makes it easy to identify the location
of each picture as it is shown within its surroundings and its posi-
tion is known. This is especially important since indoor photos cap-
ture only a small part of the scene. Automatic registration, as
known from robotics, enables the merging of two models acquired
at different times. According to Fouad and Richter [20] thermogra-
phy can only be an auxiliary device. The analysis of the scene is
only possible through expertise and experience. By automatically
pointing out regions of interest in the data our system helps to find
damages quickly during the analysis.

This article presents our approach to fully autonomous 3D ther-
mal modeling of buildings. We combine thermal imaging with the
technology of terrestrial laser scanning. The system has to fulfill
three main tasks. First, the data needs to be acquired and regis-
tered, i.e., all data from different sensors and positions needs to
be put into one common reference frame. Second, the positions
where sensor data is collected need to be planned and driven to
autonomously. Third, the data has to be analyzed and presented
to a user. Experiments evaluate the performance of the system
and results show exemplarily a complete 3D model of an office
environment collected by the system. We extend our initial work
[8] by several components. The system was completed with a
photo camera that allows better identification of objects in the
resulting model. Errors in the calibration procedure were reduced
with a novel method and the automatic detection of interesting
temperature distributions was implemented in the post-process-
ing step. The main contribution is the extension of the exploration
strategy to consider the full 3D structure of the environment.
Instead of exploring solely based on the floor plan of the building,
the system tries to find positions from where the entire 3D space
can be seen, reducing the amount of occlusions in the captured
data.

Fig. 1. Laser scan with reflectance (left), thermal (middle) and color (right) information. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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2. Background and state of the art

To access the energy efficiency of houses thermal cameras are
commonly used. These cameras measure temperatures precisely,
but return only 2D images of the environment and therefore the
loss of energy can only be roughly quantified. Images are projec-
tions to 2D. From a sequence of images it is in principle possible
to perform a 3D reconstruction. These approaches are called bun-
dle adjustment or structure frommotion (SFM). Bundle adjustment
uses image features to calculate 3D positions of them. SFM adds
automatic data association and therefore solves the simultaneous
localization and mapping (SLAM) problem, i.e., the problem of
recovering the 3D structure of the environment and the sensor
poses (position and orientation). Since reliable solutions to image
based 3D reconstruction from thermal images alone have not been
presented yet, a second sensor has to be used to create the 3D
model. Instead of using a co-calibrated system of a thermal camera
and an RGB camera we use the emerging technology of terrestrial
laser scanning.

2.1. Autonomous data acquisition and mapping

Laser scanning methods are well established in the surveying
community and in robotics. Terrestrial 3D laser scanning systems
yield precise 3D point clouds. Scanning from different poses
enables one to digitize a complete indoor environment and to
resolve occlusions. Registration algorithms from the geodesy and
robotics community are available to automatically align scan views
from different poses.

Related work in inspection robotics includes human detection
with thermal cameras using temperature signatures [31]. Högner
and Stilla present a modified van as surveying vehicle for acquir-
ing thermal images in urban environments [24]. However, the
focus is on outdoor environments and image-based techniques
like SFM. Prakash et al. present stereo imaging using thermal
cameras, but focus on small scale applications [44]. Iwaszczuk
et al. suggest an approach to map terrestrial and airborne infrared
images onto existing building models [25]. The model is textured
by extracting polygonal parts from the image and mapping those
onto the model using standardized masked correlation. Only little
work has been done to combine 3D scanners and thermal cam-
eras. Carbelles et al. present a methodology to exhaustively
record data related to a World Heritage Monument using terres-
trial laser scanning, close range photogrammetry and thermal
imagery [10]. They use four different sensors for data acquisition:
a reflectorless total station, a terrestrial laser range scanning sen-
sor, a digital photo camera and a thermal camera. With a total of
eight natural control points a total station they relate the geom-
etry between different sensors. Pelagottia et al. present a first
automatic approach for multispectral texture mapping [43]. Their
method is based on the extraction of a depth map in the form of
an image from the model geometry, whose pixels establish exact
correspondences with the vertices of the 3D model. The
registration with the chosen texture is performed based on the
maximization of mutual information.

3D environment mapping using 3D scanners on mobile robots
are subject to research [51,36]. Building thermal 3D models of
environments has received some attention recently. Ham and Gol-
parvar-Fard model and evaluate thermal models and the energy
performance of buildings [23]. For this purpose they co-calibrate
a thermal camera with an RGB camera. The color images are used
to create a 3D model using SFM. SFM approaches are prone to fail-
ure in regions with few features or repeating structures, the den-
sity of the resulting model is low and the scale is unknown.
Vidas et al. [56,48] focus on co-calibrating a thermal camera and
a Microsoft Kinect. They developed a hand-held system that

creates a 3D model of the environment based on registering the
Kinect data. This approach yields a dense model but is limited to
the accuracy of the Kinect camera and requires a human operator.
Laser scanning has the advantage that the resulting dense model
has a high geometric accuracy and is not as sensitive to repeating
structures and feature-less areas as SFM approaches are. Gonzáles-
Aguilera et al. [21] combine the technology of laser scanners and
thermal cameras to create models of building exteriors. They
extract features from both the thermal images and the projections
of the point cloud from the laser scanner and match these to reg-
ister the data. In indoor environments this approach is prone to
errors as only small parts will be visible due to the small opening
angles of thermal cameras. In combination with the low resolution
of typical thermal cameras images tend to have too few features for
a reliable registration. To the best of our knowledge, a fully auton-
omous system for modeling using 3D scanning and thermal imag-
ing has not been done yet.

