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Context: An important task in civil engineering is the detection of collisions of a 3D model with an
environment representation. Existing methods using the structure gauge provide an insufficient measure
because the model either rotates or because the trajectory makes tight turns through narrow passages.
This is the case in either automotive assembly lines or in narrow train tunnels.

Objective: Given two point clouds, one of the environment and one of a model and a trajectory with six
degrees of freedom along which the model moves through the environment, find all colliding points of
the environment with the model within a certain clearance radius.

Method: This paper presents two collision detection (CD) methods called kd-CD and kd-CD-simple and
two penetration depth (PD) calculation methods called kd-PD and kd-PD-fast. All four methods are based
on searches in a k-d tree representation of the environment. The creation of the k-d tree, its search
methods and other features will be explained in the scope of their use to detect collisions and calculate
depths of penetration.

Results: The algorithms are benchmarked by moving the point cloud of a train wagon with 2.5 million
points along the point cloud of a 1144 m long train track through a narrow tunnel with overall 18.92 mil-
lion points. Points where the wagon collides with the tunnel wall are visually highlighted with their
penetration depth. With a safety margin of 5 cm kd-PD-simple finds all colliding points on its trajectory
which is sampled into 19,392 positions in 77 s on a standard desktop machine of 1.6 GHz.

Conclusion: The presented methods for collision detection and penetration depth calculation are shown
to solve problems for which the structure gauge is an insufficient measure. The underlying k-d tree is
shown to be an effective data structure for the required look-up operations.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction and problem formulation

The minimum clearance outline or structure gauge has an impor-
tant place in the planning of rail and automotive infrastructure as
well as for factory assembly lines [1]. It is the swept volume of
the minimum cross section that must be kept free of any obstacles.
Measuring the structure gauge of railroad and motorway tunnels,
bridges and production lines is a simple way to calculate whether
vehicles, their cargo or arbitrary objects can pass through them.
The structure gauge is an exact measure as long as the moving
object travels along a straight line and does not rotate. But if the tra-
jectory is not straight or rotation is involved, then the structure
gauge can only serve as a rough estimation which becomes more
imprecise the shorter the turn radius or the larger the rotation of
the moving object. Normal railroads and rural motorways usually
are constructed with long turn radii and large safety margins, so
the structure gauge is a sufficient measure to determine whether
a vehicle can pass along a route. But there exist many examples
where the structure gauge is an insufficient measure:

� transportation of exceptionally long, rigid cargo along motor-
ways and railroads,
� turns in very narrow tunnels, bridges or other passages,
� street turns with a very small turn radius (for example in urban

environments),
� rotating objects along production lines.

The collision detection method presented in this paper solves
this problem but can also be applied to general collision detection
tasks. The difference to most other collision detection algorithms is
that this method is purely point based and does not require to
calculate a solid 3D mesh representation.
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Fig. 2. The train wagon is oriented and moves along the y-axis.
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This method was first applied by the authors to find collisions in
an automotive production line which involved sharp turns and rota-
tions of the car body but the respective paper focuses on the tech-
niques to register the environment [1]. In the following, the same
method with some further improvements will be applied to a train
moving through a very narrow tunnel where a structure gauge
based approach does not suffice to find collisions but where there
will be collisions in reality because of the turn the tunnel makes.

A similar measure to the structure gauge is the loading gauge
which is the swept volume of the cross section of a train wagon
moved along a track. The difference between the two is the engi-
neering tolerance or clearance. The structure gauges along a track
together with the maximum loading gauge determine whether or
not a train with certain cargo can go along a given route or how
much space around new tracks has to be kept clear and is subject
to a number of decades old standards and regulations [2].

If the ‘‘track transition curve’’ at the start and the end of most
turns is ignored, then turns of train tracks always represent circle
segments (i.e. circular arcs) [3]. Since the rotation centers of the
two bogies of a train wagon both stay in the exact center between
the train tracks, the part of the train wagon connecting the bogies
will form the line segment of a secant cutting the circle segment of
the track. Thus, the parts of the wagon between the bogies in the
inside of the turn will take more space of the structure gauge
within a turn compared to when the train wagon travels along
straight tracks. Similarly, the parts of the train wagon on both ends
outside of the bogies will take additional space as well. Fig. 1
visualizes the problem. The curvature represents the loading gauge
of the train wagon in gray. The dark gray areas represent the vol-
ume of the train wagon which is outside of its loading gauge during
the turn. The amount of needed additional space is depending on
the turn radius. To address the problem, there exist different reg-
ulations for structure gauge sizes depending on the turn radius [4].

The algorithms that will be presented in the following requires
three objects as input: The first input is the pointcloud of the
environment. In the example presented throughout the paper, it
was collected by driving a Optech Lynx Mobile Mapper along the
train tracks but can also be acquired using the methods presented
in [1]. The second input is a point cloud of the model. Here, it was
acquired by taking seven terrestrial 3D scans of a real train wagon
with a Riegl VZ-400 laser scanner and then registering them using
3DTK – The 3D Toolkit [5]. The third input is the trajectory of the
train tracks.

The goal is to determine which points of the environment
collide with the model on its path, given a certain safety
margin (the minimal allowed clearance) and how deep any
colliding points of the environment penetrate the model. To this
end a k-d tree of the environment is created, the model is moved
through it along its trajectory and a k-d tree search is performed
around the points of the model to find colliding points and their
penetration distance.
Fig. 1. Top view of the train wagon (in dark and light gray) and its curved loading gauge a
outside of its loading gauge. The striped volume indicates the volume of the train wago
The contributions of this paper are summarized as:

� a method to perform collision detection of a single arbitrary
(and deformable) point cloud (the model) with a static environ-
ment in two variants (kd-CD and kd-CD-simple),
� two methods to calculate penetration depth of the model with

the environment (kd-PD and kd-PD-fast),
� a highly optimized k-d tree implementation and query func-

tions to perform collision detection.

