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Abstract
Development of robots capable of playing chess is historically known to be a complex

task and has been investigated for many years. Significant improvements have been made
especially after the first computer program beat world human champion in the game over
a decade ago. A number of robots of varying types have been developed in a bid to
solve the problem, and in most cases additional constraints have been imposed on the
game to allow the robots play the game. These modifications fundamentally alter the
’taste’ of the game are are therefore not desired. In this thesis, we extend on some of the
methods developed so far and relax on some of the said constraints. We run experiments
on a low cost 5 DOF robot arm aided by a simple webcam using modular and flexible
software that we build, and evaluate and compare the results with past findings in order to
draw conclusions about applicability of certain fundamental algorithms in planning and
perception in robot chess scenario and possibly develop new methodologies for solving
the problem. Our results indicate the some of the said constraints can indeed be relaxed
without sacrificing the game.



Table 1: Symbols and Abbreviations

DOF Degrees of freedom of a mechanical system

IK Inverse Kinematics

FK Forward Kinematics

ROS Robot Operating System

N Set of natural numbers

R Set of real numbers

C or C-space Configuration space of a robot

Cfree Valid Configuration space
b
aT Transform of b with respect to frame a
b
aP Translation of b with respect to frame a
b
aR Rotation of b with respect to frame a

Ix Identity Matrix of size x

BPS Bits Per Second

EEF End Effector

RRT Rapidly-Exploring Random Trees

BiRRT Bi-directional Rapidly-Exploring Random Trees

τ Rapidly-Exploring Random tree

q node, generally representing a joint configuration

SAC Smart Arm Controller Node

ORN The OpenRave Node

MCN The Manipulation Core Node
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Chapter 1

Introduction

This research outlines the implementation of a low-cost chess playing robot, built en-
tirely from cheap hobby-grade components. These components consist of a 5 DOF hor-
izontally mounted manipulator (Section 3.4.8), a mount (Section 3.4.7), a webcam and
standard chess components (Section 3.4.7). The focus of the investigation thus involves
implementing a flexible and robust manipulator using the said components that is in-
telligent enough to understand when and which move a human player has made, and
to respond by moving the appropriate figures on the chessboard. In this thesis, chess
engines/algorithms are only discussed to the extent of how to incorporate them.

The interest for chess playing robots was sparked as early as 1770 when Wolfgang von
Kempelen unveiled what appeared to be an automatic chess player, that would astonish
and fascinate people all over the world, even after its fake nature was announced in the
1820s [17]. In our modern era, many chess playing robots exist. However, the majority
of these either rely on modified chess boards and/or pieces to aid the robot sensors, or
use fixed vision sensors with a fixed board or use industrial-grade manipulators. These
restrictions simplify the problem at a cost of flexibility, generality and reproducibility. We
propose an implementation that solely uses a single webcam as a sensor, a cheap robotic
arm as an actuator and standard chess components. Furthermore, this implementation
is modular and generic, allowing for easy interchanging of every major component: the
visual processing, the camera, the chess engine, the manipulator and the motion planner.

1.1 Problem Definition

1.1.1 Goal

The goal is to implement a chess playing robot that humans can intuitively play against,
without using any specialized chess equipment or manipulators. In order to achieve this,
the robot implementation must satisfy each of the following sub-goals:

1



2 CHAPTER 1. INTRODUCTION

• Be able to move a chess figure from one location to another with an accuracy of
±12 mm

• Recognize which move the opponent made, allowing it to track the state of the game

• Determine the 2d pose of board within an accuracy of ±5 mm and ± 4◦

• Determine the 2d location of each piece ± 5mm

• Completing a full move within 1 minute

• Use a webcam as the only sensor (excluding servo feedback)

• Total cost under EUR 1000 as of December 2010

• Integrate the sensor and actuator into a control loop that respects the rules of chess

Additionally, the following is also desirable:

• Visualization of the manipulator, chess components and environment

• Simulation of the manipulator and chess components

• Modularity - be able to swap out different visual processing algorithms, chess engines
and motion planners with ease

1.1.2 Assumptions and Restrictions

To facilitate simplification of the problem without conflicting with goal, the following
assumptions and restrictions apply:

• The human player shall make legal moves only

• The human player shall not interfere with the robot moves or the chess components
unless it is his/her/its turn