2.2. Sensor placement planning

Sensor placement planning is needed for the goal directed
acquisition of 3D data. The task of a sensor placement planning
algorithm is to find a set of sensor configurations needed for
obtaining a detailed environment model. Since a typical 3D laser
scan takes 3–5 min for one position, depending on the resolution,
it is desirable to minimize the number of scanning positions. This
leads to an optimization problem similar to the Art Gallery Prob-
lem (AGP) (where to place guards such that the entire gallery is
guarded). The AGP problem is NP hard and is usually solved by
heuristics that perform well in practice [22]. These methods are
categorized as model-based sensor placement planning (a priori
model of the environment is known) and non-model-based meth-
ods. The latter are applied for exploration tasks in which the
robotic system has to navigate autonomously in an unknown envi-
ronment and build its own model. The planner must determine the
next-best-view (NBV) based on the information collected from pre-
vious scans. Most exploration strategies push the robot onto the
border between explored and unexplored regions [17,54]. The
majority of exploration algorithms is not reliable when applied
under real conditions due to the sensitivity to uncertainty of mea-
surements, localization, and map building. A small divergence in
localization at the pre-computed NBV point can lead to many
unnecessary movements. Moorehead et al. include the uncertainty
of the robot pose into the exploration strategies [34]. Recently,
numerous sensor placement planning algorithms have been devel-
oped for the reconstruction of 3D environment models. Most
methods take 3D scans based on a 2D exploration strategy [51].
For creating a full 3D thermal model of a building it is essential
to consider the 3D geometry of the environment to ensure that
all parts of the building are mapped. Blaer and Allen propose a
3D NBV method which plans additional viewing locations based
on a voxel-based occupancy procedure for detecting holes in the
model [6]. Low and Lastra present a full non-model-based 3D
NBV method based on an exhaustive hierarchical 3D view metric
evaluation [29]. However, the computational complexity is still
the major challenge in designing practical 3D NBV solutions.

2.3. Surface reconstruction and model building

The process of generating a surface from a set of 3D points is
called surface reconstruction. The last challenging task in building
a 3D thermal model of an indoor environment is the reconstruction
of the 3D mesh with the temperature scalar field mapped onto it.
Methods to reconstruct the 3D surface from a point cloud can be
divided into two distinct groups, namely face-based reconstruction
(triangulation) and iso-surface reconstruction (meshing). The most
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common triangulation methods use are the Voronoi [2] and 3D
Delaunay [3] algorithms. Su and Scot Drysdale present several
implementations of the latter algorithm analyzing the
performance [50]. These algorithms require closed and organized
geometry, i.e., that the model has to be fully connected and with-
out major outliers in the point cloud. The algorithms tend to close
the structure of the model, which is good for the digitization of
cultural heritage sites as presented in [12,1] but not sufficient for
environment reconstruction in terms of time and memory
efficiency as well as overall output quality. Iso-surface reconstruc-
tion, unlike the triangulation which reconstructs part-by-part, gen-
erates iso-surfaces, meaning that the model is generated by
connecting the points with constant values, i.e., distance, pressure,
temperature, etc. The most popular algorithm for iso-surface
reconstruction is the Marching Cubes Algorithm (MCA) developed
in [28]. This algorithm starts with dividing the input space into
cubes. After selecting a random cube and its eight neighbors, the
algorithm determines the polygonal part of the iso-surface passing
through the cube.

There are also modifications to the standard MCA presented in
[11,35] that deal with ‘‘ripples’’ caused by topological inconsisten-
cies of the model (or point cloud acquisition). Since the space is
divided equally, it is suitable for the purpose of 3D thermal model
reconstruction of indoor environments, as it allows for thermal
inspection of the space segments. In order to create iso-surfaces
realistically, it is important to calculate precise iso-values. This is
typically done by ball pivoting [4], Poisson surface reconstruction
[27] and butterfly subdivision of surfaces [33]. These methods
require very high resolution point clouds resulting in large data
sets (millions of points) and are generally very slow.

3. Advanced mutual calibration between the 3D sensor and the
thermal camera

3.1. Experimental setup and data acquisition

The setup for simultaneous acquisition of 3D laser scan data and
thermal images is the robot Irma3D (see Fig. 2). Irma3D is built of a
Volksbot RT-3 chassis. Its main sensor is a Riegl VZ-400 laser scan-
ner from terrestrial laser scanning. A thermal camera is mounted
on top of the scanner. The optris PI160 thermal camera has an
image resolution of 160� 120 pixels and a thermal resolution of
0.1 �C in a spectral range of 7.5–13 lm. It acquires images at a
frame rate of 120 Hz and with an accuracy of 2 �C with a field of
view of approximately 40� � 64�. For acquisition of color data a
Logitech QuickCam Pro 9000 webcam is used featuring a video res-
olution of 1600� 1200 pixels. The laser scanner acquires data with
a field of view of 360� � 100�. To achieve the full horizontal field of

view the scanner head rotates around the vertical scanner axis
when acquiring the data. We take advantage of this feature when
acquiring image data. Since the cameras are mounted on top of
the scanner, they are also rotated. We acquire 10 images per cam-
era during one scanning process to cover the full 360�. To avoid
blurring and the problems that come from the necessity of syn-
chronization we refrain from taking the images while scanning.
Instead we perform a full 360� rotation for scanning and rotate
back with stops at the image positions. A further advantage of this
strategy is that the cameras can be connected with regular USB
cables because the cable is unwound after each rotation. For obsta-
cle avoidance a SICK LMS100 2D laser scanner is installed at the
front of the robot.

3.2. Data processing procedure

After acquiring the 3D data it has to be merged with the image
information. This processing consists of five steps that will be
explained in this section.

3.2.1. Intrinsic calibration of thermal and optical camera
Each sensor perceives the world in its own local coordinate

system. To join the perceived information we need the specific
parameters of these coordinate systems. Each camera has unique
parameters that define how a point ðX;Y; ZÞ in world coordinates
is projected onto the image plane. These parameters are calculated
through a process known as geometric camera calibration. Given
the focal length ðfx; fyÞ of the camera and the camera center
ðcx; cyÞ image coordinates ðx; yÞ are calculated as:

x

y

1

2
64

3
75 ¼

fx 0 cx
0 fy cy
0 0 1

2
64

3
75

X=Z

Y=Z

1

2
64

3
75: ð1Þ

Given the radial distortion coefficients k1; k2; k3 and the tangential
distortion coefficients p1;p2 and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
the corrected image

points ðxc; ycÞ are calculated as

xc
yc

� �
¼ xð1þ k1r2 þ k2r4 þ k3r6Þ þ 2p1yþ p2ðr2 þ 2x2Þ

yð1þ k1r2 þ k2r4 þ k3r6Þ þ p1ðr2 þ 2y2Þ þ 2p2x

 !
ð2Þ

To determine the parameters of optical cameras chessboard
patterns are commonly used because the corners are reliably
detectable in the images. A number of images showing a chess-
board pattern with known number and size of squares are
recorded. In each image the internal corners of the pattern are
detected. The known distances between the corner points in world
coordinates allow to formulate Eqs. (1) and (2) as a non-linear least
squares problem and to solve for the calibration parameters [9].

