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A B S T R A C T   

The standard method of shrinkage measurement consists of immersion of the product in a fluid in order to 
calculate the volume changes before and after drying. It is destructive and time-consuming and also is not a 
practical method to be used in online drying monitoring systems. To date, it has been tried for measuring 
shrinkage based on passive stereo vision. But no report has been provided so far on the accuracy of this technique 
and its comparison with conventional method of measuring volumetric shrinkage. On the other hand, because of 
the small size of dried foodstuff products, it does not seem that the stereo vision to be able to extract high detail 
point clouds from the surface of objects. Therefore, this research was conducted in order to study the potential 
use of 3D laser scanning for measurement of the volumetric shrinkage of some horticultural products during 
drying process. To this end, a calibrated 3D laser imaging system was applied in order to precisely scan the 
surface of some small size horticultural products (including plum, fig, date, and button mushroom), which take 
non-symmetric form during the drying process. 2D image of samples was also taken to predict the volumetric 
shrinkage by various texture analysis methods. Drying was carried out by a convective dryer. The results indi-
cated a significant superiority of 3D laser imaging compared to 2D imaging. The value of correlation coefficient 
and mean absolute percentage error of multilayer perceptron artificial neural networks models created based on 
selected spatial features of point clouds in predicting volumetric shrinkage for plum, fig, date, and mushroom 
was obtained 0.90 and 19.48, 0.95 and 14.25, 0.78 and 23.54, and 0.87 and 9.47, respectively.   

1. Introduction 

Drying is one of the most significant post-harvest processes in which 
decreasing moisture content and water activity to reach the hygroscopic 
equilibrium not only prevents food materials from microbial attack and 
decaying but also increases their retention time (Mujumdar, 2004). 
Because of enzymatic/non-enzymatic browning reactions and loss of 
water, drying is accompanying with a number of physicochemical 
changes in the majority of foodstuffs like changes in pigments, loss/ 
reduction of nutritional elements, tissue hardening, and changes in 
texture and shape (Nindo et al., 2003). During drying, fruits/veggies lose 
moisture gradually from the center to the external surfaces. This event 
collapses cellular membranes due to an unbalance pressure between 
internal and external parts of the material and as a consequent result the 
viscoelastic matrix of matter is drawn into the void spaces caused by 
evaporation and finally shrinkage, which is a reduction in the shape and 
size of food tissues, occurs (Bonazzi and Dumoulin, 2011; Aprajeeta 

et al., 2015). 
It has been proven that moisture content and shrinkage are linearly 

correlated so that shrinkage increases by decreasing moisture content 
for a wide variety of horticultural products (Dehghannya et al., 2016). 
On the other hand, shrinkage affects the thermo-physical properties of 
food matter, heat and mass transfer phenomena, and the effective hu-
midity diffusion coefficient. It also reduces dehydration ability and 
causes surface cracking of the product that adversely affect product 
marketing (Mayor and Sereno, 2004). Different horticultural products 
have different shrink-ability and its severity highly depends on the 
drying method. For example, shrinkage in the hot air drying and mi-
crowave drying methods is stronger than freeze drying because of an 
increase in the rate of cellular deformation due to the raised temperature 
following an Arrhenius-type behavior (Yadollahinia and Jahangiri, 
2009). 

Microstructure of fruits/veggies is highly affected by drying condi-
tions and irreversible tissue changes can happen rapidly, which may 
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result in the degradation of product quality. Therefore, it is necessary to 
monitor and control the physico-mechanical changes of the product’s 
texture, like shrinkage, during drying process to maintain quality 
(Lewicki and Jakubczyk, 2004). The common methods to measure the 
shrinkage include direct measurement using micrometer or measuring 
volume changes by fluid displacement (liquid pycnometry) method. 
Whereas these methods are considered as reference for shrinkage mea-
surement, as the main drawbacks, they are highly time-consuming, 
destructive, and cannot be applied in practice for real-time/online 
measurements. Hence, various kinds of research have been conducted 
during the last two decades to find a reliable alternative approach to 
measure shrinkage in the non-contact manner. Most of the works that 
have been conducted involves the use of shape and textural features of 
2D images to predict shrinkage (Raponi et al., 2017). Despite relatively 
appropriate results (high correlation coefficient and low error rate) of 
measuring shrinkage in drying of thin layer specimens (Behroozi Kha-
zaei et al., 2013; Jafari and Bakhshipour, 2014), it cannot be employed 
as a general method with acceptable accuracy, especially if the thickness 
of the specimens increases, the thickness is not uniform across the 
sample, or the shape of product is irregular and complex. Thus, it is 
required to apply 3D shape contours in order to measure volume 
changes. 2D X-ray Computerized Tomography (CT) cross-sections have 
been employed to measure shrinkage by reconstructing 3D shape of 
dried samples (Danvind and Synnergren, 2001; Li et al., 2014). While 
the CT scanning is accurate, some disadvantages, such as cost of 
equipment, long data acquisition time, and complexity of image pro-
cessing algorithms due to high volume of information obtained, make it 
inappropriate in practice to be used in dryers. Madiouli et al. (2011) 
introduced a novel non-intrusive technique based on 3D Digital Image 
Correlation method (3D-DIC) or stereo-correlation to determine the 
apparent volume of banana samples in a convective dryer. The main 
disadvantage of this study is that the results obtained by the 3D stereo 
vision method have not been validated by the reference volume mea-
surement method. On the other hand, it is not possible to obtain high 
resolution point clouds data by the stereo vision when the size of dried 
products is small. In return, 3D laser imaging with simple setups at 
highly low cost is extremely reliable at detecting objects of sufficient 
size. Therefore, it seems 3D laser imaging can provide more reliable 
results compared to the stereo vision in measuring volumetric shrinkage 
of horticultural products, when their shape becomes thin, irregular, and 
non-symmetric during drying. 3D laser imaging, which is also known as 
triangulation-based scanning, is an active imaging method that uses a 
laser stripe to scan the scene. A camera is used to record the location of 
the laser line. Depending on how far away the laser strikes an object, the 
laser line appears at different places in the camera’s field of view. 
Having the distance between the image sensor of camera and the laser 
emitter, the angle of the camera corner, and the angle of laser emitter 
corner, the height information can be calculated by triangulation for-
mula (Mollazade et al., 2021). Heating-induced volume shrinkage of 
meat cuboids has been estimated using the terrestrial 3D laser scanning 
technology (Vaskoska et al., 2020). While the obtained results were 
promising, due to the relatively long imaging time and the need for 
completely reconstruction of the 3D shape of samples for volume mea-
surement, the proposed technique is not effective in practice for use in 
real-time applications. Accordingly, this research was conducted in 
order to develop a non-contact approach based on 3D laser imaging to 
measure volumetric shrinkage of some horticultural products during 
drying process in real-time. The aim of the study was achieved through 
the following objectives: 

• Monitoring of volumetric shrinkage changes of small size horticul-
tural products in hot air drying process  

• Geometric validation of the 3D laser imaging system for scanning of 
small size fruit -shape artificial objects with predefined volumes  

• Introducing some spatial features in processing of point clouds of 
laser scans  