A right handed coordinate system will be assumed in this paper.
Fig. 2 shows the local coordinate system of the train wagon. The z-
axis is the up vector and the train wagon is moved along its y-axis.
The wagon is centered such that its center of mass is in the origin
of the coordinate system. This is important for calculating rotations
and penetration depths.

The remainder of the paper is organized as follows: The next
section covers related work to the one presented in this paper.
Section three presents the k-d tree data structures and algorithms.
Section four and five present our methods for collision detection
and penetration depth calculation using the k-d tree, respectively.
Section six show benchmark results while section seven concludes
this paper.
2. Related work

Collision detection, which is also called interference detection or
intersection searching, is a well studied topic in computer graphics
[6–10] because of its importance for dynamic computer animation
and virtual reality applications [11–13]. On the other hand, their
work is limited to collision detection between geometric shapes
and polygonal meshes whereas most sensor data is acquired as
point clouds. While collision detection is also relevant for motion
planning in the field of robotics, it is a less studied problem there.
s it passes through a turn. The dark gray areas mark the volumes of the train wagon
n between its two bogies. The dotted line indicates the wagon’s trajectory.
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Collision detection between point clouds was for example
researched by Klein and Zachmann [14] who use the implicit sur-
face created by a point cloud to calculate intersections. Another
example is the recent work by Hermann et al. [15] who use voxels
to check for spatial occupancy for robot motion planning.

Existing techniques make use of very similar approaches. One
method is to apply a spatial hierarchical partitioning of the input
geometry using octrees [16,17], AABB-trees [18], BSP-trees [19] or
k-d trees [20]. Other solutions apply regular partitioning using vox-
els [21,15,22]. The goal of any partitioning is to be able to quickly
search and check only the relevant geometries in the same or neigh-
boring cells. The method presented in this paper will make use of a
hierarchical k-d tree for the environment in combination with a
regular partitioning of the model into a grid of bounding spheres.

Another method is to use hierarchies of bounding volumes like
spheres [23], axis aligned bounding boxes [24], oriented bounding
boxes [25] or discrete oriented polytopes [26]. Optimizing the
regular grid that was generated for the model into a hierarchical
structure will be left for future work.
Fig. 3. Boxes are in UML, relationships (arrows) are not. KDTreeImpl is templated by
structure are a C++ union. The params member of KDTreeImpl is static. UML pack
fixedRangeSearch search function and its recursive counterpart _FixedRangeSearc
Collision detection methods can be divided in those for static
and deformable objects [27,28]. While the method presented in
this paper does not easily allow changes in the environment
because that does require a recalculation of its k-d tree, arbitrary
changes in the point cloud of the model are possible without any
performance impacts.

Another classification is whether the algorithm easily allows
multiple moving objects. Using a brute-force approach such algo-
rithms have a runtime of Oðn2Þ for n objects because every possible
pair of objects is checked for collisions. Modern approaches like the
I-COLLIDE system [29] use a ‘‘sweep and prune’’ approach to mini-
mize the amount of necessary checks. Another approach is to
dynamically adjust the search tree to account for object move-
ments [30]. The method in this paper does not handle multiple
moving models.

Calculating the penetration depth of one object into another is
important to calculate the force of collisions and respond accord-
ingly in virtual reality applications [11]. It is also important for
visualization purposes, to differently highlight objects reaching
KDtreeIndexed with the parameters listed in the comment. The node and leaf

ages are used to indicate file membership and to group for readability. Only the
h are listed for brevity.
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into a safety margin with an indication of how much they violate
the constraint. This application was shown in prior work on this
topic by the authors of this paper [1].

The k-d tree implementation this work bears similarities to R+-
trees [31] insofar it recalculates a new bounding box for each child
node. In contrast to R+-trees, the k-d tree implementation pre-
sented here does not make efforts to create a balanced tree. In
[32] our k-d tree implementation was benchmarked against three
nearest-neighbor search libraries based on the k-d tree data struc-
ture: ANN [33], libnabo [34] and FLANN [35] and came out among
the fastest implementations.
3. Data structures for efficient collision detection and depth of
penetration calculation

In this section our highly-optimized k-d tree implementation is
presented. It is implemented in 3DTK [5] in C++. It currently imple-
ments multiple search functions, can be parameterized to be used
with 3D point data of different precision and container type, allows
to present search results as pointers, array indices or as 3D coordi-
nate data and allows parallel execution through OpenMP. Its cor-
rectness has been verified by a test suite which combines brute
force implementations of the search functions (test all points for
satisfaction of the search criteria) against the result of a search in
the k-d tree.

The recursive function _FixedRangeSearch which returns a
STL vector of all points within a certain radius r around a coordi-
nate P will be used as an example throughout this section. In the
following code examples all class members which are not directly
useful for the execution of _FixedRangeSearch are omitted for
brevity.

For an overview, consider Fig. 3. The template class KDTreeImpl
provides the implementation of search functions and at the same
time represents an inner node or a leaf node of the k-d tree.
Multiple classes instantiate KDTreeImpl, one of them being
KDtreeIndexed which is of particular use for the collision detec-
tion method in this paper. The classes and functions seen in Fig. 3
will be explained in more detail in the following sub-sections.
Listing 1. k-d tree impl
The general operation of the search functions will be presented
by using the function fixedRangeSearch as an example. The
function is implemented in the class KDTreeIndexed. It sets up
the KDParams structure with the search parameters and then calls
the recursive function _FixedRangeSearch (notice the leading
underscore) implemented in KDTreeImpl. The function
_FixedRangeSearch in turn implements the actual search
operations.
3.1. Tree data structure

Listing 1 shows an excerpt from the template class
KDtreeImpl. Each instance of the class represents an inner or leaf
node in the k-d tree.