Fig. 2. The robot Irma3D (left). The laser scanner with the thermal camera and the webcam mounted on top (right).
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For low resolution thermal cameras a chessboard pattern is error-
prone even after heating it with an infrared lamp. For pixels that
cover the edge of the squares the temperature is averaged over the
black and white parts thus blurring the edges. Luhmann et al. [30]
have explored the calibration procedure using different types of
thermal cameras. Generally an object with a unique pattern of dis-
tinct targets is used which eases labeling and increases accuracy of
the calibration process. The points are actively or passively heated.
In case of passive heating different materials cause the pattern to
show up. Luhmann et al. developed a pattern consisting of targets
of self-adhesive foil on an aluminum plate. While the targets emit
radiation based to their own temperature the reflective metal sur-
face reflects the cold temperature of space thus leading to a strong
contrast. Unfortunately this concept is not applicable for the co-
calibration of the thermal camera and a laser scanner as it is very dif-
ficult to position the board in a way that the sky is reflected without
occlusions and the board is completely visible in the laser scan.
Instead we suggest a pattern with clearly defined heat sources such
as small light bulbs as it shows up nicely in thermal images.

Fig. 2 shows our pattern in the background. It is composed of 30
tiny 12 V lamps, each with a glass-bulb diameter of 4 mm. The
overall size of the board is 500 mm (width) � 570 mm (height).
Identifying the heat sources in the image enables us to perform
intrinsic calibration in the same way as for optical cameras. The
approach is similar to the approach used by Ham and Golparvar-
Fard [23]. The main difference comes from the ability of the optris
PI160 thermal camera to output the raw temperature information
for each pixel rather than providing a color coded image only.
While the color settings have to be carefully tuned to allow even
for manual detection of the light bulbs, the raw temperature infor-
mation can easily be used to detect the calibration pattern auto-
matically in the data. A thresholding procedure is applied to
create a binary image showing regions of high temperature. A fur-
ther thresholding step discards effectively all regions that are too
big or too small. If the remaining number of regions is equal to
the number of light bulbs in the pattern the regions are sorted
according to the pattern to allow for easy determination of corre-
spondences. To calculate the exact center of the features, the mean
is calculated by weighing all the pixels in the region by their tem-
perature values.

3.2.2. Extrinsic calibration – cameras and laser scanner
After calculating the internal parameters of the cameras we

need to align the camera images with the scanner coordinate sys-
tem, i.e., extrinsic calibration. The three rotation and three transla-
tion parameters are known as the extrinsic camera parameters and
define the geometric relation between camera and laser scanner.
Once all the points are in the camera coordinate system the projec-
tion to the image can be defined up to a factor s using Eq. (3) [9]:
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Suppose there are n images of the calibration pattern andm pla-
nar points on the pattern considering the distortions as indepen-
dent and identically distributed noise, then the maximum
likelihood estimate of the transformation between the scanner
and camera coordinate system is obtained by minimizing the
reprojection error

Xn
i¼1

Xm
j¼1

jjpij � p̂ðA;D;Ri; ti;PjÞjj2 ð4Þ

where Ri is the rotation matrix and ti the translation vector of the
ith image. A is the intrinsic matrix and D contains the distortion

parameters as calculated in the intrinsic camera calibration.
p̂ðA;D;Ri; ti;PjÞ defines the projection of point Pj in image i accord-
ing to Eq. (3) and (2), and pij describes the pixel coordinates of the
point in the image. This approach assumes that we have a number
of points that are identifiable in both the laser scan and the image.
For this purpose we attach the calibration pattern onto a board. For
the optical camera this is a printed chessboard pattern and for the
thermal camera light bulbs are arranged in a regular grid pattern.
The calibration patterns are depicted in the background of Fig. 2.
The positions of the points in these patterns are known. Algorithm
1 detects the points in a laser scan.

Algorithm 1. Calibration pattern detection in a laser scan.

Require: point cloud, specification of calibration pattern
1: discard points outside the area of the expected board
2: find the most prominent plane using RANSAC (RANdom

SAmple Consensus) [18]
3: project a generated plane model into the center of the

detected plane
4: use ICP (Iterative Closest Point) algorithm [5] to fit the

plane model to the data points
5: if each point from the plane model has a corresponding

point in the point cloud then
6: return position of the light bulbs according to ICP result
7: end if

To facilitate the detection of the calibration board in the point
cloud data and to enable the easy positioning at different locations,
the board is mounted on a tripod. This way the board hangs almost
freely in the air. After removing the floor, the ceiling and most
objects behind the board with a simple thresholding technique,
the board becomes the most prominent plane in the data and
can be detected using the RANSAC algorithm [18]. A plane model
is generated by subsampling points on a plane with the dimensions
of the calibration board. This model is transformed towards the
center of the detected plane facing the same direction as the plane.
To fit the model perfectly to the data the ICP algorithm [5] is used,
thus giving the exact pose (position and orientation) of the calibra-
tion board. Since the positions of the light bulbs or chessboard cor-
ners on the board are known, their exact positions in 3D space can
be calculated from the pose of the board.

3.2.3. 3D to 2D projection and color mapping
During the data acquisition phase laser scans and images are

acquired simultaneously. After determining the relations between
scanner and cameras in the calibration step this relation is used
directly to assign temperature and color values to the point cloud.

3.2.4. Projection/occlusion/resolution errors
Due to the different fields of view, the sensors see different

parts of the world. An area that is visible for one sensor might be
occluded for the other sensor. When mapping the thermal infor-
mation to the point cloud this causes wrong correspondences
and therefore faulty assigned values. This impact is fortified by
the low resolution of the thermal camera. With only 120 by 160
pixels per image each pixel corresponds to many 3D points seen
by the laser scanner leading to errors at edges. Consequently small
calibration inaccuracies have a large impact on the results. To solve
this problem initially a fast procedure was implemented. All points
that were projected onto one pixel and its neighboring pixels were
clustered depending on their distance to the scanner. Assuming
that most points fall onto the correct pixel a heuristic based on dis-
tance to the 3D scanner and size of the cluster determines which
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points are considered and enhanced with thermal information [7].
The method works sufficiently for the low resolution of the ther-
mal camera but fails for higher resolution cameras. Therefore we
now perform a ray tracing procedure that checks whether a point
in the point cloud can be seen by the camera. We connect the point
P and the camera position C with a straight line PC and select all
points with a distance less than a threshold t to PC, i.e., all points
Oi for which

jP� Oij2 � jðP� OiÞ � ðP� CÞj2
jP� Cj2

< t2 ð5Þ

holds true. If any point Oi lies between P and C;P is not visible from
the camera and is therefore discarded. The threshold t accounts for
small inaccuracies in the calibration and the low resolution of the
camera simultaneously. To speed up the checking procedure the
points are organized in a kD-tree data structure. With a quick check
those voxels are immediately discarded that are not traversed by
the ray and therefore all the points within are ignored.

