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Abstract— 4D imaging radars, commonly known as 4D
radars, deliver comprehensive point cloud data that encap-
sulates range, azimuth, elevation, and Doppler velocity in-
formation even in harsh environmental conditions, such as
rain, snow, smoke, and fog. However, 4D radar data also
suffers from high noise and sparsity, which poses great chal-
lenges for SLAM applications. This paper presents RIV-SLAM,
a complete radar-inertial-velocity optimization-based graph
SLAM system designed to exploit the full potential of 4D
imaging radar technology. RIV-SLAM consists of four integral
components: front-end, loop closure, IMU pre-integration and
graph optimization, each optimized to effectively leverage the
unique attributes of radar data and tightly coupled with
IMU data. This is also the first SLAM system known to
us that outputs an optimized ego velocity. This capability
ensures reliable ego motion estimation under extreme conditions
(e.g., wheel odometry fails). Furthermore, we develop a new
ground extraction approach, specifically adapted for the 4D
imaging radar, which substantially improves the system’s z-axis
accuracy. Comprehensive evaluations of the RIV-SLAM system
on a variety of datasets demonstrate its superior performance,
significantly surpassing existing state-of-the-art Radar-SLAM
frameworks. The code of RIV-SLAM will be released at: RIV-
SLAM

I. INTRODUCTION

The development of autonomous robots and autonomous

vehicles has attracted considerable interest. Fundamental to

the autonomy of these machines is their ability to perform

state estimation, localization, and mapping with both pre-

cision and efficiency, especially in complex environments.

Over the years, numerous Simultaneous Localization and

Mapping (SLAM) algorithms have been presented for differ-

ent sensors, such as Light Detection and Ranging (LiDARs)

and cameras. However, it is widely recognized that the

performance of these sensors is significantly impacted by

various factors such as weather, lighting conditions, and

interference, including airborne particles, which can chal-

lenge their effectiveness in harsh environments [1][2]. To

address this limitation, the focus has turned to the mmWave

Radars (radio detection and ranging), as recent improvements

in electronics and materials science have enabled the radar

sensor to be housed in a smaller package than previous

products, and provide consistent reliability in diverse en-

vironments compared to cameras or LiDARs [3][4]. The

latest mmWave radar sensors are often referred to as 4D

imaging radars because they provide a denser 3D point cloud
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with richer information such as range, azimuth, elevation,

and Doppler velocity. With more spatial information and

increased resolution, 4D radars enable new possibilities for

SLAM applications.

Fig. 1: 4D Radar Data aligned with LiDAR Scan in forest

environment (colored: radar scan, black: LiDAR scan). The

magnitude and direction of Doppler’s velocity in radar scan

are illustrated by green arrows

Any opportunity, however, comes with risks. The de-

ployment of 4D radar poses two major challenges: 1) As

shown in Fig. 1, the data points captured by 4D radar tend

to be more sparse compared to 3D LiDAR, complicating

the extraction of reliable geometric features like edges and

planes. 2) The intrinsic physical properties of multichannel

4D radar systems can lead to the phenomenon of interference

waveforms. These are often misinterpreted as ghost objects

[5], which introduce larger errors in the scan matching

method widely used in LiDAR and camera-based SLAM.

In this context, several 4D imaging-radar-based SLAM

frameworks were proposed [6][7][8]. Inspired by these ap-

proaches, we present RIV-SLAM, a novel SLAM system

for 4D imaging radar based on Radar-Inertial-Velocity graph

optimization. In comparison to the previous work, the key

contributions of our work are as follows.

• RIV-SLAM is a complete system that makes full use of

4D radar data characteristics and consists of four parts:

front-end, loop closure, IMU pre-integration, and graph

optimization.

• We design a method to optimize radar Doppler velocity

with IMU data, which ultimately achieves an accurate and

stable estimation of ego velocity.

• We propose a ground extraction method tailored for 4D

imaging-radar data to increase the accuracy of the system



in the z-axis and a hybrid scan registration approach

based on tight coupling of scan-to-scan and scan-to-map

registration.