• The board must be well (but can be arbitrarily) lit

• The board size is known

• The board can be moved, but only within the arms reachability

• Neighboring chess cells and each chess team have clear brightness differences

• Each figure’s height is known

• The camera can be moved, but must have a clear and complete view of the board

A Cheap Chess Robot : Planning and Perception



1.1. PROBLEM DEFINITION 3

• The figures are large enough that the manipulator can grab them, but small enough
to not clutter the board

• The board is large enough to contain all the pieces with sufficient gripping space
between them

• The figures are assumed to be cylindrical in shape

A Cheap Chess Robot : Planning and Perception





Chapter 2

State of the Art

Development of robots that are able to play a game of chess has drawn a lot of attention
since the Deep Blue computer beat Gary Kasparov the then world chess champion [11],
a feat considered a major breakthrough in artificial intelligence. Nevertheless, work on
building such robots had been going on for years mostly geared towards solving specific
parts of the problem. Such efforts had even been explored in classroom projects such
as Groen’s lab course in sensor integration [3] in which one such a robot was developed,
albeit with many limitations. In effect, many approaches have been developed to tackle
the problem, most of which focus on specific tasks such as vision and planning.

2.1 Chess Playing Robots

Most of the robots developed so far use simple arms with mostly between four and six
DOF and the arm is usually mounted on a fixed base. Most of these systems have cameras
mounted directly above the chessboard. A notable exception is the REEM-A humanoid
robot developed by PAL Robotics which has 30 DOF [16]. The REEM-A uses stereo
cameras and other sensors for acquiring environment information and expensive arms
for manipulation. The MarineBlue [20] robot developed in 2003 is one of the few cheap
and simplistic chess playing robots built so far. The MarineBlue was made of separate
segments driven by servos, and aided by a high-quality camera fixed directly above the
chessboard. Recently developed robots include Gambit [18] having a moderately costly 6
DOF arm and uses two cameras to interact with environment to execute table top ma-
nipulation. The Gambit system also uses modified chess pieces and chessboard to aid the
vision system. More recently, the Association for Advancement of Artificial Intelligence
(AAAI) and the International Conference on Robotics and Automation (ICRA) organized
a small scale manipulation challenge with playing chess as the competition task [1]. Four
robots participated and all involved expensive arms with exception of University of Al-
abama’s entry and Chiara robot [7]. All together some of the distinctive properties of
these robots are summarized in Table 2.1.

5



6 CHAPTER 2. STATE OF THE ART

Table 2.1: State of the Art Chess Playing Robots

Robot Year DOF Sensors(Chess) Remarks

Gambit 2010 6 2 Cameras Costs more than US$ 3000

REEM-A 2005 30 StereoCam Humanoid, additional sensors

MarineBlue 2003 5 Sony DFW-VL500 costs US$ 550, modified chessboard

Chiara 2010 6 Logitech Webcam Powered by 24 Dynamixel servos

Golem Chesster 2010 7 Unknown Expensive Schunk arms

2.1.1 Planning

For most of the robots above, there no mention of extensive use of established planning
algorithms or derivations thereof in the planning process, with exceptions for the expensive
robots intended for general manipulation tasks like the REEM-A and Golem Chesster
robots. Chess specific robots such as MarineBlue involve only few DOF, and most links
can be easily related using simple equations when solving for IK. It is therefore easy to
find analytical solutions when solving IK for such a robot. Nevertheless, solving for IK
solutions is computationally intensive because of the huge number of possible solutions
which have to be generated. The use of established motion planning algorithms [8] or
derivatives gives a leeway for avoiding this computational cost by adapting the planners
to take advantage of the workspace and respectively the C-space. This could also allow
integration of multiple such algorithms, optimization of generated trajectories to make
them smoother of generate new ones using techniques such as CHOMP [13] and even use
of motion primitives [9] in the process.