3.2.5. Scan registration
Laser scans acquired at different positions are registered into

one common coordinate system using 6D SLAM from 3DTK – The
3D Toolkit [38]. It calculates a high presicision estimate of the
scanner pose with 6 degrees of freedom. The scan registration algo-
rithm implemented in 3DTK is described in detail in [37].

4. Sensor placement planning

The sensor placement planning module enables the full auton-
omous exploration in order to acquire a dense model of the envi-
ronment. An algorithm based on the 2D horizontal plane in the
point cloud at a specific height can be used efficiently for many
tasks. However, this is not sufficient for creating a complete 3D
model. Consider an empty room without obstacles. In a 2D sce-
nario a robot with a horizontal field of view of 360�will finish after
one scanning position because it perceives all the walls of the room
from any position within the room. Constraints in the vertical field
of view of the scanner, that cause missing data at the floor and the
ceiling or parts of the walls outside of the considered height level,
will simply be ignored. This is even more eminent in complex
shaped rooms or when obstacles, like chairs, tables, wardrobes,
etc., are present in the room and occlude other objects at varying
height. Consequently, if the aim is to have a complete 3D model,
a method that searches for unexplored areas in 3D is needed.

Implementing and applying a complete 3D sensor placement
planning algorithm in a large indoor environment needs significant
memory space for storing the occupancy information of the whole
environment. One would also need to store the exploration status
of each part of the environment. All together this stretches the
memory demands a lot. Additionally, the computational effort
needed to process all the stored information will be high and
increases the exploration time. The approach proposed in this
paper combines 2D and 3D planning to enable tracking of the three
dimensional information of the environment with lower computa-
tion and memory demands. The block scheme of the overall sensor
placement planning algorithm is depicted in Fig. 3. The main idea
relies on a typical indoor environment structure, composed of
enclosed spaces like rooms, halls, corridors and so on. Starting with
exploration based on only 2D measurements and following the
next best view (NBV) positions obtained from 2D planning, the
robot detects an enclosed space, i.e. a room, and models it. At that
moment the procedure of searching for the NBV position switches
from 2D to 3D NBV planning, which takes into account the whole
3D environment information captured by the 3D laser scanner.
The NBV planning algorithm based on 3D information explores

only the detected room as a small unit of the large environment,
thus needing to store only all the 3D information of this small part.
Therefore, a combination of 2D and 3D information based explora-
tion keeps the computational and memory requirements low,
because only a small part of 3D model is used while exploring.
When the detected room is explored, the 3D NBV planning algo-
rithm terminates and exploration continues again with the 2D
NBV planning until a new unexplored enclosed space is detected
and the algorithm switches back to 3D NBV planning. The algo-
rithm terminates when the 2D NBV algorithm detects that the
whole environment is explored, i.e. when there is not any so-called
jump edge left in the memory. A jump edge is an edge that sepa-
rates explored and unexplored regions of the environment. The
next sections describes the three main modules of the algorithm:
2D NBV planning, room detection and 3D NBV planning.

4.1. 2D NBV planning algorithm

The 2D NBV planning algorithm is based on our previous
approach presented in [14]. The algorithm does not require any
information about the environment beforehand. Initiated with a
blank map it starts to explore the environment based on the first
scan.

The inputs are range values uniformly distributed on the 360�

field of view. The ranges are extracted from the 3D point cloud
so that all range data lies in the plane parallel to the floor plane.
To ensure that the robot does not hit any obstacles, a slice covering
the entire height of the robot is used to create the map, i.e., all val-
ues that are between approximately 30 and 70 cm above the
ground are used to create a 2D floor plan. The relatively large dis-
tance to the floor was chosen to account for small inaccuracies in
the leveling of the robot.

Assuming that the environment model is initially unknown it is
incrementally built after each scan. The model is hierarchical with
three abstraction levels. At the lowest level the grid map is used to
store the static and dynamic obstacle information needed for path
planning and obstacle avoidance. The next abstraction level con-
tains the polygonal representation of the environment which
stores environment edges, such as walls and other obstacles, which
have been extracted from the range data and jump edges – edges
that separate explored and unexplored regions of the environment.
The most abstract level contains scanning position candidates
which are considered for finding the NBV scanning position, i.e.,
the next goal position for the path planning module. We assume
a setup where the robot localization problem is solved. The GMAP-
PING module under ROS [52] is used in our experiments. While
exploring, the robot has to navigate between scanning positions
in an unknown environment. We use a motion planning algorithm
based on the D⁄ algorithm and the Dynamic Window obstacle
avoidance algorithm described in [47].

The 2D NBV planning algorithm is composed of three consecu-
tive steps, which are executed at each scanning position: (1) vec-
torization – extracting lines from range data, (2) creation of the
exploration polygon EP – building the most recent model of the
environment, and (3) selection of the NBV sensor position – choos-
ing the next goal for the path planning module. These three steps
are explained in the following.

4.1.1. Vectorization
The main goal of the vectorization step is to obtain line seg-

ments from the input range data extracted from the 3D scan using
the least squares method. First, the Progressive Probabilistic Hough
Transform (PPHT) from the OpenCV library [26] is applied to the
range data to calculate an initial estimation of the line segments,
which are then used to group all range data around the calculated
line segments according to their distance Dqk from the lines.

430 D. Borrmann et al. / Advanced Engineering Informatics 28 (2014) 425–440



Second, more precise line parameters are calculated by a least
squares line fitting algorithm.