• The proposed RIV-SLAM system is thoroughly evalu-

ated on various datasets, and the results obtained signifi-

cantly outperform the current state-of-the-art Radar-SLAM

frameworks.

This paper is structured as follows. Section II reviews

the related work. Section III presents the proposed RIV-

SLAM framework. The experimental evaluation is described

in Section. IV. Section V summarizes the study and discusses

future directions.

II. RELATED WORK

With advancements in mmWave sensor technology, re-

searchers are turning to 4D imaging radar sensors for robot

SLAM and autonomous vehicles. These sensors have many

benefits, including their small size, low cost, robustness to

environmental factors such as lighting conditions, and low

power consumption. In this section, we will take an in-depth

look at the state-of-the-art approaches to Radar Odometry

and 4D Radar SLAM.

A. Radar Ego-motion Estimation

Recent improvements in electronics and materials science

have allowed the radar (radio detection and ranging) sensor

to be packaged in smaller sizes compared to earlier products

and provide denser point cloud data. Besides this, the latest

radar sensors can also measure radial velocity using the

Doppler effect [9][4]. The advantage of radar odometry

over LO (LiDAR Odometry) or VO (Visual Odometry) is

that the Doppler radar can directly measure the relative

velocity of stationary objects within a single frame, rather

than deriving the relative velocity from the changing po-

sition of the stationary object in successive frames. Early

studies, such as the work presented in [10], proposed an

instantaneous approach for 2D radar ego velocity estimation

using only one radar scan with Doppler radial velocity

measurements. The authors utilized the RANdom SAmple

Consensus (RANSAC) algorithm to filter out the moving

objects in the environment and employed the Least-SQuares

estimator (LSQ) to optimize the radial velocity of stationary

objects relative to the radar to obtain radar ego velocity. In

[11], the approach was extended to multiple radar sensors

with joint spatial optimization. In our previous work [12],

we adopted a multi-strategy weighted LSQ optimization

approach to estimate the ego-motion of robots, which we

further improve in this work. To achieve higher accuracy, the

fusion of radar measurements with inertial data has shown

impressive results [13][14][3]. However, without the help of

yaw angle, the yaw drift increases with time due to changes

in the yaw rate of the MEMS IMU. To compensate for this,

the authors in [15][16] presented variants of Radar Odometry

based on further sensor data fusion, such as Radar Visual

Inertial Odometry, Radar Thermal Inertial Odometry, and

GNSS-aided Radar Inertial Odometry.

B. 4D Radar SLAM

The exploration of 4D radar SLAM is still at a nascent

stage, with existing research primarily centered around two

categories.

1) Indirect Method: The indirect method refers to feature

extraction and scan-matching, which have been exten-

sively researched on LiDAR-SLAM [17][18]. Similarly,

the radar point cloud is considered as an image and the

transformation between successive scans is computed by

extracting and matching specific features. A radar keypoint

extraction and graph scan matching is proposed in [1]

to enable a scanning-radar-based odometry. Hong et al.

[19] presented a complete Radar-SLAM framework for

360◦ scanning radar, including SURF feature extraction

and global pose graph optimization. However, feature

extraction suffers from the noise of measurements and

sparse radar point clouds, which makes it even harder

to apply to a 4D solid-state radar with an effective FoV

(Field of View) of 120◦. Therefore, the most recent works

for 4D radar SLAM are based on Point cloud registra-

tion. In [7], a scan-to-submap NDT (Normal distribution

transform) is applied with point cloud registration, while

velocity pre-integration is used to improve optimization

performance. Zhang et al. [6] proposed an Adaptive Prob-

ability Distribution-GICP (APDGICP) to address radar

measurement noise, considering the spatial probability

distribution of each point in GICP [20]. Another approach

to improving the matching quality of sparse radar data is

4DiRIOM [21]. Point matching here is expressed in terms

of distribution-to-multiple-distribution constraints, which

can be achieved by matching the current scan with a sub-

map constructed by the mapping module, rather than scan-

to-scan matching. Huang et al. [22] leverages the RCS

(radar cross section) information to refine the point-to-

point correspondence, thus improving the estimation of

poses based on radar point matching.