The public create function in line 4 recursively creates a k-d
tree by splitting the points it received as an argument into two,
creating two new instances of KDtreeImpl and calling their cre-
ate function with one of the new point sets, respectively. The
inner working of the create function is explained in Section 3.2.

The static member params in line 6 is set once for every new
search in the k-d tree. It avoids having to pass the search parame-
ters for each recursive function call and thus reduces the size of
required operations on the stack. As it is a static member, it will
only be stored in memory once, i.e., hardware cache friendly. The
KDParams class in this shortened excerpt stores the point around
which to search p, the squared search radius maxdist_d2 and
the search result vector range_neighbors. Since it is possible to
carry out searches in the same k-d tree in parallel, an array of size
MAX_OPENMP_NUM_THREADS exists.

The member npts in line 7 stores the number of points this
node contains. If this value is non-zero, the node is a leaf node.
Otherwise, the node is an inner node.

Depending on the node type, a union structure in line 8 stores
data about the node. Inner nodes store their center coordinate (line
10), the node size (line 11), the coordinate axis by which the node
is split (line 12) and pointers to the two children the node is split
into (line 13). Leaf nodes store a pointer p to an array representing
the contained points (line 15).
ementation classes.
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3.2. Building the k-d tree

A k-d tree is created by instantiating KDtreeImpl and calling
its create method with the points one wants to fill the k-d tree
with. The create method will then recursively instantiate new
KDtreeImpl child nodes until all points are distributed into leaf
nodes. The create method is shown as an abbreviated excerpt
in Listing 2 is explained in more detail in the following.

The first check in line 2 decides whether the current node is an
intermediate node or a leaf node. If the number of points passed to
the create function is less than or equal to 10 then this node will
become a leaf node storing all points it is given and recursion stops.
Otherwise the node is an inner node. This is recorded in the npts

member in line 8. The number 10 is chosen as the bucket size
because of run-time evaluations done in [36] (see Fig. 5 in that
paper).

The clipped lines 9–11 calculate an axis aligned bounding box
for the points the function is given. The bounding box is repre-
sented as its center point and its half length, width and height.
Thus, the values node.dx, node.dy and node.dz store the distance
from the center to the sides of the bounding box. The axis by which
to split the bounding box into two is found in lines 12–18. The split
is done by determining the longest axis and splitting the bounding
box in half by that axis.

Lines 19–23 partition the points the create function is
given. To reduce the amount of required copies, the original
array with points is reused and split into half. Only points which
happened to be on the wrong side are swapped with wrong
points on the other side. On average this halves the amount of
required copy operations. In the end, indices will point to
the left hand side half of the original array while left will point
to the right hand side half of the array. The last lines 24–28
instantiate two new KDtreeImpl objects and call their create

function with the respective, sorted half of the original input
data.
3.3. k-d tree layout

The create function explained in Section 3.2 will result in a
partitioning of the input points as shown in Fig. 4 which shows a
simplified two-dimensional representation of the input points
and the resulting tree structure in memory. In contrast to a classi-
cal k-d tree, the search volume of child nodes is reduced by
recalculating a bounding box for the enclosed points. This tech-
nique is similar to how R-trees operate and helps to create a tighter
boundary for the enclosed points which in turn results in perfor-
mance improvements during look-ups. This is because restricting
the bounding volume of child nodes to a new bounding rectangle
allows to abort a search quickly instead of having to search the
k-d tree until leaf nodes are reached and inspected.

Considering Fig. 4, the create function is first called with all 23
points as an argument. Since 23 > 10, a new inner node will be cre-
ated by calculating the node center and its bounding box (in red).
The bounding box is wider than it is high so the points will be par-
titioned by a vertical axis through the bounding box center. Two
new KDtreeImpl instances are created for each side and get
passed 11 and 12 points, respectively. Since both values are greater
than 10 again, new inner nodes will be created with their bounding
boxes shown in blue. The following iteration will then result in two
leaf nodes on the left hand side (6 points in the upper region and 5
points in the lower region) and one leaf node on the right hand side
with one point. One last iteration over the remaining 11 points on
the right hand side will create two last child nodes. Leaf nodes do
not require a bounding box because when they are encountered
during a k-d tree search, all the points they contain are checked
and no further recursion has to be done.

3.4. Searching the k-d tree

Spacial search in point clouds are parameterized by two proper-
ties: the location (where to search for results) and the subject



Fig. 4. Left: 23 points (black circles) and the bounding boxes (solid lines), their centers (crosses) and their split axis (dotted lines) of the 2-dimensional k-d tree created from
them. The letters identify the created groups of points per leaf node. Right: The tree representation of the created 2D k-d tree. The color of the solid boxes corresponds to the
bounding boxes in the left figure. Boxes with dotted outlines are leaf nodes. The names of the leaf nodes correspond to the letters in the left figure.
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(what to return). The following five search areas are implemented
by 3DTK:

(a) radius r around a point P1,
(b) radius r around an infinite line defined by a point P1 and a

direction vector v,
(c) radius r around an infinite ray defined by P1 and v,
(d) radius r along a finite line segment defined by points P1 and

P2, and
(e) inside an axis aligned bounding box defined by P1 and P2 as

the corners with minimum and maximum coordinate val-
ues, respectively.