• Evaluating the performance of the 3D laser imaging system in 
measuring volumetric shrinkage of dried horticultural products in 
comparison with the 2D imaging and conventional fluid displace-
ment method 

2. Materials and methods 

2.1. Sample preparation 

Fresh samples including plum, fig, date, and button mushroom were 
purchased from the local markets in Würzburg, Germany (40 samples 
each). The oven drying method was applied in order to determine the 
moisture content of fresh samples (AACC, 1986). Eight samples from 
each fruit and mushroom were randomly selected. After weighing (W1), 
they were kept at the drying condition (75 ◦C) until reaching a constant 
weight (W2). The moisture content (MC) of samples (wet basis) was then 
calculated as following: 

MC(%,w.b.) =
(

W1 − W2

W1

)

× 100 (1) 

After drying, it was specified that the samples have initial MC of 
49.81, 67.71, 20.03, and 91.63 % w.b. for plum, fig, date, and mush-
room, respectively. The rest of samples were stored in plastic bags at 
refrigeration condition (4 ◦C) until the experiments were carried out. 
Samples were stored in refrigerator for less than 15 h. Since the samples 
were kept in plastic bags, it is expected that they retained their moisture 
content and no decreasing in the initial moisture content of samples has 
been occurred. 

2.2. Data collection 

Samples were removed from the cold storage two hours prior ex-
periments to let them reach room temperature. Samples were first taken 
for the mass determination. The apparent volume (Vs (cm3)) of samples 
was then calculated using the fluid displacement method by a pyc-
nometer as follows (Yan et al., 2008): 

Vs =

(
Wpf − Wp

)
−
(
Wpfs − Wps

)

ρf
(2) 

where, Wp, Wpf, Wps, Wpfs, and ρf are mass of pycnometer (g), mass of 
pycnometer containing fluid (g), mass of pycnometer containing sample 
(g), mass of pycnometer containing fluid and sample (g), and apparent 
density of fluid (g/cm3), respectively. 

After drying the surface of the samples with a cloth, 2D imaging and 
3D laser imaging were taken place. The samples were then placed in a 
dryer. During drying, 5 samples were taken out of the dryer every 2 h 
(there was 7 samples at the end of drying). 2D imaging and 3D laser 
imaging were performed from these samples and after measuring their 
mass, the fluid displacement method and Equation (2) were used to 
measure their volume. Finally, the volumetric shrinkage (S) was calcu-
lated using the following equation (Yan et al., 2008): 

S =

(

1 −
Vt

V0

)

× 100 (3) 

where, V0 and Vt are the apparent volume of samples at fresh stage 
and drying stage t, respectively. 

A home-scale convective hot-air dryer was applied to dry the samples 
(VITA5 Nobel PRO, Netherland). The hot air heated by the electric 
heating tube was blown into the drying chamber by a centrifugal fan. An 
axial flow fan, located in the middle of the end side of the drying 
chamber, provided uniform circulation and distribution of air flow in the 
drying chamber (airflow rate: 1.3 to 1.5 m/s.). Approximately an hour 
before the drying process began the dryer was turned on to the tem-
perature inside the dryer to be stable. Then, the samples were placed on 
the central tray of the dryer in such a way that there was a suitable 

K. Mollazade et al.                                                                                                                                                                                                                             



Computers and Electronics in Agriculture 207 (2023) 107749

3

distance between the samples for air circulation. The mass of the sam-
ples was measured and recorded with a digital scale with an accuracy of 
0.01 g (Brifit, model KA26, China) before drying and once every hour 
during drying, to inform the process of moisture reduction and to draw 
the drying curve. The samples were dried for 12 h. Drying temperature 
was determined based on literature review, it was 60◦ C (Sacilik et al., 
2006), 70◦ C (Sarvestani et al., 2014), 70◦ C (Al-Awaadh et al., 2015), 
and 60◦ C (Li et al., 2021) for plum, fig, date, and mushroom, 
respectively. 

Since the method presented in the current research for predicting 
volumetric shrinkage of dry fruits based on the spatial features of point 
clouds (section 2.3.2) is completely novel and there was no similar 
research to provide a comparison, it was done with result of predicting 
volumetric shrinkage of dry fruits based on the texture analysis of 2D 
images (section 2.3.1), which is the only introduced non-contact 
shrinkage measurement method. The setup shown in Fig. 1-A was 
used to acquire 2D images. The images were acquired by a mobile phone 
camera (Motorola one, 13 MP, f /2.0, 1/ 3.1 “, 1.12 µm, PDAF, China) 
and at a height of 35 cm from the surface of the samples. Settings of 
camera went out the automatic mode in order to acquire images with the 
same conditions. A 22-watt fluorescent lamp was used as the light 
source. Since the lamp was circular and created daylight, the scene was 
uniformly illuminated so that no shadow was created around the sam-
ples. For the sample segmentation to be made easier, the background 
was considered white for plums, figs, and dates, and the background was 
considered black for button mushrooms. 

3D point clouds of samples were acquired using a calibrated high- 

speed laser profile scanner (Micro-Epsilon scanControl 2900–25, 
Micro-Epsilon Messtechnik GmbH & Co. KG, Germany). Micro-Epsilon 
scanControl 2900–25 is a high precision laser scanner, which has been 
designed for use in industrial and laboratory applications. Point clouds 
generated by this scanner is highly accurate so that minimum number of 
scattered points is assured by the manufacturer. Equipped with a 658 nm 
low power Class 2 M semiconductor linear laser and a CMOS image 
sensor, the laser scanner was mounted on the flange of a 6-axis KUKA 
KR16 robot (±0.05 mm repeatability) to scan the samples from the top 
(Fig. 1-B). The Micro-Epsilon scanner measures a scan line at a time [z- 
axis (height) resolution: ±2 µm, z-axis measuring range: 25 mm (start-
ing at 53.5 mm and ending at 78.5 mm), x-axis resolution: 1280 points/ 
profile, and x-axis measuring range (the scanning width per line): 23.4 
mm to 29.1 mm]. The top surface of samples was scanned by moving the 
robot arm in the horizontal direction at linear speed of 7.2 mm/s. The 
height information of the reflected laser light, which is collected by the 
camera, is calculated by the triangulation method. The same setup was 
used for earlier work in Mollazade et al., 2021. The scanner geometric 
calibration was carried out by KUKAs internal XYZ – 4 Point and ABC – 2 
Point methods to determine position and orientation of the Tool Center 
Point (TCP) with respect to the robot’s base coordinate system. Since the 
scanning width was 23.4–29.1 mm, the KUKA robot was programmed to 
scan the surface of samples in one plane over them with two consecutive 
sweeps. Therefore, there was sufficient overlap among two consecutive 
sweeps in order to ensure successive scanning of samples with various 
heights. After acquiring the point clouds of each sample, the data were 
stored in the.xyz format for further analysis. 