2) Direct Method: Instead of using feature extraction and

scan matching, the direct method takes the entire radar

image as input and builds correspondence between con-

secutive scans in the Fourier domain. In [23] the Fourier

Mellin Transformation (FMT) is utilized to estimate the

transformation matrix taking advantage of phase correla-

tion properties. In Fast-MbyM [24] a CNN was proposed

to mask radar observations, and they decoupled the search

for angle and translation by utilizing the translational

invariance of the Fourier Transform.

C. Summary

Inspired by [6] [7] [8] [14] [21] [22], we propose our

RIV-SLAM system, which significantly advances existing

methods in several respects:

• RIV-SLAM is, to the best of our knowledge, the first radar

SLAM framework to optimize both pose and ego-motion.

• We propose a ground extraction method tailored for 4D

imaging-radar data to enhance the system’s performance.



• A novel registration approach based on the anisotropy of

radar measurements is introduced to overcome sparsity

and noise in radar data.

• Extensive evaluations on a variety of datasets demonstrate

the accuracy, robustness, and real-time performance of

RIV-SLAM.

III. METHODOLOGY

In this paper, we employ the following conventions to

represent the various mathematical and physical quantities

used in our research:

• Scalars will be printed as lowercase, non-bold letters (e.g.

b), and constants will be printed as uppercase, non-bold

letters (e.g. B).

• Matrices will be printed as bold upper case letters, like B.

• Vectors will be represented by bold lowercase letters, like

b.

• Subscripts and superscripts are used to denote different

frames of reference. For example, a vector b in radar frame

{}r will be denoted as br, and the rotation from frame {}r

to frame {}w will be represented by either the matrix Bw
r

or the quaternion bw
r .

• The global world frame is represented by {}w or {}W .

By using this formalism, we aim to provide a clear and

consistent notation that facilitates communication and un-

derstanding of our mathematical models and results.

A. Framework Overview

Fig. 2 shows the overview of the proposed system con-

sisting of four components: Outlier Removal, Ground Ex-

traction, Loop Detection, and Graph Optimization.

B. Front-end

1) Ego Motion Estimation: 4D radar captures a series

of targets, detailing their three-dimensional positions pr,

corresponding Doppler radial velocities vrd, and the signal-

to-noise ratio (SNR) s for every target. The radar coordinate

system is defined as {}r. At any given moment, the radar’s

velocity is represented by vr. The Doppler velocity vrd is

calculated by taking the magnitude of the projection of the

relative velocity vector between the target and radar onto the

ray connecting the target and the radar, as illustrated in Fig.

1. This calculation involves the dot product of the target’s

velocity vrd in the radar frame {}r and the unit vector pointing

from the radar towards the target:

−vrd =
pr

∥pr∥
· vr = rr · vr = rrxv

r
x + rryv

r
y + rrzv

r
z (1)

If we assume that the targets within the scene remain

stationary and only the sensor platform is in motion, each

detected target acts as a constraint on the estimated velocity

of the radar. Thus, we obtain a set of N detections in a

radar measurement and write (1) in matrix notation, we get

(2), and the residual e can be derived as (3).
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(2)

e = Hvr + vrd (3)

Taking into account the anisotropy of the radar measurement

errors, i.e., these errors appearing in (1) are not only velocity-

dependent, but also position-dependent, and in particular,

are related to the estimated angle of the object. Therefore,

we extend the multi-strategy weighting LSQ optimization

approach proposed in our previous work [12] to achieve

accurate and robust ego motion estimation. The correspon-

dence between residuals, azimuth contribution and SNR

consistency is defined as wresidual
i , wazimuth

i and wsnr
i .