Additional search volumes that can be added in the future
would be oriented bounding boxes, cylinders or general polytopes.
In most volumes, it is possible to perform searches for the follow-
ing result types:

(1) the point closest to P1,
(2) the k points closest to P1,
(3) all points within the search volume,
(4) the point closest to the given line, ray or line segment,
(5) the k closest points to the given line, ray or line segment.

After eliminating the inapplicable combinations, one ends up
with 19 meaningful search functions. A full list is omitted for brev-
ity. For example, the common nearest-neighbor search (NNS) is
searching for the closest point to P1 (1) in a radius r around a point
P1 (a). For the collision detection method presented in this paper,
the following four functions are needed:

� FindClosest: closest point to a coordinate: (a) and (1),
� fixedRangeSearch all points around a coordinate: (a) and (3),
� segmentSearch_1NearestPoint closest point to P1 in a line

segment: (d) and (1), and
� segmentSearch_all all points around a line segment: (d) and

(3).

3.5. _fixedRangeSearch

All recursive search functions are divided into three functional
parts. Firstly, the node is checked whether it is an inner node or
a leaf node. If it is a leaf node, then all points the node contains
are checked for satisfiability of the search criteria and the function
returns. The second part is reached if the node is an inner node and
thus the first part did not cause the function to return. In that case,
a check is done whether the node can possibly contain parts of the
result. If not, then the function returns. Otherwise, thirdly, the
search recurses into one or both child nodes.

Consider Listing 3 which shows the function
_FixedRangeSearch as implemented in the KDtreeImpl class.
It fills the result vector in the KDParams static member with all
points in the k-d tree which lie around a certain squared radius
maxdist_d2 around a point p.

The parameterized functions of type IndexAccessor and
ParamAccessor in line 3 are used to return coordinate data or
data of the type stored in the results vector for each point in the
leaf node, respectively. They do not pose a performance overhead
as they are inlined by the compiler.

In case the node is found to be a leaf in line 4, all points in the
leaf are checked whether their squared distance myd2 to P is less
than r. If they do, then they are appended to the result vector.

After all points in the leaf node have been checked, the function
returns. If the node is not a leaf node but an inner node, then the
next part from line 15 to 20 checks whether further recursion into
the child nodes of this node is required. This check whether to
abort will be outlined in the next subsection 3.6.

The last part of each search function in lines 22–32 recurses into
the child nodes. First, a check for the point’s position relative to the
split axis of the current node (as calculated in line 22) decides
which child node to recurse first. Whether or not the other child
node is recursed into as well depends on whether the bounding
cube of the search radius around P can possibly extend into the
other child as well or not.
3.6. Quick check whether to abort

A heuristic was developed that allows a quick check whether or
not to continue searching further down the current branch of the
k-d tree. Lines 15–18 in Listing 3 implement this check in C++.
This code compiles to only 16 SSE2 instructions and requires no
branching operations like a trivial check otherwise would.

The algorithm works by calculating a value dP which is then
compared to the search radius to decide whether or not to abort
the search in the k-d tree. In the following formula, P is the three
dimensional coordinate of the point around which the search is
to be done. The current node of the k-d tree is parameterized by
its center coordinate C and its axis aligned bounding box size
2dx; 2dy and 2dz.

dP ¼maxðjPx � Cxj � dx; jPy � Cyj � dy; jPz � Czj � dzÞ ð1Þ

In words, suppose the six sides of the node’s axis aligned
bounding box form six axis aligned planes: each plane being the
infinite extension of the six sides of the node’s bounding box.
Opposing sides of the node’s bounding form pairs of parallel
planes. Three of these plane pairs are created, one pair along each
dimension. Then the distance of P to the closest plane of each pair
of planes is found. If P is between a pair of planes, then its distance
is represented as a negative value. Then the maximum distance of
the resulting three distance values is taken (one for each dimen-
sion). If the maximum value dP is negative, then all three
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coordinate values of P must lie inside the current node’s bounding
box and the search has to recurse into one or both child nodes. If
the maximum value is positive and larger than the search distance,
then the current node cannot contain any results and the function
returns without recursing deeper into the tree.

The heuristic can easily be visualized in two dimensions by
considering Fig. 6. Instead of a bounding box, a bounding rectangle
is shown in yellow. Instead of axis aligned bounding planes, axis
aligned lines are shown in black, solid lines. This two-dimensional
representation is used to create a matrix of all possible locations of
the search volume relative to the bounding box in Fig. 5. The
search is aborted in all cases displayed in cells with a white
background.

Fig. 6 also visualizes the point where this check is not precise
and generates a false positive (also shown with a dark blue back-
ground in Fig. 5). Since only the bounding cube of the search radius
r around P is concerned, it can happen that both bounding cubes
intersect while the actual search sphere does not intersect. In this
case, the check will not abort the recursion even though no result
can possibly be found in the current node in this situation. This
inexactness is not a problem for values of r which are of similar
order of magnitude as leaf node sizes in the search area. In that case,
the overhead of searching for matching points in the few leaf nodes
that are wrongly classified is far less than the overhead that is cre-
ated by a more expensive but exact check which requires branch-
ing. A similar enhancement to sphere/box intersection checks by
replacing branching with the max operator is shown in [37].

If the search radius r grows bigger, then it might be worth to
add a second, more exact check after the quick inexact check.
This is done for our k-d tree search functions around line segments.
While inexact, checking whether parts of a node’s bounding sphere
intersect with the line segment’s bounding sphere first, before
doing an exact check, increased the runtime by two to three orders
of magnitude. It is up to further research whether it is worthwhile
to develop a more clever method which is able to decide for the
best check to abort in each situation.