Fig. 1. Imaging setups: A) 2D imaging, B) 3D laser imaging, and C) Photogrammetry.  
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Photogrammetry imaging method was used to geometrically validate 
the laser imaging system in scanning samples related to horticultural 
products. First, it was necessary to verify the function accuracy of the 
photogrammetry method. Therefore, the accuracy of the photogram-
metry method in measuring the volume of objects was compared with 
the standard method of fluid displacement. For this purpose, the main, 
middle and sub-diameters of samples of plum, fig, date, and button 
mushroom with small and large sizes, were measured by a caliper. The 
criteria considered to define the size of the products was based on the 
literature review (Jahromi et al., 2008; Caglarirmak, 2011; Ionica et al., 
2013; Ersoy et al., 2017). Then, the three-dimensional shape of these 
products was modeled in SOLIDWORKS® ver. 26 (Dassault Systèmes, 
Vélizy-Villacoublay, France) software. Finally, the models were printed 
with white filament by a 3D printer (Ultimaker S3, Ultimaker Co., 
Netherlands). The volume of printed samples was measured by the fluid 
displacement method (Section 2.2). The images of these samples were 
then taken by a photogrammetry imaging system, as follows. 

As Fig. 1-C shows, the artificial (printed) samples were mounted on a 
stand using a small needle. Around this, some small coded targets were 
placed as unique identifiable features for the image reconstruction. A 
DinA4 float glass plate was placed under the stand, which was also 
printed with coded targets. The targets on the glass plate have a defined 
size and a fixed defined distance from each other. The distances between 
the center points of the markers on the glass plates are accurate to 0.100 
mm. Thus, the plate serves on the one hand as a unique feature in the 
reconstruction and, on the other hand, can also be used as a scale bar to 
determine the scaling of the object. The entire assembly was on a 
turntable and can therefore be rotated around the center of the object 
without changing the assembly or the position between the markers and 
the object. Two flashes were used to guarantee perfect illumination and 
to adjust the exposure to the object. The employed camera was a Sony 
A6300 with a 30 mm lens. The image resolution was 6000 × 4000 pixel. 
The images were taken from three different angles. Once from eye level 
with the object and 45◦each above and below it. For each angle, the 
object was rotated around its own axis and a photo was taken approxi-
mately every 5–10◦. In addition, a photo was recorded from the vertical 
from above. Thus, the surface of the object was systematically recorded 
from all viewing angles with sufficient overlap of the individual images. 

The 3D reconstruction was done using Agisoft Metashape ver. 1.8.1 
software (Agisoft LLC, St. Petersburg, Russia). The accuracy achieved by 
photogrammetry using Agisoft on similar objects has already been 
studied by Schöning and Heidemann, 2015. The mean value of the de-
viation from the ground truth data was 4.52 mm. Since these in-
vestigations are based on a data set with a significantly lower resolution 
and a lower number of images, it can be assumed that results of the 
current study show an even higher precision. The workflow in Meta-
shape is typical for a photogrammetric reconstruction and can be 
divided into two steps. The first step is the so-called alignment, in the 
second step the surfaces are reconstructed, meshes are generated and 
textures are applied. In the first step, feature points are searched for in 
the images and matched across images. Likewise, the camera positions 
for each image are determined and the intrinsic and extrinsic parameters 
of the camera are estimated. According to Agisoft, these steps are based 
on the work of Hirschmuller, 2007. In the second step, a 3D object is 
reconstructed from the previously determined correlations and a mesh is 
generated (Hiep et al., 2009; Poliarnyi, 2021). Then, this mesh is over-
laid with the textures of the original images. 

After meshing, the volume of samples were calculated. The mea-
surement accuracy of the photogrammetric system was determined by 
calculating the amount of error between the volume measured by the 
photogrammetry method and the volume measured by the fluid 
displacement method. Next, point clouds were acquired from the printed 
samples by the laser imaging system (exactly similar to what was done 
for real samples). Then, the two point clouds, the laser scanning and the 
photogrammetry, were registered against each other and the point-to- 
point distance was calculated. Finally, the matching error rate 

between the obtained points was used as an evaluation criterion for the 
geometric validation of the laser scanning system. 

2.3. Feature extraction and modeling 

2.3.1. 2D imaging 
First, the 2D images were pre-processed (converted to the grayscale) 

to segment the sample from the background by the Otsu thresholding 
method. After segmentation, the closing and opening operators (using a 
disk shape structural element, radius = 5 pixels) were used to remove 
the imperfection areas in the background. In order to increase the size of 
the database, 10 areas with a size of 100 × 100 pixels were extracted 
from the bounding box image of each sample. These areas were 
randomly selected so that at least 95% of the pixels in them belong to the 
sample. Then, images related to these areas were saved on the computer. 
Statistical based methods were used to extract the textural features of 
preprocessed images (Mollazade and Arefi, 2017). Using this method, 
the sample size was increased to 320, which is in an acceptable amount 
for modeling. The features extracted from the first order statistics of 
image histogram (FOSH) and local binary pattern (LBP) were average, 
standard deviation, measure of smoothness, skewness (3rd moment), 
measure of uniformity (energy), entropy, kurtosis (4th moment), and 
coefficient of variation. Grey level co-occurrence matrix (GLCM) and 
grey level run length matrix (GLRLM) were calculated for each image in 
directions 0, 45, 90, and 135◦. Ten features were extracted from each 
GLCM including: contrast, correlation, energy, homogeneity, entropy, 
maximum probability, dissimilarity, cluster shade, cluster prominence, 
and variance. The extracted features form the GLRLM were: short run 
emphasis, long run emphasis, gray-level non-uniformity, run length non- 
uniformity, run percentage, low gray-level run emphasis, high gray-level 
run emphasis, short run low gray-level emphasis, short run high gray- 
level emphasis, long run low gray-level emphasis, and long run high 
gray-level emphasis. The average of extracted features in all directions 
was determined to obtain the final GLCM and GLRLM features vector. 

Multilayer perceptron artificial neural networks (MLP) were used to 
create volumetric shrinkage predictor models. Input of the models was 
the features extracted from the texture of the images and the output of 
the models was the actual volumetric shrinkage values of the samples 
obtained by the fluid displacement method. Since the scatter and scale of 
the input data varied, the data became normalized between zero and 
one. In order to prevent over-fitting, after data randomization, the data 
set was divided into three parts: training (including 65% of data), cross- 
validation (including 15% of data), and testing (including the rest of 
data). Levenberg-Marquardt algorithm was used for learning the models 
with a learning rate of 0.1. Transfer function of middle and end layers 
were selected as tangent sigmoid and linear, respectively. Since the 
performance of artificial neural networks is strongly influenced by its 
architecture, trial and error method was used to find the most suitable 
architecture. Accordingly, the most optimal performance of the models 
was achieved when the network architecture consists of a hidden layer 
with 4 neurons. Performance evaluation of models was performed using 
correlation coefficient (R), root mean square error (RMSE), and mean 
absolute percentage error (MAPE) (Mollazade and Arefi, 2017): 

R =
N
∑N

i=1yi ŷi −
( ∑N

i=1yi
)(∑N

i=1 ŷi
)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

N
∑N

i=1
y2

i −

(
∑N

i=1
yi

)2
)(

N
∑N

i=1
ŷ2

i −

(
∑N

i=1
ŷi

)2
)√

√
√
√

(4)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(ŷi − yi)

2

N

√
√
√
√
√

(5)  

MAPE =

∑N
i=1

⃒
⃒
⃒

ŷ i − yi
yi

⃒
⃒
⃒

N
× 100 (6) 
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where, yi, ŷi, and N are target (actual) value, model predicted value, 
and total number of samples, respectively. The results were reported 
based on 20 replications in model training as mean ± standard 
deviation. 