4.1.2. Creation of the exploration polygon
A polygonal representation of the environment is used for

selecting the NBV position, for creating the gridmap, and for path
planning. The calculated line segments from the vectorization step
form the measurement polygon as follows. The ending points of
adjacent detected lines are connected with jump edges and define
the polygon Pi at the ith scanning position pi. The result is a poly-
gon Pi that is composed of real line segments and artificial edges,
i.e., jump edges, between them. However, some jump edges from
the new scan might fall into the already explored area from previ-
ous scans. To discard those jump edges we use the union of the
new polygon Pi (from the last scan) and the old exploration poly-
gon EPi�1 (from previous scans) as a representation of the currently
explored area and we discard jump edges within the union of the
polygons (from GPC library [55]. In each step i; EPi is updated as
EPi ¼ EPi�1

S
Pi. The union of two polygons keeps only those edges

from both polygons that are most distant from the point of view of
the robot, and thus ensures that new jump edges are not created
within previously explored regions. Jump edges that are longer
than the preset value Dr are considered for the selection of the next
scanning position. The minimal length of the jump edge Dr is
chosen in accordance with the robot dimensions and ensures that
small jump edges are discarded, i.e., those the robot cannot pass
through. If the non-empty extended polygon EPi contains no reach-
able jump edge, it is considered as the reliable polygonal descrip-
tion and the exploration process stops.

4.1.3. Selection of the next best view scanning position
We use a simple heuristic criterion for selecting the NBV posi-

tion similar to [17]. By taking a scan directly in front of the jump
edge it is easy to imagine that we will gain a larger amount of
new information than by scanning further away from the jump
edge inside of the explored area. Therefore, one candidate scanning
position is assigned to each jump edge. It is an obstacle free posi-
tion near the mid point of the jump edge at distance d from the
jump edge. d is chosen to be equal to the dimensions of the robot
to ensure safety in case the jump edge is close to an obstacle that
has not yet been detected. Additionally, d must be larger than the
minimal sensor range. The next sensor position is chosen by

maximization of a criterion that estimates the amount of unex-
plored regions seen from each potential position.

Fig. 4 shows two candidate positions p1 and p2 with jump edges
denoted by red lines. The current scanning position is at R. The
measure of the size of the unexplored region that is possibly seen
from the k-th candidate position is calculated from the angles in
the triangles that are defined by the k-th candidate position and
all jump edges. To maximize the information gain all jump edges
have to be considered that are visible from the candidate position.
In Fig. 4 both jump edges are visible from p1. Considering also the
length dj of the shortest path from the path planning module
between the current robot position R and the j-th candidate posi-
tion the selection criterion is as follows:

Ij ¼ k1
1
dj

þ k2
XN
i¼1

aij: ð6Þ

N is the number of candidate positions and aij is the angle in the
triangle defined by the j-th candidate position and the i-th jump
edge. Two parameters k1 and k2 are used as weighting parameters
of angle and distance estimations, respectively. Numerous
experiments in simulation and with the real robot showed good
performance with k1 set to the maximal range distance and k2 set
to 1=N which averages over all angles.

4.2. Room detection

The crucial step of the proposed sensor placement planning
algorithm is the room detection algorithm, which is used to switch
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Fig. 3. Block scheme of the sensor placement planning algorithm.
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Fig. 4. Selection criterion based on angles of visibility.
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between the 2D and 3D NBV planning algorithms. After each scan
taken at the position chosen by the 2D NBV planning algorithm, the
room detection algorithm searches for the enclosed space (room)
based on the current information captured from previous scans.
If the room is detected, the 2D NBV algorithm is paused and the
3D NBV algorithm starts.

In the 2D exploration phase a 2D cut of the environment is used
that represents the area that is traversable by the robot. For room
detection such a slice close to the ground is not suitable because
objects occlude the room boundaries and windows and doors
interrupt them. The main idea for room detection is grounded on
the detection of a closed space in the 2D polygonal line map of
the environment obtained by vectorization of range data at the
most suitable height level above the floor. The most suitable height
level for room detection is an obstacle free 2D plane at the height
where the room boarders and walls are easily detected, i.e., a plane
close to the ceiling. We choose it manually before the exploration
starts. From the current 2D line map (taken at a suitable height
level) of the workspace the room detection algorithm tries to
detect a room. Let A be the lines corresponding to real environment
edges obtained from the last scan. The algorithm searches for a
room starting from the first line within the set A and tries to close
the loop through other lines in the entire map. The process

proceeds by finding the line closest to the current line in each step.
When the loop is closed, i.e., when the nearest line is the starting
line again, the room is detected. The nearest line search refers to
the nearest ending point of a line in the vicinity of the current line.
The vicinity area around the current line is defined with the radius
parameter equal to the expected doorway width. With that, we
ignore holes caused by doorways and windows inside the room.
If there is no room detected starting from the first line in set A,
the detection process starts from the second line in A. The order
of the lines in A is not relevant. In case no closed polygon can be
found with any line from set A as starting line, the room could
not be detected in that step and exploration continues with the
2D NBV algorithm.

4.3. 3D NBV planning algorithm

The room detection algorithm provides the room parameters
including the boundary area and the coordinates of the room.
When the room is detected at least one scan inside the room is
available since the robot has already entered the detected room
and taken at least one scan inside which has been used for the
room detection. From the available scans inside the room the ini-
tial 3D model of the room is built and the exploration continues

Fig. 5. Pictures of the environment taken by Irma3D during the experiments. The map with the scanning positions is given in Fig. 6. (a) and (b) room 1 seen from scanning
position 2; (c) the corridor seen from position 6 facing towards position 4; (d) looking into room 3 from position 6; the small corridor connecting room 2 and 3 seen from
position 11; and (e) room 2 seen from position 10.
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by using the 3D model based NBV planning algorithm. The main
idea of the 3D NBV planning algorithm is described hereafter.

To obtain NBV positions the 3D model of the detected room
needs to hold information of the explored and unexplored area
inside the room. We use a voxel based 3D model where each voxel
has one of the following labels: occupied if the volume within the
voxel is occupied, unseen if the occupied status of the voxel is
unknown or empty if the voxel is empty with no obstacles inside.
The dimensions of the room define the number of voxels that
should be used to cover the whole area of the room, i.e., memory
allocation for the detected room. The shape of the enclosed space
can be arbitrary. A cuboid 3D voxel model that encloses the entire
detected room is chosen. The voxel model has to be large enough to
enclose the largest room expected in the environment. Although
there could be voxels in the cuboid model which are not part of
the room, they are not considered during NBV position planning.