Applying the residual definition of (3) yields the residual

with multi-strategy weighting LSQ optimization:

em = (wresidual · wazimuth · wsnr)(Hvr + vrd) (4)

Remarkably, in practice, most targets in a 4D radar point

cloud are static in the world frame, and all static points

fulfill the (1). To account for the dynamic environment, a

three-point RANdom SAmple Consensus (RANSAC) [15]

approach is employed to eliminate dynamic outliers and

extract static inliers for (2). This also aids subsequent point

cloud registration by filtering out dynamic points and im-

proving the accuracy of scan matching. Since the angular

velocity ω
b
m of the base frame {}b leads to an additional

velocity in the radar frame {}r, we apply rigid body motion

to determine ω
b
m as (5).

v
r = ω

b
m × l

b
br + v

b (5)

2) Ground Extraction: Ground extraction from 4D radar

point clouds is a significant challenge, especially when

compared to much less noisy and dense point clouds captured

by LiDAR. This fundamental difference in data quality

means that the sophisticated algorithms developed for feature

extraction in LiDAR SLAM systems are often unsuitable for

direct application to 4D radar data. Therefore, we propose

a ground extraction method tailored for 4D radar data to

overcome the problems of sparsity, anisotropic noise and

feature obscurity inherent in radar point clouds. At the

beginning, when the system is completely stationary, we use

the IMU measurements to initialize the system and estimate

the gravity. The z-axis of the first radar frame is then aligned

with the gravity direction. Because in most cases, the ground

plane is nearly perpendicular to the direction of gravity.

Following the initial setup, all subsequent gravity vectors

within the sliding window are aligned with the initial gravity.

Next, the known radar mounting height and direction of

gravity are used to determine the reference ground plane.

Then we search for potential ground points in the altitude



Fig. 2: Pipeline of RIV-SLAM

interval between −zground and +zground around the ref-

erence plane and calculate the point’s normal vectors via

Principal Component Analysis (PCA) [25]. Potential ground

points are only classified as ground points if they meet two

key criteria: first, the difference between the normal vector

and the positive gravity vector must fall below a specified

threshold θg; second, the signal-to-noise ratio of the point

must fall within a range γmin and γmax. Last, the RANSAC

algorithm is applied to refine the ground points. These

criteria ensure that points identified as ground maintain both

the expected orientation consistency with respect to gravity

and the signal reflection characteristics normally expected

from the ground. Once the exact ground points are obtained,

we fit the entire ground plane and filter all the points below

the ground plane, which are called ghost points, and the

points above the ground plane are used for scan registration.

The ground coefficients are added to the graph optimization

as constraints on the z-axis. The ground extraction process is

illustrated in Fig. 3. On the left side of the figure, an image

captured from a front-view camera is displayed, providing

a visual context of the environment. On the right side, the

figure showcases the ground features that have been extracted

from the radar frames, presented from a side view.

Fig. 3: Ground Extraction. left: camera view, right side from

top to down: radar inliers, ground detection and fitting, non-

ground filter

3) Scan Registration: Radar-based scan registration typi-

cally utilizes two matching strategies: scan-to-scan or scan-

to-submap. The scan-to-scan approach aligns two consecu-

tive radar scans to determine point correspondences and has

the advantage of requiring less computation. However, this

method tends to be less reliable, especially with sparse radar

data or significant changes in the environment, such as during

turns or uphill travel, leading to error accumulation. On the

other hand, the scan-to-submap method involves comparing

the current scan against a locally maintained map, enhancing

robustness and accuracy. But this method also introduces a

large computational load, which reduces the real-time per-

formance of the system. Based on the above two approaches

and inspired by [26], we propose a hybrid registration

approach, i.e., we use scan-to-scan to compute the real-time

radar odometry, and then use scan-to-submap for map-based

odometry correction. As we in [12] mentioned, the Angle of

Arrival (AoA) ϕ of 4D radar signal can be mathematically

calculated as: ϕ = sin−1(λ·∆φ
2πr ), where ∆φ is the phase

change of the FFT peak, r represents the distance between

consecutive antennas and λ is the wavelength. It should be

noted that ∆φ depends on sin(ϕ), which exhibits a non-

linear dependency. The approximation of sin(ϕ) as a linear

function is only valid when ϕ is small in magnitude. Thus,

radar measurements exhibit anisotropic uncertainties [8],

meaning the precision varies for different AoAs. Specifically,

the uncertainty associated with each radar point is greater

in the azimuthal direction compared to the radial direction.