2.3.2. 3D laser imaging 
Using the 3D laser imaging setup it was impossible to scan the entire 

body of samples due to the limitation exists for the full bending of the 
robot arm. Therefore, the point clouds were not available in 360-degree 
and it was impossible to directly calculate the sample volume from the 
point clouds. Of course, calculating volume based on point clouds is a 
complex and time-consuming process on the one hand, and requires 
strong processing hardware, on the other hand. Since the aim of this 
study was to provide a solution based on 3D laser imaging to measure 
the volumetric shrinkage of horticultural products in real time, it was 
predicted indirectly by extracting some spatial features from point 
clouds. From the obtained point clouds, four features were extracted as 
follows (Fig. 2): 

Point to point distance (PPD) 
This feature is actually the magnitude of the vector between two 

consecutive points in each scan line and is calculated as follows: 

PPD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi+1 − xi)
2
+ (yi+1 − yi)

2
+ (zi+1 − zi)

2
√

(7) 

where, xi and xi+1, yi and yi+1,and zi and zi+1 are the coordinates of 
two adjacent points in × (scan line), y (scanner moving), and z (height) 
directions, respectively. In each scan line, the y coordinates of points 
were the same. Therefore, (yi+1 - yi) = 0. 

Point to point vectors’ angle (PPA) 
This feature specifies the angle between the vector created by one 

point and the next point and the vector created by the same point and 
the next two points, on each scan line, in radians: 

PPA = arccos

(
PPDi,i+1

2+PPDi,i+2
2 − PPDi+1,i+2

2

2
(
PPDi,i+1 × PPDi,i+2

)

)

(8) 

where, PPDi,i+1, PPDi,i+2, and PPDi+1,i+2 are the point to point 

distance between points i and i + 1, i and i + 2, and i + 1 and i + 2, 
respectively. 

Slope of the perpendicular bisector vector (SPB) 
To calculate this feature, the fitted linear function is calculated on 4 

consecutive points in the scan line. Then, the slope of the perpendicular 
bisector vector of the fitted liner function is obtained by the following 
equation: 

SPB =
− 1
m

(9) 

where, m is the slope of the fitted linear function. 
Perpendicular bisector vectors’ angle (PBA) 
This feature shows the angle between two consecutive perpendicular 

bisector vectors on the scan line in radians: 

PBA = arctan
⃒
⃒
⃒
⃒

SPBi − SPBi+1

1 + (SPBi × SPBi+1)

⃒
⃒
⃒
⃒ (10) 

where, SPBi and SPBi+1 are the slope of consecutive perpendicular 
bisector vectors i and i + 1, respectively. 

The above mentioned features were extracted from the point clouds 
for each scan line. Then, the average values obtained for each feature 
were considered as the features extracted from each scan line. Therefore, 
the vector length of each of the extracted features was equal to the 
number of scan lines for each sample. In order to increase the size of the 
database, after randomization, the features matrix of each sample was 
divided into 10 sections in the same size. Using this approach, not only 
the effect of probable existing scattered points on the measurements was 
reduced but also the sample size for modeling was increased to 320. 
Finally, descriptive statistics including mean, standard deviation, kur-
tosis, and skewness were extracted from the absolute value of the matrix 
of features related to each section. MLP was used to create volumetric 
shrinkage predictor models. Input of the models was descriptive statis-
tics extracted from the features obtained from the point clouds and 
output of the models was the actual volumetric shrinkage values of the 
samples obtained by the fluid displacement method. The creation and 
evaluation of MLP-based models were the same as in Section 2.5.1 that 

Fig. 2. Extracted spatial features from point clouds of each scan line: A) Point to point distance (PPD), B) Point to point vectors’ angle (PPA), C) Slope of the 
perpendicular bisector vector (SPB), and D) Perpendicular bisector vectors’ angle (PBA). BV and FL stand for bisector vector and fitting line, respectively. × and z are 
the scan line and height directions, respectively. 
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were described for modeling based on features extracted from the 2D 
images. 

2.4. Software tools 

The ANOVAs (one-way) and subsequent post-hoc Tukey’s honest 
significance difference (HSD) tests were performed in Minitab® 16.2.2 
(State College, PA, USA) in order to compare mean values of the volu-
metric shrinkage of samples at different drying times. A value of p less 
than 0.05 was considered as statistically significant. The KUKA KR C2 
robot control with the KUKA Systems Software V5 (KUKA AG) along 
with an in-house built software tool (based on C++, Qt, and the 
MicroEpsilon scanControl SDK 0.2.0 for Linux) were employed in order 
to control of the robot and to acquire point cloud data. Photogrammetry 
images were processed in Agisoft Metashape ver. 1.8.1 software (Agisoft 
LLC, St. Petersburg, Russia). The 3D point clouds were visualized and 
matched in the open-source software CloudCompare 2.10.2 (Girardeau- 
Montaut, 2015). Processing of 2D images and feature extraction from 3D 
point cloud data were carried out in MATLAB® ver. R2015b (The 
MathWorks, Inc., Natick, Massachusetts, USA). The LightScatter toolbox 
in MATLAB was applied in order to extract the texture features from the 
2D images and to generate the artificial neural networks’ prediction 
models from the extracted features of 2D images and 3D point clouds 
(Mollazade and Arefi, 2017). MS Excel ver. 2013 (The Microsoft Inc., 
Redmond, Washington, USA) and MATLAB® ver. R2015b were used for 
plotting graphs. 

3. Results and discussion 

3.1. Drying characteristics of samples 

Fig. 3 shows the changes in moisture content of different sample 
types during the drying process. The rate of moisture reduction in button 
mushrooms was higher than plums, figs and dates. The reason is that the 
initial moisture content of button mushrooms (91.63% w.b.) is higher 
compared to other products. In addition, at the beginning of the drying 
process, the moisture reduction is due to the evaporation of the surface 
moisture of the product. Over time, the surface moisture evaporates and 
the internal moisture of the product is transferred to the surface and 
evaporates. Since the button mushroom has no skin, the internal mois-
ture of the product that has been transferred to the surface is exposed to 
hot air flow and evaporates immediately. However, if the skin of the 
sample is thicker or the pores of the skin are more capillary, the internal 
moisture evaporates at a lower speed compared to the surface moisture. 
In such cases, as the drying time increases, more moisture from the inner 
parts of the sample accumulates under the skin. This issue increases the 
pressure under the skin of the sample. If the pressure is greater than the 

tensile strength of the fruit skin, the skin cracks and as a result, the 
moisture accumulated under the fruit skin is transferred to its surface 
and the drying rate increases. Since the skin of the plum is thinner than 
the fig, more surface cracks are formed during drying on the surface; 
consequently, the rate of moisture loss is more than the fig. In the case of 
dates, the rate of moisture reduction during the drying process was very 
low due to the low initial moisture content (20.03% w.b.). 