2.1.2 Perception

The perception system used by most of the robots mentioned above largely involve a
camera permanently mounted directly above the chessboard [3,20]. Such a configuration
greatly simplifies the vision problem in terms of avoiding occlusions among the pieces and
reducing the perspective distortion to a minimum. Most of these systems also do not
incorporate object recognition components, mostly because chess moves can still be de-
termined based on prior information about the chessboard configuration. This also takes
advantage of the full observability of the environment from a vision perspective. Some
of these vision systems also restrict the lighting conditions of the environment in order
to reduce complications in image processing. Furthermore, most systems use modified
chessboards and well as carefully selected and/or designed chess pieces by choosing bright
colors as witnessed in [1]. Allowing a non-stationary camera enables development of a

A Cheap Chess Robot : Planning and Perception



2.2. MOTIVATION 7

system that can easily be adopted to humanoid robots and mobile robots in general. This
is also closer to emulating how human vision perceives the chessboard during the game.
The requirement that a camera be placed directly above the chessboard can also be re-
laxed because there already exist efficient ways to correct the perspective distortion using
homography/perspective projection and fast camera calibration. However, occlusions still
need to be avoided.

2.2 Motivation

The motivation for this research is generally three-fold. The first goal is to improve
upon the vision systems that have been developed for the robots mentioned above and
develop a more robust and flexible system. Such a system shall use only one simple
webcam which can be moved around during the course of the game as long as the camera
still has a full view of the chessboard. We also intend to employ a standard chessboard
piece set without modifications. We shall also investigate the effect of having an object
recognition module in the vision system.

The second goal is to improve upon the planning systems used previously by integrating
multiple motion planners and evaluating the outcome based on standard planner metrics
such as the time it takes and the number of collision checks. We shall focus on the
algorithmic approach to planning in order to build a system that is scalable and robust.
We shall also make comparisons to come up with authoritative statements about which
types of planners are suitable for the chess planning problem.

The last goal is to integrate the developments in the vision and planning systems into
a modeling and control module which then monitors the robot during the game. We aim
to make such a system robust, scalable and generic so that it can be easily ported to
other robots with minimal changes. We shall employ modular software systems, Robot
Operating System (ROS) [12] for the implementation of this system.

A Cheap Chess Robot : Planning and Perception





Chapter 3

Methodology and Implementation

3.1 Introduction

Overview In this chapter, we will discuss the implementation of the chess playing
robot. The implementation is divided into three modules, ”Core Control”, ”Perception”
and ”Manipulation” which are illustrated in Figure 3.1.

Core Control ties together the manipulation and perception pipelines and is responsible
for the overall execution of playing chess. It requests which moves the user has made from
the perception pipelines and responds by requesting the manipulation pipeline to execute
a move. For a detailed description, see Section 3.2.

The perception pipeline is responsible for dealing with the task of observation. It
detects when a user has moved and which move the user played, as well as the absolute
location of the chess pieces. See Section 3.3 for a detailed description.

The manipulation pipeline is in charge of the task of executing chess moves. It safely
moves chess pieces from starting positions to goal positions while avoiding collisions with
other chess pieces, the environment and itself. To do this, it generates plans in a simulation
which are then executed on the real hardware. For a detailed description, see Section 3.4.

ROS ROS is an open-source, meta-operating system. It provides the services you would
expect from an operating system, including hardware abstraction, low-level device control,
implementation of commonly-used functionality, message-passing between processes, and
package management. It also provides tools and libraries for obtaining, building, writing,
and running code across multiple computers. For an overview of ROS, check the the wiki
http://www.ros.org

To facilitate modularity, the implementation described in this chapter uses the ROS
framework. The following three sections will describe the modules listed above specifi-
cally. Each module consists of a set of independent processes (called ROS nodes) that
communicate via ROS messages and services with one another to collaboratively play
chess against a human. For each module, an interface was defined allowing for inde-

9
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10 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

Manipulation

Pipeline

Control Core

Perception

Pipleline

Chess Engine

ROS ROS

USB USB

ROS

manipulate

perceive

Figure 3.1: Implementation Components

pendent and modular development. Everything is run on an Ubuntu 10.10 Core2Duo
machine.

3.2 Core Control Unit

Overview The Core Control Node (CCN) is solely responsible for organizing the control
flow of the chess playing robot. It comprises of two nodes, the State Machine node and
the Chess Engine node. They are both written in C++ and communicate via ROS. Below
one can see a graphical overview in Figure 3.2.