3.7. Subclassing the k-d tree

While the class KDtreeImpl contains the algorithms to build
and search a k-d tree, it needs to be subclassed by a class that
specifies the parameters of KDtreeImpl, provides a frontend for
the search functions and which fills the parameter container
KDParams with the correct values.

Parametrization of the KDTreeImpl class allows to access coor-
dinate data of different precision and container type through the
PointData parameter. AccessorData allows different ways to
access this data (through indices or pointers) while the
AccessorFunc allows different ways of retrieving coordinate data
with double precision from an array of PointData elements
through an index given by the AccessorData type. The
PointType parameter also governs how point data is stored in
the shared parameter container KDParams. The ParamAccessor

returns data of type PointType from the PointData type data
array, given an index of type AccessorData.

This type of parameterization allows different use cases for the
k-d tree. Originally, coordinate data was stored as pointers to
three-tuple double arrays. This variant stores the data in the
indices array, therefore having the identity function for
AccessorFunc and ParamFunc and have Void as the
PointData parameter. Later, support for the DataXYZ type was
added which stores point data and attributes in a struct.



Fig. 5. A two-dimensional overview of all possible locations a circular search radius (green) can have relative to the axis aligned bounding rectangle (yellow) of a two-
dimensional k-d tree, ignoring rotations and mirroring. Each column represents a different horizontal position of the search radius relative to the bounding rectangle while
each row represents a different vertical position. The lower-right triangle is faded out because it mirrors the upper left triangle along the diagonal. The black and red lines
represent the positive and negative, respectively, distance from the search radius to the linear extension of the closest side of the bounding rectangle. The dark and light blue
cells mark those positions in which parts of the search radius are found to lie in the bounding rectangle. In these cases, the search is not aborted as the search results might lie
within the bounding box. In the other cases (cells with a white background) the search is aborted. The dark blue cell (b2) marks the case where this conclusion might lead to a
false positive. See Fig. 6 for a more detailed overview. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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3.8. An indexing k-d tree

For collision detection, we make use of the indexing func-
tionality of KDtreeImpl. Data and indices are passed to the k-d
tree during creation and the search functions return individual
indices or vectors of indices. This is useful to quickly calculate a
partitioning of the points into colliding and non-colliding points
without having to perform pointer arithmetic and relying on a cer-
tain layout of the point data in memory. Returning the indices of a
range search allows to quickly update boolean collision values in a
second vector. As IndexAccessor and ParamAccessor are
inlined by the compiler, they do not lead to a performance degra-
dation (see Listing 4).

Consider Listing 5. The constructor of KDtreeIndexed (line 1)
simply creates the underlying k-d tree by supplying it with the
given point values and an indexing array (line 3). The function
FixedRangeSearch fills the KDParams structure with info about
the desired point P and search radius r in lines 7 and 8 and then
calls the recursive search function that is implemented by
KDtreeImpl in line 9. The search function saves its result in the
KDParams structure, so they are copied to the final result vector
in lines 10–14.
4. Collision detection

Two variants of collision detection are implemented using the k-
d tree. One variant, called kd-CD-simple, is based on a range search
around each point of the model using FixedRangeSearch and the
other, called kd-CD, is based on a segment search between two
subsequent points of the model on its trajectory using
segmentSearch_all. In both variants, the model is moved along
its trajectory and a range or segment k-d tree search with radius r
is performed at each position.

When points are found to be colliding, then this information is
saved in a separate boolean vector which stores for each point in
the environment whether it ever collided with the model on its tra-
jectory or not. The search radius r determines the precision of both
algorithms. The smaller the search radius, the more precise the col-
lision detection is. For smaller search radii, the model has to be
sampled dense enough to not leave any unoccupied volume. The
search radius r is the required ‘‘safety distance’’ between the model
and the environment within which no point of the environment
must lie. At the end, the collision information from the boolean
vector is used to partition the environment into colliding and
non-colliding points.



Fig. 6. A close-up of cell b2 in Fig. 5. It shows the search radius (green) in a position which visualizes the false positive which will find the search radius to be intersecting with
the axis aligned bounding rectangle (yellow) while there is no intersection in practice. Furthermore it shows the center of the bounding rectangle C, its size dx and dy , the
center of the search radius P and its radius r as well as the linear extensions of the sides of the bounding rectangle X1; X2; Y1 and Y2. The distance ex calculates as
j Px � Cx j �dx � r. Since the result is negative, the line is colored in red. Similarly, ey is calculated as j Py � Cy j �dy � r. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Listing 4. An indexed k-d tree variant.
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4.1. kd-CD-simple

In this variant, on each position of the model on its trajectory, a
fixed range search using FixedRangeSearch is done around each
point of the model. All points of the environment that are found to
be within range r of any point of the model at any position on its tra-
jectory are updated to be colliding. The performance of kd-CD-sim-
ple is improved by sampling the model in a way such that the
search radii around its points overlap in the desired amount.

Fig. 7a shows a simplified, two-dimensional visualization of the
algorithm. A model consisting of three co-linear point is moved
along a trajectory with three positions. At each position, a
FixedRangeSearch is carried out around each point of the model.
The figure shows a disadvantage of this approach: if the trajectory
is not sampled densely enough, then some volumes along the path
will not be checked for collisions as can be seen at the upper points
in the graphic.
For a linear, non-parallel execution the time complexity of the
algorithm is OðMT log nÞ where M is the number of points in the
model, T is the number of sampled positions on the trajectory
and n the number of points in the environment. For parallel execu-

tion, the time complexity is O MT
p log n

� �
where p is the number of

worker processes. The complexity is as such because M times T
searches in the k-d tree of the environment have to be done, where
each search is of complexity Oðlog nÞ. The complexity in the paral-
lel case highlights that all M times T searches in the k-d tree can be
carried out in parallel.
4.2. kd-CD

Instead of searching a fixed radius around every point of the
model at each position on its trajectory like kd-CD-simple, this
variant linearly connects the same point of the model at two



Listing 5. Searching an indexed k-d tree.