For all types of products, due to the release of moisture content and 
viscoelastic stresses in the tissue pores of the samples, the volume of the 
product decreased by increasing drying time and as a result, volumetric 
shrinkage increased significantly (Table 1). The results indicated that 
the most significant change in the amount of volumetric shrinkage 
occurred in the early drying times in button mushrooms and over time, 
the amount of these changes decreased. The reason for this is the rapid 
removal of moisture content from the button mushrooms in the first 4 h 
of drying (Fig. 3). The highest significant changes in volumetric 
shrinkage for plums and figs occurred 8 and 10 h after the beginning of 
drying, respectively (Table 1). This is due to the late formation of cracks 
in the skin of these fruits, which is accompanied by a further reduction in 
the internal moisture of the fruit. In the case of dates, the amount of 
volumetric shrinkage increased slowly over time due to the low rate of 
moisture reduction during the drying process (Fig. 3 and Table 1). Since 
the higher coefficient of variation indicates more dispersion of the data 
compared to their mean value, the dispersion in the volumetric 
shrinkage rate of date, plum and fig samples was much higher than that 
for button mushrooms. 

Fig. 3. Variation of moisture content of samples with drying time.  

Table 1 
Mean comparison of volumetric shrinkage values of samples at different drying 
times.  

Drying time (hr) Sample type 
Plum Fig Date Mushroom 

2 17.99c ±

3.69 
15.99e ±

1.93 
4.35c ±

0.89 
35.61c ±

6.84 
4 22.82bc ±

8.36 
22.98d ±

0.49 
8.05bc ±

1.06 
55.63b ±

16.94 
6 30.74b ±

4.17 
26.51d ±

1.03 
10.90ab ±

7.54 
62.95ab ±

8.59 
8 45.22a ±

3.41 
31.65c ±

3.10 
11.88ab ±

1.16 
65.71ab ±

5.03 
10 46.87a ±

3.09 
41.16b ±

2.01 
13.69ab ±

1.54 
76.84a ±

2.51 
12 50.92a ±

5.16 
47.17a ±

3.25 
14.02a ±

1.99 
76.61a ±

3.89 
Coefficient of 

variation (%) 
37.37 35.62 42.44 25.71 

Data have been presented as mean ± standard deviation of volumetric shrinkage 
values (%) of 5 samples (for the last drying time the number of samples was 7). 
For each sample type, means followed by the different letters are significantly 
different (p less than 0.05, one way ANOVA, post-hoc Tukey’s HSD test). 

Table 2 
Accuracy of volume measurement by photogrammetry compared to the fluid 
displacement method.  

Sample 
type 

Size Volume (cm3) 
measured by fluid 
displacement 
method 

Volume (cm3) 
measured by 
photogrammetry 
technique 

Absolute 
percentage 
error (%) 

Plum Small  16.81  16.01  4.76  
Big  23.7  24.92  5.15 

Fig Small  13.65  14.38  5.34  
Big  23.52  23.26  1.11 

Date Small  6.99  6.25  10.58  
Big  11.23  11.96  6.50 

Mushroom Small  8.07  7.84  2.85  
Big  19.62  19.32  1.53  
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Fig. 4. Heat map of differences between point clouds of 3D laser scanning and photogrammetry of artificial (printed) samples. For each sample type, the point-to- 
point distance (Dist.) value has been shown as mean ± standard deviation of all points. 
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3.2. Geometric validation of the 3D laser imaging system 

Table 2 shows the results of the comparison between the photo-
grammetric volume measurement of artificial (printed) samples and the 
volume measured with the fluid displacement method. Results show that 
the volumes determined by the two methods are very close to each 
other. The mean of the absolute percentage error is only about 4.73 
percent. Thus, it is appropriate to apply the 3D reconstruction of the 
objects by photogrammetry as a reference. Only the data of the date 
stand out with their almost twice as large deviation. After looking at the 
image data sets, it can be assumed that the error results from some not 
perfectly focused images. As a result, some edges and features are not 
sharply visible in the images. This can result in slight shifts when 
matching the features, which are responsible for the errors to be 
detected. 

As stated in Section 2.4.3. and 2.5.2., since it was not possible with 
the laser imaging setup to make a complete 360-degree 3D scan of the 
objects and only half of them was scanned, the accuracy of the point 
clouds of the laser scanner cannot be determined by the volume of the 
objects. Therefore, the point clouds of the laser scanner were registered 
with the help of an iterative closest point algorithm (ICP) (Besl and 
McKay, 1992) against the photogrammetrically determined point clouds 
and then the point-to-point distance was calculated. This results in an 
error measure that can be used to describe the deviations of the two 
point clouds. Fig. 4 shows the evaluation for the four different artificial 
(printed) samples in two sizes each. The coloration from blue to red 
visualizes the point-to-point deviation, as the heat map, between the 
photogrammetry and laser scanner data sets. Looking at the figures 
(mean and standard deviation of the comparison) and the respective 
histogram for the error distribution, it is noticeable that the errors are 

almost exclusively in the range less than 0.240 mm. With the exception 
of the date, the mean error is less than 0.12 mm with a maximum 
standard deviation of 0.099 mm. 

Looking at the model of the plum, it is noticeable that the areas in 
which larger errors occur are located in valleys of the surface (Fig. 4). 
These are most likely missing data due to shadowing and this is due to 
the way the data is recorded. For the photogrammetric 3D reconstruc-
tion, the plum was photographed from all directions and from different 
angles, thus shadowing could be reduced to a minimum. However, since 
the laser scanner only moves in one plane over the samples, this can 
cause shadowing in which no data can be recorded. This can also be 
observed in the two models of figs and mushroom. The larger deviations 
are also found here in the edges and dimples and are thus mainly due to 
shading. The only striking thing is the data of the dates. Overall, the 
mean error of 0.200 mm and 0.236 mm is about twice as large as for all 
other objects. In addition, the error is very evenly distributed over the 
entire surface. There are also extreme values in hollows, but overall the 
error is relatively evenly distributed over the entire surface. Looking 
back at Table 2, it is noticeable that the photogrammetry dataset of plum 
and date has an exceptionally high error compared to the other datasets. 
Thus, it can be assumed that the photogrammetry data set of the plum 
and date is highly error-prone and the point cloud of the laser scanner is 
significantly closer to the actual object than it appears. 

All in all, the data showed that a volume determination via photo-
grammetry provides an accuracy comparable to the fluid displacement 
method. In addition, the surface of a fruit can be measured with high 
precision and reliability using a 3D laser scanner. 

Fig. 5. Example of segmented 2D images of samples during drying process. The non-object (background) pixels have been changed to white for better visualization.  
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Table 3 
Statistical measures of predicting shrinkage of some horticultural products based on the texture features of 2D images.  