And when the azimuth angle is smaller, the measurement

is more accurate. Following these observations, we modify

the Adaptive Probability Distribution-GICP (APDGICP) [6]

to incorporates the spatial probability distribution of each

point into the Generalized Iterative Closest Point (GICP)

framework in accordance with the anisotropy of the 4D radar

measurements. The covariance matrix of the point in the local

frame is S =





σr 0 0
0 σa 0
0 0 σe



 with σa ≈ sin(α)r
cos(ϕ) and σe ≈

sin(β)r
cos(ϕ) . σr, σa and σe represent the probability distributions

related to range, azimuth, and elevation respectively. In

contrast to the original APDGICP, the covariance matrix is

not only related to the radial distance but also to the angle

of arrival. By adding another term 1
cos(ϕ) , the anisotropy of

the radar measurement can be modelled in scan registration.

C. IMU Pre-integration

In our framework, the estimation of the continuous state of

the radar is achieved by propagating the IMU data. Should



there be any changes in the previous state, repropagation

becomes imperative. However, repropagation over the entire

sliding window is computationally intensive. Inspired by

[18], we adopt IMU pre-integration to improve the efficiency

and effectiveness of state estimation. The measurements of

angular velocity and acceleration from an IMU are defined

using (6):

ω̂t = ωt + bω

t + nω

t (6)

ât = Rwb

t (at − g) + ba

t + na

t (7)

where ω̂t and ât are the raw IMU measurements in {}b at

time t.ω̂t and ât are influenced by the slowly varying bias

bt and white noise nt ·R
wb
t is the rotation matrix from {}w

to {}b and it is abbreviated here as Rt. g is the constant

gravity vector in {}w. Assume that the angular velocity and

acceleration remain constant within a small integration time

∆t, the velocity, position and rotation of the robot at time

t+∆t can be easily derived from (6)(7):

vt+∆t = vt + g∆t+Rt (ât − ba

t − na

t )∆t

pt+∆t = pt + vt∆t+
1

2
g∆t2 +

1

2
Rt (ât − ba

t − na

t )∆t2

Rt+∆t = Rt exp ((ω̂t − bω

t − nω

t )∆t) (8)

We define the noise from ti to tj as δvij ,δpij ,δφij . The

relative body motion between two timestamps can be then

calculated by:

∆vij = R⊤

i (vj − vi − g∆tij) + δvij

∆pij = R⊤

i

(

pj − pi − vi∆tij −
1

2
g∆t2ij

)

+ δpij

∆Rij = R⊤

i Rj exp(δφij) (9)

The noise term from ti to tj is then normalized linearly:

δvij = δvij−1 −∆R̂i,j−1(âj−1 − ba

i )
∧δφi,j−1∆t

+∆R̂i,j−1n
a

j−1∆t

δpij = δpij−1 + δvij−1∆t−
1

2
∆R̂i,j−1

(âj−1 − ba

i )
∧δφij−1∆t2 +

1

2
R̂i,j−1n

a

j−1∆t2

δφij = ∆R̂⊤

t δφij−1 + Jr,j−1n
ω

t ∆t (10)

Applying the above IMU pre-integration model not only

improves the computational efficiency of the system, but also

adds the IMU pre-integration factor to graph optimization.

D. Loop Detection

Inspired by [7] [6], our approach modifies the ScanCon-

text [27], originally designed for LiDAR SLAM, to facil-

itate radar-based loop detection. The original ScanContext

methodology segments a LiDAR point cloud into bins, using

the highest point in each bin to transform the entire cloud

into a representative image. However, due to sparsity of

4D radar scans, we have adapted the method to utilize the

maximum intensity of the radar points for encoding the point

cloud, as high-intensity points are more likely to correspond

to stable features in the environment. Upon identifying a

loop, the system calculates the relative pose and covariance

matrix between the current keyframe and the corresponding

matching keyframe through scan registration. In addition, we

use the ground feature as a higher-weight constraint to reduce

false detection. This adjustment ensures more reliable and

accurate loop detection in radar SLAM environments.