Fig. 7. The two collision detection variants in two dimensions. A model consisting of three co-linear points is moved through the environment along a trajectory (dashed line)
with three positions (indicated by numbers at the top). The first position of the three points of the model is marked with red dots, the second position of the model with green
and the third position with blue dots. The area that is searched for collisions with the environment is indicated by the transparent colored areas. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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consecutive positions on its trajectory and searches a fixed radius
around all the line segments that are created in this manner.

Fig. 7b shows a simplified, two-dimensional visualization of the
algorithm. The model of three co-linear points is moved along a
trajectory with three positions just as for the kd-CD-simple exam-
ple. But instead of executing a FixedRangeSearch around each
point of the model, a search is done around the line segments con-
necting the same point at two consecutive positions on the tra-
jectory. The area that is searched this way is highlighted in
orange and dark-green in the figure for the first and second
search-pass, respectively.

This means that with T positions on the trajectory, this method
will execute MðT � 1Þ k-d tree searches using segmentSearch_
all. Thus, the time complexity of this algorithm is very similar
to the one of kd-CD-simple OðMðT � 1Þ log nÞ and becomes close
to the one of kd-CD-simple for large numbers of T.

Since the trajectory can be less densely sampled than would be
required for kd-CD-simple, kd-CD can thus require less search
operations while maintaining a similar result quality. It also has
the advantage that in contrast to the kd-CD-simple, the volumes
of the environment that are searched for collisions are not spheres
but cylinders with half spheres on both ends. This ‘‘smoothes’’ the
found colliding points along the direction of movement of the
model.

5. Depth of penetration calculation

Two variants to calculate depth of penetration will be presented:
kd-PD-fast and kd-PD. They perform differently depending on the
kind of input data and yield different results depending on the sam-
pling rate of the model trajectory. kd-PD-fast is generally faster but
produces only good results for objects protruding the path of the
model through the environment. It does not produce correct results
when the model moves alongside a wall and collides with it.

kd-PD-fast is an embarrassingly parallel operation just as the
collision detection methods. The other variant, kd-PD, is easy to
parallelize as well and the only part of kd-PD that has to be syn-
chronized between workers is the updating of the penetration



450 J. Schauer, A. Nüchter / Advanced Engineering Informatics 29 (2015) 440–458
depth because it requires reading and checking the already stored
depth of penetration per colliding point.

5.1. kd-PD-fast

This variant is a good heuristic for protruding sharp objects into
the work space. At each position along the trajectory, it iterates
through all points of the environment that are found to be colliding
and finds the closest non-colliding point using FindClosest. The
distance between the two points is then recorded as the depth of
penetration. Thus, the time complexity of this algorithm is the
same as for the collision detection algorithms and can be com-
pletely parallelized.

This variant works well for objects that ‘‘stick’’ into the path of
the model because the penetration depth of the tip of that object
will be about as deep as its distance to the closest non-colliding
point. This method is shown to work well for automotive assembly
lines as shown in prior work of the authors [1].

5.2. kd-PD

kd-PD represents a general penetration depth method. Consider
Fig. 8 which illustrates this method. Fig. 8 shows a top view of the
train wagon model at one point of its trajectory inside the tunnel. It
is shown colliding with the right hand side tunnel wall. The algo-
rithm iterates over every point of the model Pn and finds its projec-
tion to the wagon center An. Since the central axis is the y-axis in
the coordinate system of the train wagon (compare Fig. 2), this
projection is simply done by setting the x and z coordinates to zero.
Fig. 8. Left: a top view of the train wagon (blue) at a position through the tunnel (green).
represents the segment search volume between point Pn of the train wagon and point A
and Cn which is the point that is found to be closest to Pn within the search area. The dott
radius are updated with the same distance that Cn has to Pn if that distance is greater than
legend, the reader is referred to the web version of this article.)
Then a segment search using segmentSearch_1NearestPoint
on the line segment from Pn to An is performed for every point of
the model: for each point Pn the closest point Cn of the colliding
environment within the search radius is found. A fixed range
search using FixedRangeSearch of radius r around Cn is per-
formed and all points within that search radius including Cn are
collected. This collecting of points has to be performed because
otherwise, many points of the environment are missed by
segmentSearch_1NearestPoint. The distance between Cn and
Pn is calculated and that distance is assigned to all points that
are found by FixedRangeSearch if the new distance value is
greater than the old one. This set of calculations is done for each
point of the model on each position of its trajectory. In the end,
every colliding point of the environment has attached to it the
greatest distance found by this method over the whole trajectory.
As is seen from Fig. 8, the maximum error of the calculated pene-
tration distance is the size of the search radius.

Fig. 9 visualizes this method for two subsequent positions on
the trajectory. The figure shows the calculated distances between
each point of the model and each set of points in the colliding
environment.

This method requires that the individual points of the trajectory
are not further apart than the search radius. While this is also one
of the reasons why this method is more computationally expensive
than the first heuristic, it also yields better results when applied to
a collision with the tunnel wall. Fig. 10 illustrates the difference.

The time complexity in the non-linear case is the same as for
kd-PD-fast and for the collision detection algorithms. In parallel
execution, some time has to be spent synchronizing the access to
Right: a magnified and rotated part of the left figure with point names. The gray area
n on the wagon’s central axis (red). The dotted black line is the distance between Pn

ed circle shows the search radius around Cn. All points of the tunnel wall within this
the previously stored one. (For interpretation of the references to color in this figure



Fig. 9. As the wagon (dark gray) moves along the tunnel (light gray), each point of the tunnel wall is updated with its maximum distance to the wagon exterior (stripes) on
any point along the trajectory.