3.2.1 State Machine

The state machine interfaces directly with the perception and manipulation pipeline,
as well as as communicating with the chess engine. Below in Figure 3.3 one can see a

A Cheap Chess Robot : Planning and Perception



3.2. CORE CONTROL UNIT 11

State Machine

Chess Engine

ROS (req move piece,

success)

ROS(req user move, 

               user move)

ROS (move in, 

       move out)

StockFish

user start

to manipulation pipeline to perception pipeline

Figure 3.2: Core Control Overview

representation of its control flow.
The State Machine in Figure 3.3 clearly defines the start and end of a full game. Who

starts is predetermined by the user. By default, the user is expected to start. After every
move, the game state is evaluated for a potential draw or win scenario. When not in the
start and end states, the Control Core is either waiting for a user move to be detected via
the perception pipeline, or in the process of deciding which move to make with the chess
engine, or executing its own move via the manipulation pipeline.

To illustrate the interactions between the components and the flow of execution, con-
sider the following example: The robot has just finished executing a move, it is now the
users turn. The Core Control Unit requests the users move from the perception pipeline.
The Perception pipeline registers a user move A2 to A4, validates it and returns the move
to the Core Control Unit, thereby simultaneously signaling it is now the robots turn, and
the move the user performed. Using this information, the Control Core Unit queries the
chess engine node for a response move. The engine responds with move B7 to A4, which
also signals that the game is not in an end position (checkmate, etc). The Core Control
Unit then requests the manipulation pipeline to execute the given move, by constructing
the sequence of sub-moves required: as a capture is taking place, the figure at A4 must
be removed before the figure at B7 can advance. Thanks to the vision pipeline, the exact

A Cheap Chess Robot : Planning and Perception
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Determine

Start (optional)

User Chess 

Move

Decide Arm

Chess Move

Check Chess

State

Process 

Move

Check Chess

State

Game

Over

Launcher

Plan
Execute

Chess Move

Move Piece

(user)

(Core Control Unit)

(Core Control Unit)

(Perception Pipeline)

(User, Perception Pipeline)

arm 

starts

user starts

(default)

user move

observed

user wins

arm

wins

continue

continue

decided

move

queue

generated one move

plan

found

move success

queue

processed

launched

(Core Control Unit) (Manipulation Pipeline, GUI)

(Manipulation Pipeline, 

Openrave)

(Manipulation Pipeline, 

GUI, Arm Controller, Arm)

(Core Control Unit)

Figure 3.3: State Machine of Core Control Unit

coordinates of the figure to be moved and the goal coordinates in the world frame are
known. The manipulation pipeline then takes the required steps to perform the first sub-
move. Once this move is successfully executed, the second sub-move is executed, at which
point the manipulation pipelines responds to the Control Core Unit that it has succeeded.
The Control Core Unit then requests the users move from the perception pipeline and the
cycle continues.

3.2.2 Chess Engine

Stockfish The chess engine node has two responsibilities:

1. Determining how to respond to a user move while obeying chess rules and hopefully,
playing an effective game.

2. Signaling the Core Control Unit if the game has ended, so it can shut down the
pipelines.

A Cheap Chess Robot : Planning and Perception



3.2. CORE CONTROL UNIT 13

Stockfish was opted as the engine of choice, as it is an open source chess engine, using
the UCI protocol and has existing binaries for Ubuntu 32/64 bit. With 3200+ ELO, it is
considered very strong. Various computer chess rankings rate it as second or third behind
the top gratis program Houdini and the commercial program Rybka1.

In short, the node is a QT GUI exposed to the ROS network, hosting a chess engine
it maintains on a separate process. It communicates using the UCI (Universal Chess
Interface)2 by setting up stdin/stdout pipes and reading/writing to these. The node
keeps all parameters it requires to run the chess engine internally, and only exposes the
minimal requirements to the ROS network (new game, user move, resulting move, game
end), as shown in the rxgraph plot Figure 3.4 below.

Figure 3.4: Chess Engine Node Ros Exposure

Using the GUI, one can manually write to stdin and read from stdout of the chess
engine process. This supports debugging of the chess engine node. One can also force the
node to emit specific response moves, which facilitates testing nodes dependent on the
chess engine move decisions. A screen shot is shown in Figure 3.5.