Once the room is detected, its voxel based 3D map is initialized
with all voxels set to unseen, since we do not have any information
on the environment. The stored scans that were taken inside the
detected room are used to update its initial voxel based 3D model.
This is performed by using the ray tracing algorithm which traces a
ray from the position where the scan was taken to each data point
in the scan. Each voxel that is crossed by the ray is marked as empty
and the voxel containing the data point is marked as occupied. The
potential NBV position candidates are all voxels at the height of the
laser scanner with the status empty. Position candidates that are
not reachable for the robot are then removed from the list. The
aim is to choose the candidate scanning position from where the
most unseen voxels could be seen. For each candidate scanning
position we count the number of unseen voxels. A ray is traced
from the candidate scanning position to each unseen voxel and, if
all crossed voxels are empty, the counter is incremented. Since con-
sidering every unseen voxel is unnecessarily time consuming only
unseen voxels with at least one empty neighbor are taken into
account [6]. In that way the number of voxels that need to be

tested is decreased and voxels outside the room boundaries are
not considered. The approach is similar to the jump edges in 2D
in the way that unseen voxels that are taken into account actually
corresponds to jump planes which divide explored and unexplored
regions. Constraints in the field of view and range properties that
are limits introduced by the sensors are considered by checking
the range and the angle between the candidate scanning position
and the unseen voxels. If the constraints are not satisfied, the
unseen voxel is not counted. After finding a location that maxi-
mizes the number of unseen voxels, i.e., the NBV position, the robot
drives to it, takes the 3D scan, and the whole procedure is repeated.
The algorithm stops when the number of unseen voxels that can be
seen from the best candidate position is below some predefined
threshold Vmin and the room is considered explored.

5. Planning results

Experiments were carried out in a research building (Fig. 5) at
Jacobs University Bremen, Germany with the robot Irma3D
(Fig. 2). The aim was to build a complete 3D model of the environ-
ment based on 3D scans with thermal information attached. Each
scan took 3 min and 15 s. The laser scanner is constrained by a ver-
tical field of view of 100� and the thermal camera with a vertical
opening angle of 60�, respectively. Since the laser scanner field of
view exceeds that of the thermal camera, the constraints of the
algorithm are set to consider the field of view of the camera. The
voxel volume used in the experiment was set to 0.008 m3

(0.2 m � 0.2 m � 0.2 m). For creating the 2D map a slice of the
3D scan was taken at a height between approximately 30 cm and
70 cm above the ground to make sure the robot hits no obstacles
at any height. The room detection height level was set to 2.5 m
to avoid difficulties with windows and doors. Figs. 6–8 present
the results of an experiment illustrating the behavior of the pro-
posed sensor placement planning algorithm.

Fig. 6. Robot path and scanning positions during exploration.
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Fig. 6 shows the floor plan of the explored environment which
consists of three rooms and a corridor. The scanning positions
chosen by the proposed sensor placement scanning algorithm are
ordered from the start position (position 1) to the end position

(position 13) and marked with the robot footprints. Green foot-
prints refer to scanning positions generated by the 2D algorithms
and red footprints by the 3D NBV algorithm, respectively. Some
photos illustrating the environment are given in Fig. 5. The photos
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(a) Exploration polygon after scan 3 (b) Exploration polygon after scan 6

(c) Exploration polygon after scan 9 (d) Exploration polygon after scan 13

Fig. 7. Important exploration polygons during the experiment (jump edges are in red color and 2D NBV scanning positions marked with cross characters in red circles). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. 3D voxel based models of room 1. occupied voxels are colored red, potential position voxels (PP) are colored blue, unseen voxels are colored green. White voxels are
unseen voxels that can be seen from at least one PP position in the workspace. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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are excerpts from the data that the robot Irma3D acquired during
the experiment. The robot started from position 1 in room 1 and
took the initial scan. The first scan was sufficient for the room
detection algorithm to detect room 1. When the room was
detected, the jump edges inside room 1 were discarded, leaving
only the jump edges detected outside of room 1 for continuing
with the 2D NBV planning algorithm after exploring room 1. The
initial 3D voxel model of the room was built and the 3D NBV
planning algorithm was switched on. Then the 3D NBV planning
algorithm chose position 2, took the scan there and updated the
3D model of room 1. Since the number of unseen voxels was larger
than the threshold (Vmin = 15 voxels) the 3D NBV algorithm contin-
ued with the exploration of room 1 and chose scanning position 3.
After the third scan, the 3D model of room 1 was of the desired
accuracy and the exploration was continued with the 2D NBV algo-
rithm, which moved the robot to position 4 in the corridor, i.e. in
front of one of the two available jump edges (see Fig. 7a). The 2D
NBV algorithm chose two additional scanning positions in the cor-
ridor (positions 5 and 6). The reason for the jump edge at position 5
is a range constraint of 8 m on the laser data in 2D causing part of
the corridor not to be seen in the 2D laser data from position 4. Fur-
ther away from the robot the points are very sparse making line
extraction difficult. After the corridor, the robot moved to position
7 at the entrance of room 3, i.e. to the edge with the lowest value of
the criterion (Fig. 7b) without exploring the corridor with the 3D
NBV algorithm. The corridor was not considered as a room since
it was closed on both sides with glass doors as can be seen in
Fig. 5(c). At the room detection height level of 2.5 m the glass doors
were not visible in the laser scan.

Due to the lack of clutter in the corridor three scanning posi-
tions were sufficient to satisfy the criteria of the 2D NBV algorithm.
After scan 8 room 2 was detected and fully explored with only one
additional position from the 3D NBV algorithm. Afterwards, 2D
NBV planning chose position 10 based on the polygon shown in
Fig. 7c and position 11 and 12 before room 3 was detected. Finally,
position 13 was chosen by the 3D NBV algorithm to achieve the
required accuracy of the room model. The exploration of the envi-
ronment finished here as there were no jump edges in the memory
(Fig. 7d), which means that the whole environment was explored
and modeled.

Fig. 8 represents the 3D voxel models of room 1 after the first
(8a) and the third (8b) scan. The occupied voxels are colored red,
potential position voxels (PP) are colored blue, while unseen voxels
are colored green. In the figure we also have white voxels, which
are unseen voxels that can be seen from at least one PP position
in the workspace. They are a subset of the unseen voxels and are
treated as such in the exploration algorithm. They only serve to
show that some of the unseen voxels could never be seen from
any position. The specific cone in the figure is a consequence of
the sensor field of view constraints. The other unseen (green) vox-
els are situated under the tables, chairs and other obstacles inside
the room representing unexplored area. As can be seen in the
model and in Table 1, the number of unseen voxels that can be seen
from the best position is zero after the last scan inside room 1.