Fig. 10. A comparison of the penetration depth as calculated by kd-PD-fast (top) and kd-PD (bottom). Both figures show a narrow piece of tunnel from the outside with the
calculated penetration depth indicated by the point color. Non-colliding points are shown in dark red. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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the data structure that stores the currently closest penetration dis-
tance before updating it.

6. Experiments and results

A 3D point cloud of train tunnel was provided to us by the com-
pany TopScan GmbH. The point cloud contains 18.92 million points
of outdoor data. The point cloud was collected by a Optech Lynx
Mobile Mapper mounted on a van which was placed on a train
wagon (see Fig. 11). TopScan also provided the trajectory data to
us which is comprised of 23274 positions over a distance of
1144 m. The trajectory contains positional as well as orientation
data.

To retrieve a point cloud of a suitable model to move through
the environment, the train wagon that is seen in Fig. 12 was manu-
ally scanned using a RIEGL VZ-400 laser scanner (see Fig. 13).
Seven scans were taken from all sides of the wagon and registered
using 3DTK’s SLAM implementation (Fig. 14).



Fig. 11. The Optech Lynx Mobile Mapper on the back of a train wagon.

Fig. 12. A photo of the scanned train wagon with a bogie distance of 20 m.
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The train wagon is manually extracted from the resulting regis-
tered point cloud by using 3DTK’s show application (see Fig. 15). As
the train wheels are still part of the wagon, they will always result
in an expected collision with the rails themselves.

It is then aligned inside the axis aligned bounding box of the
wagon displayed in Fig. 2. The alignment process is shown in
Fig. 16a. As calibration data of the precise location of the scanner
relative to the environment is missing, our results can only serve
a demonstration purpose of our methods (see Fig. 16b). The final
point cloud of the wagon contained 2.5 million points.

The trajectory provided to the authors included orientation
information in three degrees of freedom as well. Since a train
wagon is mounted on two bogies and since the origin of the
coordinate system of the train is located in its center (see Fig. 2),
using this trajectory directly would mean that the wagon would
rotate around its own center along the trajectory. This produces
wrong results since instead, the bogies of the train have to remain
on the tracks while the center follows accordingly. A new
trajectory is calculated from the original trajectory by assuming a
bogie distance of 20 m and moving the train wagon such that the
center of both bogies is always on the original trajectory. Since this
operation requires the original trajectory to be a continuous
function and not a sampled trajectory, a spline is fitted across all
points of the trajectory with a sum of squared residuals over all
the spline’s control points of 10 m. This amounts to the spline
only a few millimeter away on average from the original trajectory.
The FITPACK library [38] is used to calculate the spline. The result
of this computation also adjusted the yaw and pitch of the
trajectory.
To benchmark the developed algorithms, the train wagon
model as well as the trajectory are sampled with several different
point distances. For the train wagon, the original amount of 2.5
million points is reduced using 3DTK’s scan_red program which
allows an octree based reduction of a point cloud with a given
voxel size. As the search volume for collision detection must not
contain any holes, a model of equidistant points is created by sav-
ing the center of each occupied octree voxel as point of the reduced
model. This creates a 3D square lattice of points. Five different
reductions of the train wagon point cloud are created to run bench-
marks on them and are visualized in Fig. 17. Due to the structure of
the underlying octree, the voxel size dm is repeatedly halved start-
ing from a maximum voxel size of 0.924 m and down to a voxel
size of 5.8 cm. For each of the five reductions, the search radius
is chosen to create a bounding sphere of an octree voxel of the
respective size. That way, all space occupied by the model is
searched for collisions without leaving any holes. This means that
the voxel size dm computes from the bounding sphere and search
radius r as dm ¼ 2

3

ffiffiffi
3
p

r. Similarly, the trajectory is sampled such that
the individual positions are between 5.8 cm and 14.78 m apart.
Table 1 gives an overview of the chosen search radii, the according
voxel size and trajectory position distances and the resulting num-
ber of points in the model and on the trajectory.

The benchmarks omit runtime results that only modify either
the amount of points in the model or the amounts of positions in
the trajectory. Both collision detections algorithms, kd-CD-simple
and kd-CD, scale completely linearly and is completely parallelized
by splitting the workload over different sets of points in the model
or positions in the environment. The benchmarks are done on a



Fig. 13. The Riegl VZ-400 laser scanner set up next to the train wagon.

Fig. 14. The registered point cloud of all seven scans. The red line connects the positions of the scanner. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

1 http://youtu.be/ylp4mD5XZaQ.
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Intel Core i5-4200U @ 1.6 GHz system with 16 GB of system mem-
ory and only executed using a single thread.

To test the claim that the structure gauge is an insufficient mea-
sure, given the provided environment and trajectory, a slice of the
train wagon is moved through the tunnel. The slice is created by
collapsing the y-coordinate of the train wagon model. The trajec-
tory is created using above method but assuming a bogie length
of zero. This effectively lets the slice travel exactly along the trajec-
tory with the correct orientation perpendicular to the trajectory.

A video1 was created to visually illustrate the difference between
a structure gauge based method and kd-CD-simple. The video shows
the train moving along its trajectory through the tunnel environ-

http://youtu.be/ylp4mD5XZaQ


Fig. 15. Extracting the point cloud of the train wagon.