Sample 
type 

Texture analysis 
method* 

Train Cross-validation Test 
R RMSE (%) MAPE (%) R RMSE (%) MAPE (%) R RMSE (%) MAPE (%) 

Plum FOSH 0.58 ±
0.07 

28.62 ±
2.83 

58.00 ±
4.89 

0.52 ±
0.11 

29.03 ±
2.04 

57.89 ±
10.21 

0.45 ±
0.13 

29.77 ±
7.24 

68.30 ±
8.38  

GLCM 0.36 ±
0.12 

32.29 ±
1.88 

68.47 ±
4.51 

0.26 ±
0.09 

33.30 ±
2.01 

70.12 ±
10.67 

0.23 ±
0.11 

34.30 ±
2.56 

73.55 ±
9.04  

GLRLM 0.76 ±
0.05 

22.69 ±
2.18 

41.61 ±
7.34 

0.67 ±
0.09 

26.09 ±
3.60 

49.11 ±
11.38 

0.75 ±
0.05 

22.95 ±
2.06 

37.68 ±
4.96  

LBP 0.75 ±
0.05 

22.95 ±
2.06 

37.68 ±
4.96 

0.70 ±
0.08 

24.82 ±
2.04 

41.61 ±
6.37 

0.66 ±
0.07 

26.09 ±
2.62 

41.79 ±
6.34 

Fig FOSH 0.44 ±
0.14 

23.29 ±
1.82 

51.18 ±
7.30 

0.34 ±
0.16 

25.15 ±
2.21 

53.95 ±
9.32 

0.20 ±
0.16 

27.58 ±
4.40 

60.04 ±
8.15  

GLCM 0.53 ±
0.07 

22.38 ±
1.29 

47.48 ±
4.84 

0.44 ±
0.11 

23.52 ±
1.60 

50.53 ±
7.69 

0.38 ±
0.14 

26.99 ±
7.12 

54.90 ±
12.49  

GLRLM 0.67 ±
0.06 

19.71 ±
1.46 

41.51 ±
3.99 

0.56 ±
0.09 

21.92 ±
1.63 

45.34 ±
6.83 

0.46 ±
0.10 

24.16 ±
3.00 

48.66 ±
5.15  

LBP 0.65 ±
0.06 

19.93 ±
1.28 

39.97 ±
3.23 

0.60 ±
0.10 

21.05 ±
1.66 

43.33 ±
6.61 

0.57 ±
0.14 

22.78 ±
5.53 

47.03 ±
9.73 

Date FOSH 0.39 ±
0.10 

4.92 ± 3.70 41.51 ±
3.05 

0.27 ±
0.15 

5.39 ± 4.03 43.80 ±
7.19 

0.28 ±
0.14 

5.30 ± 4.09 44.11 ±
5.35  

GLCM 0.38 ±
0.08 

4.11 ± 0.23 40.45 ±
3.22 

0.32 ±
0.09 

4.39 ± 0.56 45.93 ±
8.79 

0.20 ±
0.15 

4.46 ± 0.52 43.87 ±
8.42  

GLRLM 0.38 ±
0.13 

4.14 ± 0.36 42.49 ±
4.88 

0.30 ±
0.14 

4.17 ± 0.57 42.86 ±
8.11 

0.21 ±
0.09 

4.45 ± 0.46 43.17 ±
6.98  

LBP 0.31 ±
0.11 

4.24 ± 0.21 44.71 ±
2.91 

0.24 ±
0.13 

4.31 ± 0.37 42.87 ±
7.15 

0.12 ±
0.08 

4.52 ± 0.38 45.69 ±
5.39 

Mushroom FOSH 0.73 ±
0.06 

10.84 ±
1.06 

15.22 ±
2.20 

0.73 ±
0.09 

10.56 ±
1.32 

14.22 ±
2.34 

0.69 ±
0.09 

11.98 ±
1.74 

16.56 ±
2.79  

GLCM 0.66 ±
0.03 

12.12 ±
0.58 

17.53 ±
1.16 

0.64 ±
0.09 

12.42 ±
1.37 

18.23 ±
2.48 

0.56 ±
0.09 

13.10 ±
1.09 

19.01 ±
1.97  

GLRLM 0.76 ±
0.05 

10.43 ±
1.20 

14.22 ±
2.35 

0.69 ±
0.13 

11.67 ±
2.51 

15.57 ±
3.13 

0.66 ±
0.08 

12.16 ±
1.60 

16.96 ±
2.91  

LBP 0.72 ±
0.05 

11.13 ±
0.95 

15.84 ±
1.88 

0.67 ±
0.08 

11.92 ±
1.33 

17.18 ±
2.08 

0.61 ±
0.09 

12.78 ±
1.43 

17.61 ±
1.99  

* FOSH, GLCM, GLRLM, and LBP stand for 1st order statistics of image histogram, grey level co-occurrence matrix, grey level run length matrix, and local binary 
pattern, respectively. Data have been presented as mean ± standard deviation of 20 replicates. 

Fig. 6. Examples of point clouds of samples during drying process. The white area at the middle of samples shows the overlap of scans of two consecutive sweeps.  
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3.3. Prediction of volumetric shrinkage based on the texture features of 
2D images 

Fig. 5 shows that the surface of the products has been wrinkled by 
increasing the drying time and as a result by reducing the amount of 
moisture. Button mushroom, plum, and fig showed the highest increase 
in surface wrinkle over drying time, respectively (Fig. 5). As the mois-
ture content decreases, the cellular tissue of the samples shifts and fills 
the voids created by exiting moisture from the samples, which leads to a 
wrinkle on their surface. The amount of wrinkle created on the surface of 
the products is consistent with changes in their volumetric shrinkage. 
For plum, from 0 to 6 h and also 8 to 12 h, no significant change is 
observed in the amount of surface wrinkle (Fig. 5). Changes in volu-
metric shrinkage were not significant at the above times (Table 1). For 
fig, surface wrinkle is most evident at 10 and 12 h after the beginning of 
drying (Fig. 5). Significant changes in volumetric shrinkage at these 
times also confirm this (Table 1). In the case of button mushroom, as it 
was occurred for volumetric shrinkage (Table 1), noticeable changes in 
the surface wrinkle were observed by increasing drying time, so that at 
10 and 12 h after the onset of drying, it reached the maximum rate 
(Fig. 5). Surface wrinkle changes for date at different drying times are 
not noticeably recognizable (Fig. 5), which is consistent with the 
absence of significant changes in volumetric shrinkage at 4 to 10 h of 
drying (Table 1). 

Table 3 illustrates the performance of MLP models in predicting 
volumetric shrinkage of the studied products based on the features 
extracted from the texture of the images. Overall, the results were not 
satisfactory for any of the products. The best results were obtained for 
button mushroom (Rt = 0.69 and MAPEt = 16.56) in which the MLP 

model was created using the features derived from the FOSH method. 
For plum, the MLP model created using the features derived from the 
GLRLM method had the best performance (Rt = 0.75 and MAPEt =

37.68). The MLP models created to predict the volumetric shrinkage of 
fig and date showed very poor performance, so that the best results were 
obtained using the features derived from the LBP method (Rt = 0.57 and 
MAPEt = 47.03) and FOSH method (Rt = 0.28 and MAPEt = 44.11), 
respectively. In general, the results indicate that despite the changes in 
the surface wrinkle of the products during the drying process (as dis-
cussed at the beginning of this section), the textural features derived 
from the 2D images cannot show these changes well. Therefore, the use 
of textural features derived from 2D images to create volumetric 
shrinkage predictor models is not recommended. 