To evaluate the benefits of the 3D exploration strategy, we con-
ducted two new experiments in room 1, one using only 2D explo-
ration and one with both 2D and 3D exploration. We placed the
robot at the same starting position in both experiments. The results
are seen in Figs. 9 and 10. Fig. 9 shows the final exploration poly-
gon with the positions where the scans were taken. Rectangular
marks show positions chosen only by 2D NBV and circles refer to
3D NBV based positions. In the 2D mode the robot finished after
two scanning positions. As can be seen in the panorama image,
large parts of the ceiling, the floor and the walls are not captured
with the thermal camera. The unexplored area is drastically
reduced when 3D exploration is employed as well. From Table 2

it becomes clear that 703 unseen (UB) voxels could still be seen
from the NBV position after the 2D exploration.

6. 3D Thermal surface model building

The complete model of the environment can be inspected in the
viewer from 3DTK enhanced with either reflectance values or ther-
mal data (see Fig. 1). The color scale is adjustable for a good view of
the temperature distribution in the current data. In all images
depicted here, blue corresponds to cold temperatures while dark
red corresponds to warm temperature values. Switching between
the different views enables the user to detect sources of wasted
energy and to locate them clearly in the 3D view. The Riegl VZ-
400 laser scanner has an accuracy of 5 mm [32]. In previous work
it was shown that the scan matching algorithm used here leads to a
positional error of less than 4cm when joining several 3D laser
scans even in large outdoor environments [37]. However, humans
are used to virtual models consisting of filled structures without
holes, i.e., surfaces or meshes. The process of generating surfaces
from a set of points is called surface reconstruction. We present
a method to reconstruct a 3D model with added thermal field
information and to retrieve information from the finished model.
The automatic detection of heat sources in the model to point
out possible leaks is of special interest.

6.1. Applying the marching cubes algorithm

The Marching Cubes Algorithm (MCA) calculates meshes based
on iso-surfaces from point clouds that are organized in voxels. It
calculates triangles that separate each voxel into the parts that
lie within and outside of the object that is to be reconstructed.
To generate the iso-surfaces more quickly, a probabilistic approxi-
mation method is used [46]. Every point in the input point cloud is
assigned a Gaussian distribution. The final iso-surface is calculated

Table 1
The number of unseen (U), occupied (O) and the number of unseen voxels that can be
seen from the best next position in 3D (UB) at each scan inside room 1.

Voxel type Scan 1 Scan 2 Scan 3

O (red) 4091 6207 7034
U (green) 2104 1248 1207
UB 965 203 0

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

x [m]

y 
[m

]

Fig. 9. Comparison of 2D and 3D NBV algorithm.
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by applying an aggregation operator, i.e., minimum, maximum, or
sum. Changing the width of the Gaussian bell reduces the influence
on the neighboring points/voxels. This method improves the
results if normals in every point are provided.

6.2. Temperature scalar field mapping

The Gaussian estimation of iso-values and the subsequent MCA
reconstruction do not deal with scalar temperature values acquired
by the thermal camera. These values have to be mapped onto the
reconstructed surface using an appropriate color scale.

The surface is reconstructed from the point cloud. The temper-
ature values are assigned to the points. Mapping the temperature
color distribution onto the reconstructed surface is difficult
because not every point on the surface corresponds directly to
one point in the original point cloud and therefore cannot be
assigned a temperature/color value directly. To overcome this
problem, the points from the model, i.e., the vertices of the triangle
mesh are organized in a spatial data structure that enables fast
range and nearest neighbor (NN) searches. For each point in the
point cloud the closest point in the mesh is found and assigned
the scalar temperature value. R-trees have proven to be an efficient
data structure for solving the scalar field mapping problem [39],
but the original kD-tree based solution produces the model with
better quality and scalar field mapping precision. An R-tree orga-
nizes spatial objects by defining bounding boxes that contain all
objects indexed by the child nodes. In the case of scalar field map-
ping the bounding box of leaf nodes contains preferably one or
more points that are vertices of a polygonal face. The size of these
bounding boxes influences the precision of the NN search result
and thus the overall quality of the scalar field mapping as
shown in [39].

Fig. 10. Panorama images of room 1. Top: The entire room with reflectance values as captured by the laser scanner using 3D exploration. Middle: The part captured with
thermal information using 2D exploration. Bottom: The part captured with thermal information using 3D exploration. Note that the thermal camera has a drastically reduced
field of view as compared to the laser scanner.

Table 2
The number of unseen (U), occupied (O) and the number of unseen voxels that can be
seen from the best next position in 3D (UB) at each scan inside room 1 after 2D and 3D
exploration.

Voxel type 3D NBV 2D NBV

Scan 1 Scan 2 Scan 3 Scan 1 Scan 2

O (red) 4068 5321 6106 4033 4958
U (green) 2275 1524 1192 2320 2036
UB 1025 361 0 1017 703
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6.3. Improving the general precision of the model reconstruction

One of the major drawbacks of the presented reconstruction
and scalar field mapping is the precision. The precision of the
reconstructed model is mainly affected by the density of the point

cloud [41]. In our case, the average density of the point cloud is
greatly affected by outliers that increase the size of the bounding
box of the model. These outliers are often noise caused by reflec-
tions from windows or simply objects that are seen through the
window and are not of interest for the model.

This corresponds to a typical point cloud segmentation
problem, where the point cloud is to be segmented into several
smaller parts. The task given here differs from other segmentation
problems as we can assume that valid points and invalid points
will be somewhat disconnected. Thus, a connectivity criterium
based on K-means clustering effectively eliminates points that
are problematic for the reconstruction of the 3D model without

Fig. 11. Top: Reconstructed 3D model of an office with furniture, lamps, computers, etc. Bottom: Colored point cloud of the same office. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Image of a point cloud (left) captured at scan position 12 in office room 3 and the reconstruction (right).

Table 3
Spatial subdivision influence on time performance of the reconstruction algorithm.

Subdivision 50 100 150

Execution time 6.2 s 24.9 s 55.1 s
Number of polys 41,322 195,824 501,229
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the need for time and resource consuming segmentation algo-
rithms. A choice of K ¼ 4 has shown to give good results in the
experiments. In general, it is not easy to conclude the perfect num-
ber of clusters from the data. Standard techniques for choosing the
initial number of clusters are much slower and tend to choose a
number much higher than necessary, thus removing many of the
valid points [41].