E. Graph Optimization

As shown in Fig. 4, the factor graph is deployed for

back-end optimization, which incorporates six principal com-

ponents: scan-to-scan registration factors, scan-to-submap

correction factors, IMU pre-integration factors, ego velocity

factors, ground factors and loop closure factors. The state

of each graph node is denoted by the rotation R, position

p in SE(3), velocity vb, bias of acceleration ba, angular

velocity bω .

• scan-to-scan registration factors are created by scan-to-

scan matching with the rotation Rss and position pss.

• scan-to-submap correction factors are generated through

scan-to-submap correction, characterized by the rotation

Rsm and position psm.

• IMU pre-integration factors are established between

consecutive frames to assist in predicting the sensor pose

and to maintain the factor graph well-constrained, espe-

cially under conditions of point cloud degeneration.

• ego velocity factors are created between continuous

frames based on the radar ego motion estimation to

constrain the IMU pre-integration and correct the bias.

• ground factors are obtained by detecting and fitting the

ground as a plane equation Ax +By +Cy +D = 0 to

minimize the error in z-axis.

• loop closure factors, determined by the intensity Scan-

Context as relative pose between two nodes, are added to

the graph to reduce cumulative drift.

The implementation of a sliding window mechanism serves

to enhance both the accuracy and efficiency of the system. By

constructing sub-maps from radar scans within this window,

denser environmental information is obtained, facilitating

more effective scan-to-submap matching. Simultaneously,

the mechanism of continuously updating and optimizing

a selection of the most recent data guarantees that the

system remains both responsive and precise in its opera-

tions over time. This approach also ensures optimal use of

computational resources, striking a balance between detailed

environmental mapping and the efficient processing of data.

The factor graph is optimized by the g2o library [28] to

obtain a refined pose and velocity.

IV. EXPERIMENT EVALUATION

In order to evaluate the performance of RIV-SLAM on dif-

ferent scenarios and different sensor platforms, we conducted

experiments on the following open-source datasets:

• NTU4DRadLM Dataset [29]: Two platforms are utilized

for data collection, one handcart and one car, equipped

with Oculii Eagle 4D Radar and VectorNav VN100 IMU.

An external Ublox GPS sensor is also mounted on the



Fig. 4: Graph Optimization Structure of RIV-SLAM: Six types of factors are introduced to construct the factor graph in a

sliding window: (a) scan-to-scan registration factor, (b) scan-to-submap correction factor, (c) IMU pre-integration factor, (d)

ego velocity factor, (e) ground factor, (f) loop closure factor

sensor platform, which provides a reference value for ego

velocity estimation.

• Kvarntorp Dataset [30]: Two sequences of data under

harsh environmental conditions (one on underground min-

ing and the other on forest) are captured via Sensrad Hugin

Radar sensor and Xsens MTi-30 IMU.

• 4D Radar Dataset [7]: This dataset is collected with a

ZF FRGen21 4D Radar and a NovAtel GNSS on campus.

The toolbox EVO [31] is used for quantitative trajectory

evaluation, i.e., Absolute Pose Error (APE) and Relative Pose

Error (RPE).

A. Comparison With the State-of-the-Art Method

As shown in TABLE I, we mainly compare our sys-

tem with APDGICP from [6], which is currently the only

open-source full Radar SLAM system to the best of our

knowledge. In the first dataset from NTU4DRadLM, data

is collected using a handheld device moving at low speed

(maximum speed of 1m s−1) in a park lot at NTU university

campus. Therefore, there are two main challenges for Radar

SLAM, one is the removal of dynamic objects (pedestrians

and vehicles), and the other is the drift along the z-axis. Fig.

5c showcases the estimated trajectories by APDGICP and

the proposed system, alongside the ground truth generated by

LiDAR-Visual-Inertial SLAM. As shown in Fig. 5e, the pose

drift across the x, y, and z axes illustrates how the system’s

accuracy varies in three-dimensional space over time. Both

methods are robust under dynamic environments, but the

ground extraction of RIV-SLAM significantly improves the

pose accuracy in the z-axis. Apart from that loop detection

provides a great enhancement to both approaches. This obser-

vation is further supported by the results on the car platform.