3.4. Prediction of volumetric shrinkage based on the features of 3D point 
clouds 

Fig. 6 illustrates examples of point clouds obtained for different 
samples types at different drying times. Visual comparison of the ob-
tained point clouds (Fig. 6) with images from 2D imaging (Fig. 5) shows 
that laser scanning can illustrate the surface wrinkle better compared to 
conventional imaging. The matrix of features extracted from point 
clouds may contain a lot of information that is not necessarily useful for 
creating a predictive model of volumetric shrinkage, as the use of some 
of these features may disrupt the prediction process or lead to the pre-
sentation of a weak prediction model. In machine learning, the elimi-
nation of redundant features and the selection of most informative 
features have a significant role in learning an efficient model. In this 
study, a Pearson correlation coefficient based statistical method was 
used to select superior features from the spatial features matrix extracted 
from the samples point clouds (Blessie and Karthikeyan, 2012). For each 
feature vector, the value of its linear correlation to volumetric shrinkage 
values along with the significance level of the linear relationship was 
calculated using t-test and determining its P-value (Table 4). A higher 
value of the correlation coefficient (regardless of its sign) indicates a 
stronger linear relationship between that feature and volumetric 
shrinkage values. The P-value also indicates the statistical significance 
of this linear relationship at a certain level of probability. The following 
criterion was considered to select the superior features: 

|Pearsoncorrelationcoefficient| ≥ 0.400andP − value ≤ 0.050 (11) 

Table 4 illustrates the correlation coefficient and P-value of the su-
perior features for each of the studied products in bold. Accordingly, the 
number of features used to create the MLP models for predicting volu-
metric shrinkage of plum, fig, date, and button mushroom were 6, 8, 2, 
and 8, respectively. Fig. 7 illustrates the performance of MLP models in 
predicting the volumetric shrinkage of the studied products based on 
selected spatial features of point clouds. In general, the performance of 
MLP models was satisfactory for all products compared to the results 
obtained using texture analysis of 2D images (Section 3.3). For plum and 
fig, the percentage of prediction error in the test phase was less than 20% 
(R = 0.90) and less than 15% (R = 0.95), respectively. The weakest 
performance of MLP models was related to date in which volumetric 
shrinkage was predicted with MAPE = 23.54 and R = 0.78. The best 
results were related to the button mushroom in which the amount of 
prediction error of volumetric shrinkage in the test stage was less than 
10% (R = 0.87). The results indicate that suitable MLP models can be 
created to predict the volumetric shrinkage of horticultural products 
during the drying process using spatial features of point clouds. 

4. Conclusions 

In this study, an approach based on 3D laser imaging was presented 
to measure the volumetric shrinkage of small-size horticultural prod-
ucts. The results of modeling by multilayer perceptron neural networks 
and using spatial features extracted from the point clouds obtained from 

Table 4 
Correlation of spatial features extracted from point clouds with volumetric 
shrinkage.  

Spatial feature Sample type 
Plum Fig Date Mushroom 

PPD_Mean ¡0.747 
(0.000)* 

− 0.061 
(0.741) 

− 0.357 
(0.045) 

0.756 
(0.000) 

PPA_Mean ¡0.690 
(0.000) 

0.603 
(0.000) 

− 0.269 
(0.136) 

0.423 
(0.016) 

SPB_Mean 0.534 
(0.002) 

− 0.110 
(0.550) 

0.281 
(0.120) 

¡0.635 
(0.000) 

PBA_Mean − 0.395 
(0.025) 

0.270 
(0.135) 

− 0.240 
(0.187) 

0.375 
(0.034) 

PPD_Standard 
deviation 

¡0.677 
(0.000) 

¡0.562 
(0.001) 

− 0.372 
(0.036) 

0.341 
(0.056) 

PPA_Standard 
deviation 

¡0.813 
(0.000) 

− 0.006 
(0.972) 

− 0.375 
(0.034) 

0.060 
(0.746) 

SPB_Standard 
deviation 

− 0.158 
(0.378) 

¡0.801 
(0.000) 

− 0.354 
(0.047) 

¡0.474 
(0.006) 

PBA_Standard 
deviation 

− 0.388 
(0.028) 

0.040 
(0.829) 

− 0.302 
(0.093) 

0.390 
(0.027) 

PPD_Kurtosis 0.085 
(0.645) 

0.414 
(0.018) 

0.359 
(0.044) 

¡0.414 
(0.018) 

PPA_Kurtosis 0.533 
(0.002) 

0.290 
(0.108) 

0.196 
(0.282) 

0.028 
(0.880) 

SPB_Kurtosis 0.300 
(0.095) 

0.856 
(0.000) 

0.443 
(0.011) 

0.234 
(0.197) 

PBA_Kurtosis 0.028 
(0.881) 

0.452 
(0.009) 

− 0.211 
(0.246) 

0.460 
(0.008) 

PPD_Skewness 0.159 
(0.384) 

¡0.418 
(0.017) 

0.027 
(0.884) 

¡0.450 
(0.010) 

PPA_Skewness − 0.215 
(0.238) 

− 0.360 
(0.043) 

− 0.124 
(0.499) 

− 0.267 
(0.140) 

SPB_Skewness − 0.083 
(0.653) 

¡0.766 
(0.000) 

¡0.471 
(0.007) 

− 0.028 
(0.879) 

PBA_Skewness − 0.045 
(0.805) 

0.345 
(0.053) 

− 0.221 
(0.223) 

0.436 
(0.013)  

* Digits have been shown as the Pearson correlation coefficient (P-Value). 
PPD, PPA, SPB, and PBA are point to point distance, point to point vectors’ 
angle, slope of the perpendicular bisector vector, and perpendicular bisector 
vectors’ angle, respectively. Selected features have been shown in bold. 
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Fig. 7. Statistical measures of predicting volumetric shrinkage of some horticultural products based on the spatial features of point clouds. Data have been presented 
as mean (standard deviation) of 20 replicates. 
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scan lines indicate the efficiency of laser imaging method in measuring 
the volumetric shrinkage of the studied products during the drying 
process. Since 3D laser imaging requires moving the imaging system or 
the sample in front of each other to fully scan the surface of the sample, 
this method is suitable for implementation on moving bed drying ma-
chines in which the samples are moving linearly on a conveyor belt 
inside the dryer chamber. In this case, the dryer can be controlled only 
using a laser scanner (a linear laser and a digital camera) and using a 
computer program. Such a system can be implemented at a low cost. 
Therefore, the immediate results of this research will lead to introducing 
a new 3D vision approach for real-time scanning the surface of small size 
horticultural products and measuring volume change during drying 
process. In this way, volumetric shrinkage could be calculated non- 
contact as a physical quality characteristic of dry product. Overall, 
findings of this research would be highly attractive for the food pres-
ervation and drying technology industry. 