6.4. Detection of thermal features in the model

Heat sources are identified by analyzing the scalar field values
contained in the 3D model of an indoor environment based on a
high local increase of temperature. In buildings, sources of heat
are radiators with pipes, air conditioners, incandescent lights and
other electrical equipment emitting high amounts of infra-red
radiation. We observe from Fig. 11 that computer monitors and
light bulbs are major sources of heat. The detection can be consid-
ered as a typical image processing task, but in our case a full 3D
model (or at least 3D point cloud) makes the task more compli-
cated. In [42] we analyze scalar value thresholding, K-means clus-
tering and Fuzzy c-means. The scalar value thresholding method
from [49] was modified so that all vertices in the mesh, with a tem-
perature value succeeding a threshold, are marked as potential
heat sources. K-means and Fuzzy c-means cluster the points from
the model based on their temperature values. In [42] we show that
K-means shows the most promising results, with fuzzy c-means
having somewhat worse performance, but with almost the same
quality.

6.5. Reconstructed model

Fig. 12 shows the reconstruction of one part of the scanned
indoor environment, a scan taken in room 1. The model contains
close to 11,926,000 points for a volume of less than 200 m3. Com-
pared to the data sets presented in [4,27,33], this data set is rather
small and the expected precision is lower. However, it is clear that
geometry is preserved, although the precision when it comes to
reconstructing furniture, computer monitors, and people is not suf-
ficient. To increase precision, a larger space subdivision is needed.
This comes at the expense of higher computing power and memory
requirements to store the model [40]. Time performance depen-
dence on spatial subdivision for the part of the dataset is given
in Table 3.

To evaluate the obtained model visual perception of an expert is
necessary [40]. The methodology presented in Section 6.3 attempts
to minimize the local error. We managed to increase the point
cloud density by the factor of � 50. In the end this decreases the
reconstruction error to a few centimeters compared to the original
10–20 cm [41]. In Fig. 13 the benefit of removing problematic
points is clearly shown. The reconstruction algorithm takes a point
cloud with much higher density as an input and produces a model
with higher precision.

Finally, we present the results of the detection of heat sources in
the discussed environment. There are several sources of heat in
this model and they have a color ranging from orange to red. These
points have the surface temperature from roughly 35 �C to 60 �C. In
Fig. 14 we present the input model and the output of the detection
algorithm which labels the potential heat sources.

Fig. 13. Reconstructed 3D model of an office (room 1 from Fig. 6); Left: the original point cloud divided into four clusters, one with valid points (green) and three with
problematic points that were seen through the window and are thus far away from the building that is supposed to be modeled; Right: the resulting point cloud after the
removal of the three invalid clusters. It is quite clear that the volume of the cuboid containing the entire model is drastically decreased, thus allowing for higher precision in
the model reconstruction. At closer look, one sees that besides the office room (marked with green) and some parts of the hallway (yellow) there are still some outliers left
that were seen through the window (red). However, their influence on the volume of the bounding box is minor compared to the removed clusters. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. The left image shows the model that serves as an input for the detection algorithm; the right image shows potential heat sources labeled with purple color. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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7. Conclusions

This article presents a complete system for autonomous 3D
exploration and thermal mapping of an indoor environment. The
data is autonomously collected, thermal and color information is
automatically mapped onto the 3D data and the environment is
reconstructed into a thermal model. To perceive the entire envi-
ronment we propose a model based 3D sensor placement approach
that uses a voxel representation and room extraction to drastically
decrease the computational requirements while still reaching high
accuracy. A viewer is presented to analyze the reconstructed model
afterwards and to inspect the automatically detected points of
interest in the data.

The work presented here is fundamental research and does not
claim to offer a ready to use product. The system is a first step
towards a tool that targets at improving the effectiveness of indoor
thermography. The main goal, to design a system that autono-
mously collects the data necessary to create a model and perform
the thermal analysis of a building with this model, is achieved. The
system is designed to point out possible problems in the data to an
experts who interprets them with his experience and expertise.
Hotspots as they appear in heat sources and power lines were cho-
sen as an example here. The general idea works the same for cold
spots. The system is more adequate for indoor office buildings or
for very cluttered environments, in which the room extraction
algorithm will find a closed loop in the part of the environment
that is not a real room.

However, setting a predefined maximal cuboid size supports
the exploration of larger rooms. If the currently collected data
reaches the predefined maximal cuboid size, the algorithm will
switch to the 3D phase using a cuboid part of the environment that
does not exceed the allocated memory. In our future work, we plan
to extend the algorithm for such cases by considering possibilities
of finding virtual rooms inside a large room.

The majority of work that still has to be done lies in the post
processing, the model building and the detection of thermal flaws.
As the interpretation of thermal data underlies the strong influence
of the material properties and the external conditions such as room
temperature and humidity, it is very hard to make decisions auto-
matically. A system, such as this, aims at pointing out points of
interest to the expert. In this paper, a method is presented that
aims at pointing out hot spots, as they appear in heat sources
and power lines. The evaluation of the effectiveness of this
approach for real thermal issues is still subject to further research.
For the detection of cold spots, such as thermal bridges, it is gener-
ally possible to use the same method with a lower boundary. How-
ever, it is to be expected that the temperature differences are much
lower and therefore harder to detect. Machine learning approaches
could help in detecting and classifying these points of interest.
Some preliminary work on automated Building Information Mod-
eling (BIM) from laser scans by detecting doors and windows have
been presented [57,53,16]. We have extended this work by labeling
windows in 3D thermal data [15]. Future work will build upon this
work and further investigate the use of machine learning for inter-
preting thermal 3D models.

We plan to further improve the precision of the 3D model by
analyzing other factors that influence low point cloud density. A
more effective method for removing invalid points using associa-
tions based on connectivity might lead to better results. In this
work we focused on creating the 3D thermal model. The point
cloud viewer offers the possibility to switch between thermal
and color mode. A good method has to be found to make the recon-
structed model available with both modalities as well. Possibilities
are to switch between the two models, to create a model with one
modality and add the option to show the corresponding image of
the other modality at a certain spot, or to overlay the color model

with the thermal information, thus modifying the color space of
regions with temperature peaks and keeping the true color for
the other areas.
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