Accurate GPS data is also available in this sequence, so we

compare the ego motion estimation produced by our system

with the GPS data, and the average relative error is less than

2% for up to 4.5 km of urban driving, which also shows that

our system is capable of outputting accurate ego velocity.

The results of the evaluation in the mine and forest

datasets are presented in Fig. 5h and Fig. 5k. However, since

APDGICP failed in both cases, only RIV-SLAM and ground

truth were compared. The possible reasons for the failure

of APDGICP in forest and mine environments are listed as

follows: a) Lack of structured features in forest environments

for scan matching estimation. b) The low density and high

variance of radar data in forests leads to a rapid bias.

c) Although structured features are provided in the mine

environment, the repetition of monolithic features (rock walls

and tunnels) results in a number of false matches. In contrast,

RIV-SLAM with ground extraction, IMU constraints and

velocity factors performs extremely well in both of these

contexts. We also note that the z-axis pose is shifted consid-

erably (nearly 30m) during the 4.5 km long mine dataset,

and this will be the focus of our future work to further reduce

the z-axis error using other sensor constraints.

TABLE I: RPE and APE on different datasets

Approaches Apdgicp Proposed-LC

Datasets
trpe trpe tape trpe trpe tape

(m) (%) (m) (m) (%) (m)
parking lot 4.26 0.0469 3.61 2.58 0.0342 2.25

urban road 4.89 0.0397 59.12 2.69 0.0456 32.62

forest - - - 1.26 0.0125 4.52

mine - - - 2.65 0.0762 58.62

B. Real-Time Performance

The real-time performance of our proposed system is

evaluated by comparing the mean computation time for each

component in all datasets. In general, with the benefit of

sliding window optimization efficiency, the complete system

is able to output real-time pose, ego velocity estimation, and

3D radar maps at a rate of 4Hz (the size of the sliding

window is set to 20 with AMD R5-5600X CPU and 32GB



(a) top-down view of parking lot, figure
adopted from [29]

(b) estimated trajectories of proposed w/o Loop
Closure, APDGICP, and ground truth (c) pose drift in x, y, and z

(d) top-down view of urban road, figure
adopted from [29] (e) estimated trajectories

(f) estimated ego velocity and GPS refer-
ence

(g) top-down view of forest and sensor platform, figure adopted from [30]
(h) absolute pose error with RIV-
SLAM in forest environment

(i) pick-up truck driving through the Mine with the
sensor platform, figure adopted from [30]

(j) LiDAR map of mine envi-
ronment (rock walls and tun-
nels)

(k) absolute pose error with RIV-SLAM in mine
environment

Fig. 5: Estimated trajectories of proposed RIV-SLAM, APDGICP, and ground truth

RAM). As the distance of the trajectory increases, the time

taken for loop detection grows rapidly, and this is particularly

obvious with long datasets.

V. CONCLUSIONS

In this paper, we introduce RIV-SLAM by effectively

integrating 4D radar data, IMU measurement, and Doppler



velocity information into a cohesive graph-based frame-

work. This combination is demonstrated to address some

of the fundamental challenges associated with 4D radar-

based SLAM, including handling sparse and noisy data, as

well as improving z-axis accuracy and ego-motion estimation

under adverse conditions. Our system’s novel approach to

optimizing radar Doppler velocity with IMU data has proven

critical in achieving accurate and stable velocity estimations,

a key differentiator from existing solutions. Furthermore, the

introduction of a ground extraction method tailored for 4D

radar data and a hybrid scan registration strategy significantly

enhances the system’s accuracy and robustness. Evaluations

conducted on various datasets have demonstrated that the

RIV-SLAM system substantially outperforms current state-

of-the-art Radar-SLAM frameworks, particularly in challeng-

ing environments where the precision of movement and envi-

ronmental understanding are paramount. The system’s ability

to produce optimized ego velocity outputs, even in scenarios

like wheel tachometer or GPS failure, underscores its utility

and innovation in the realm of autonomous navigation and

mapping technologies. Future works will extend the proposed

system to include more sensor modalities, such as cameras,

GPS and so on.
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