CRediT authorship contribution statement 

Kaveh Mollazade: Conceptualization, Supervision, Methodology, 
Investigation, Data curation, Formal analysis, Resources, Visualization, 
Writing – original draft. Joschka van der Lucht: Methodology, Soft-
ware, Writing – original draft, Writing – review & editing. Sven 
Jörissen: Software, Writing – review & editing. Andreas Nüchter: 
Supervision, Project administration, Funding acquisition, Writing – re-
view & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

The authors are grateful to the German Research Foundation (DFG- 
Deutsche Forschungsgemeinschaft) for the financial support through the 
grant number NU 230/13-1 for project number 445893474. Special 
thanks goes to Dorit Borrmann and Michael Bleier for their technical 
advice. Thanks also goes to University of Kurdistan, Iran. 

References 

Aacc, 1986. Approved methods of the American Association of Cereal Chemists, 
American Association of Cereal Chemists. Method 66–50. Approved methods of the 
AACC, 10th ed. St. AACC, Paul, Minn.  

Al-Awaadh, A.M., Hassan, B., Ahmed, K.A.M., 2015. Hot air drying characteristics of 
Sukkari date (Phoenix dactylifera L.) and effects of drying condition on fruit color and 
texture. Int. J. Food Eng. 11 (3), 421–434. 

Aprajeeta, J., Gopirajah, R., Anandharamakrishnan, C., 2015. Shrinkage and porosity 
effects on heat and mass transfer during potato drying. J. Food Eng. 144, 119–128. 

Behroozi Khazaei, N., Tavakoli Hashjin, T., Ghassemian, H., Khoshtaghaza, M.H., 
Banakar, A., 2013. Application of machine vision in modelling of grape drying 
process. J. Agric. Sci. Technol. 15, 1095–1106. 

Besl, P.J., McKay, N.D., 1992. A method for registration of 3-D shapes. IEEE Trans. 
Pattern Anal. Mach. Intell. 14 (2), 239–256. 

Blessie, E.C., Karthikeyan, E., 2012. Sigmis: A feature selection algorithm using 
correlation based method. J. Algorithms Comput. Technol. 6 (3), 385–394. 

Bonazzi, C., Dumoulin, E., 2011. Quality changes in food materials as influenced by 
drying processes. In: Mujumdar, A.S. (Ed.), Tsotsas E. Wiley-VCH Verlag GmbH, 
Modern Drying Technology.  

Caglarirmak, N., 2011. Physical properties, nutrients and estimated volatiles of Agaricus 
bisporus (white) at two harvests. Ital. J. Food Sci. 23 (4), 423–430. 

Danvind, J., Synnergren, P. 2001. Method for measuring shrinkage behaviour of drying 
wood using digital speckle photography and X-ray computerised tomography. In: 
Proceedings of 7th International IUFRO Wood-drying Conference. July 9-13, 
Tsukuba, Japan. pp 276-281. 

Dehghannya, J., Gorbani, R., Ghanbarzadeh, B., 2016. Shrinkage of mirabelle plum 
during hot air drying as influenced by ultrasound-assisted osmotic dehydration. Int. 
J. Food Prop. 19, 1093–1103. 

Ersoy, N., Gozlekci, S., Gok, V., Yilmaz, S., 2017. Fig (Ficus carica L.) fruit: some physical 
and chemical properties. Acta Hortic. 1173, 329–334. 

Girardeau-Montaut, D., 2015. Cloud compare - 3d point cloud and mesh processing 
software. Open Source Project. 

Hiep, V.H., Keriven, R., Labatut, P., Pons, J.P. 2009. Towards high-resolution large-scale 
multi-view stereo. In: 2009 IEEE Conference on Computer Vision and Pattern 
Recognition. June 20-25, Miami, FL, USA. 

Hirschmuller, H., 2007. Stereo processing by semiglobal matching and mutual 
information. IEEE Trans. Pattern Anal. Mach. Intell. 30 (2), 328–341. 

Ionica, M.E., Nour, V., Trandafir, I., Cosmulescu, S., Botu, M., 2013. Physical and 
chemical properties of some European plum cultivars (Prunus domestica L.). Not. 
Bot. Horti. Agrobo. 41 (2), 499–503. 

Jafari, A., Bakhshipour, A., 2014. Inspection of quince slice dehydration stages based on 
extractable image features. Czech J. Food Sci. 32 (5), 456–463. 

Jahromi, M.K., Mohtasebi, S.S., Jafari, A., Mirasheh, R., Rafiee, S., 2008. Determination 
of some physical properties of date fruit (cv. Mazafati), J. Agric. Technol. 4 (2), 1–9. 

Lewicki, P.P., Jakubczyk, E., 2004. Effect of hot air temperature on mechanical 
properties of dried apples. J. Food Eng. 64 (3), 307–314. 

Li, J., Bennamoun, L., Fraikin, L., Salmon, T., Toye, D., Schreinemachers, R., Leonard, A., 
2014. Analysis of shrinkage effect on mass transfer during convective drying of 
sawdust/sludge mixtures. Dry. Technol. 32, 1706–1717. 

Li, X., Liu, Y., Gao, Z., Xie, Y., Wang, H., 2021. Computer vision online measurement of 
shiitake mushroom (Lentinus edodes) surface wrinkling and shrinkage during hot air 
drying with humidity control. J. Food Eng. 292, 110253. 

Madiouli, J., Sghaier, J., Orteu, J.J., Robert, L., Lecomte, D., Sammouda, H., 2011. Non- 
contact measurement of the shrinkage and calculation of porosity during the drying 
of banana. Dry. Technol. 29, 1358–1364. 

Mayor, L., Sereno, A.M., 2004. Modelling shrinkage during convective drying of food 
materials: A review. J. Food Eng. 61, 373–386. 

Mollazade, K., Arefi, A., 2017. LightScatter: A comprehensive software package for non- 
destructive monitoring of horti-food products by monochromatic imaging-based 
spatially-resolved light scattering technology. Comput. Electron. Agric. 142 (B), 
597–606. 

Mollazade, K., Jörissen, S., Nüchter, A., 2021. Measuring internal quality traits in egg by 
3D laser imaging. J. Food Eng. 291, 110289. 

Mujumdar, A.S., 2004. Research and development in drying: Recent trends and future 
prospects. Dry. Technol. 22 (1–2), 1–26. 

Nindo, C.I., Sun, T., Wang, S.W., Tang, J., Powers, J.R., 2003. Evaluation of drying 
technologies for retention of physical quality and antioxidants in asparagus 
(Asparagus officinalis, L.). LWT - Food Sci. Technol. 36, 507–516. 

Poliarnyi, N. 2021. Out-of-core surface reconstruction via global TGV minimization. In: 
Proceedings of the IEEE/CVF International Conference on Computer Vision. October 
11-17, Montreal, BC, Canada. 

Raponi, F., Moscetti, R., Monarca, D., Colantoni, A., Massantini, R., 2017. Monitoring 
and optimization of the process of drying fruits and vegetables using computer 
vision: a review. Sustainability. 9 (11), 1–27. https://doi.org/10.3390/su9112009. 

Sacilik, K., Elicin, A.K., Unal, G., 2006. Drying kinetics of Uryani plum in a convective 
hot-air dryer. J. Food Eng. 76, 362–368. 

Sarvestani, F.S., Rahimi, A., Hatamipour, M.S., 2014. An experimental study on drying 
characteristics and kinetics of figs (Ficus carica). Pol. J. Chem. Technol. 16 (4), 
60–65. 
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