Fig. 16. Aligning the point cloud along the axis aligned bounding box of Fig. 2.
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Fig. 17. Five point models of the train wagon with different sampling densities. In all reductions, points are aligned in a 3D square lattice.
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ment from the perspective of an observer who follows closely behind
the train wagon. The view is split into three frames arranged next to
each other. The leftmost frame shows the model of the train wagon
in yellow moving through the environment in magenta. The center
and right frame do not show the train wagon model for better visi-
bility. The center frame shows the colliding points according to the
structure gauge method in yellow. The rightmost frame shows the
colliding points and their penetration depth as calculated by kd-
CD-simple and kd-PD-fast. At multiple points during the video one
observes that the center frame does not highlight points as colliding
which are highlighted by the rightmost frames. Those points are
most often found on the right tunnel wall as the train tracks make
a turn to the right. This shows how the structure gauge based
method is not able to find some of the collisions that are found by
kd-CD-simple.

Fig. 18 shows the influence of the search radius on the runtime
of both collision detection variants, kd-CD-simple and kd-CD.
While all other variables are kept constant, the algorithm is bench-
marked with different search radii. The figure shows the runtime of
both collision detection variants as well as the number of points
that are found to be colliding in each variant. One can observe that
the segment based variant finds more colliding points but that it is
also slower than the fixed range search based method. Both vari-
ants increase exponentially in runtime with higher search radii.
With small radii in the centimeter scale, which is desirable for pre-
cise results, the runtime of both variants stays below 10 s.
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In Fig. 19 the search radius is kept constant and the sampling
rate of the trajectory is modified to investigate the dependency
of the segment based collision detection method on the segment
size. One can observe that as the segment size grows larger, the
Table 1
The first column shows the choice of collision detection search radius r. The second
column shows the resulting distance between the points of the wagon dm and the
points on the trajectory dt . The third column shows the resulting number of points in
the model. The fourth column shows the resulting number of points on the trajectory.
The second and fourth column are extended as the results in Fig. 19 are calculated for
higher distance values as well.

r in m dm ¼ dt ¼ 2
3

ffiffiffi
3
p

r #Model #Trajectory

0.05 0.058 28,622 19,392
0.1 0.115 7546 9780
0.2 0.231 2041 4869
0.4 0.462 461 2434
0.8 0.924 93 1217

1.848 609
3.695 304
7.390 152

14.780 76
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Fig. 18. Computation time of both collision detection variants, kd-CD-simple and kd-CD, w
dt and the distance between points in the model dm is chosen to be dt ¼ dm ¼ 0:231 m.
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Fig. 19. Computation time of kd-CD with different distances between individual points
0:2 m.
computation time quickly converges to a constant value of under
10 s. The amount of found colliding points slightly increases with
larger segment sizes as more colliding points will be found inside
the curvature of the tunnel wall.

Fig. 20 shows a more realistic setup in the sense that not only
the search radius is modified but also the sampling rate of the tra-
jectory and train wagon model. If the search radius grows, lower
sampling rates are possible because more volume is covered. For
each value of search radius the sampling rates have been chosen
such that no points of the environment are skipped as the model
moves along its trajectory. The graph in Fig. 20 shows that the both
algorithms, kd-CD-simple and kd-CD, quickly approaches runtimes
below five seconds as the amount of required k-d tree searches
decreases with higher search radii and thus lower sampling rates.
On the other hand, the graph also shows, that with the lowest and
thus most precise search radius of 5 cm which searches on a trajec-
tory of 19;392 positions a model of 28;622 points, our k-d tree is
able to make all required 19;392� 28;622 ¼ 555;037;824 k-d
tree searches in only 77 s. This means that the average k-d tree
search in a dataset of 18.92 Mill points takes 139 ns. This in turn
means that collision detections of even complex models with up
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to 287,000 points can be done in real time speed of 25.0 frames per
second with the presented k-d search tree implementation.

In the last Fig. 21 the two depth of penetration methods, kd-PD-
fast and kd-PD are compared. One can see that kd-PD-fast stays
below 20 s of computation time. This is expected as the perfor-
mance of kd-PD-fast only depends on the amount of colliding
points found. We can observe that kd-PD-fast increases in runtime
slightly as the mount of colliding points rises with increased search
radius. kd-PD performs badly for very small search radii for which
a large number of k-d tree searches have to be performed but
quickly approaches runtime values below one minute as the search
radius grows larger than 10 cm.
7. Conclusions and outlook

This paper presented a highly efficient k-d tree implementation
which is used to perform collision detection of a sampled arbitrary
point cloud against an environment of several million points. It is
shown that even though this is a partly brute-force method as it
checks all sampled points of the model, both, kd-CD-simple and
kd-CD perform well enough such that real queries of densely
sampled trajectories are completed in a matter of seconds. Two
heuristics for calculating penetration depth, kd-PD-fast and kd-
PD have been presented which work for different scenarios and
have different precision and runtime properties.

For future work, several routes to improve these methods exist.
More work has to be done to research which checks to abort the
k-d tree traversal for different search geometries and input data per-
form best. Another easy way to increase the performance could be to
change the sampling of the model from bounding spheres to differ-
ent geometries like axis aligned bounding boxes which are similarly
quick to check for collisions. Lastly, instead of checking every point
of the model, a hierarchy of bounding spheres or other geometries
could be used [11] but that would destroy the property of the cur-
rent algorithm that the input model is allowed to arbitrarily deform.

Both variants, kd-CD-simple and kd-CD, are embarrassingly
parallel operations. All k-d tree searches can be run in parallel
and even updating of the boolean collision vector can be done in
parallel as its values are only ever written but not read during col-
lision detection. Thus, it should easily be possible to run the algo-
rithm which is currently executed in series in parallel instead.
Verifying the possible performance improvements of this measure
is up to further research.
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