Figure 3.5: Chess Engine Node GUI

1http://en.wikipedia.org/wiki/Stockfish_(chess)
2http://en.wikipedia.org/wiki/Universal_Chess_Interface

A Cheap Chess Robot : Planning and Perception
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14 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

3.3 Perception

The problem of robot chess perception can be divided into three main tasks which include:
detection of the chessboard in a given image of the game scene; mapping the found
chessboard view onto a 2D plane, and finally processing the image on the 2D plane to
detect the changes on the chessboard and consequently the chess moves made. The
complexity of this problem requires use of robust tools to be able to implement the given
subtasks and also to integrate the overall solution efficiently. We therefore have four main
modules for the overall task , three of which solve the subtasks and one module integrates
the solutions. For this reason, we have used a number of state of the art software tools
during the course of the investigation. These include; OpenCV (Open Source Computer
Vision Library) [5], used for implementing the individual subtasks and ROS for integrating
the solutions of the subtasks into a larger system solution. We mention the specific aspects
of these tools used when describing the methodology with respect to the main subtasks
in Section 3.3.1, Section 3.3.2, Section 3.3.3 and Section 3.3.4.

3.3.1 Chessboard Detection

Throughout the game, we ’observe’ the scene using a simple webcam shown in Figure 3.6.
At any given point that we want to analyze a user move, we grab a snapshot of the game
scene at an arbitrary perspective. We then search for the chessboard in the snapshot
image using the techniques summarized in 1 and compute the coordinates of the four
corners of the chessboard detected in the scene if we detect one.

Figure 3.6: USB Webcam

A Cheap Chess Robot : Planning and Perception



3.3. PERCEPTION 15

Algorithm 1: Detecting a populated chessboard in a scene

Data: Raw Scene Image (img)
Result: Coordinates of the 4 corners of the chessboard
begin

img edges←− EdgeDetect(img);
all lines←− LineDetect(img edges);
MergeCloseLines(all lines);
bounding lines←− FindBoundingLines(all lines);
corners←− ComputerIntersections(bounding lines);
return corners;

end

We first pre-process the raw image by converting it to grayscale in preparation for
edge detection. The edge detection can be performed using any of the well established
algorithms such as Canny [19], Sobel [19], Laplace [19] edge detectors among others. In
our case, we make use of the Canny Edge Detector and its implementation in OpenCV
cv::canny. The Canny edge detector operates on five simple steps as outlined below;

First, reduce noise by convolving the input image with a Gaussian filter. The larger
the width of the filter, the lower the noise sensitivity of the detector. An example of such
a filter is given below;

1

115


2 4 5 4 2

4 9 12 9 4

5 12 15 12 5

4 9 12 9 4

2 4 5 4 2

 σ = 1.4

Secondly, using a Sobel operator to perform a 2D spatial gradient measurement of the
image in order to edge strengths. Sobel operator uses different masks for the x,Gx and
y,Gy directions. The masks are given below;

Gx =

 −1 0 1

−2 0 2

−1 0 1

 Gy =

 1 2 1

0 0 0

−1 −2 −1


The edge directions (θ) can then be computed using Eq. 3.1

θ = arctan

[
Gy

Gx

]
(3.1)

Once the edge directions are known, they can be related to traceable edges in the
image by checking the neighbor pixels. The tracing is done by setting all pixels not con-
sidered to be edges to a zero value leaving only the edge pixels as thin lines in the resultant

A Cheap Chess Robot : Planning and Perception



16 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

image. Finally edge contours that break above and below the threshold are removed by
hysteresis which uses two thresholds.

The line detection can be performed by algorithms mainly based on the Hough trans-
form defined below.

Definition The Hough Transform for a function/image A(x, y) is defined as

H(θ, ρ) =

∫ ∞
−∞

∫ ∞
−∞

A(x, y)δ(ρ− x cos θ − y sin θ) dx dx (3.2)

where δ =

{+∞ x=0

0 x 6=0

and
∫∞
−∞ δ(x)dx = 1

The key notion of the Hough transform [14] is the representation of lines in what is
called parameter space or image domain. A line y = mx + c is represented as shown in
Figure 3.7.

Figure 3.7: Image Domain and Hough Domain

This representation transforms each point in the original image A into a sinusoid given
in Eq. 3.3 . The equation of the line can therefore be written as given in Eq. 3.4 . All
points that lie on a line on the image will have their sinusoids cross a single point in the
Hough domain. Since a back-projection operation is possible, we can put a threshold T
on H(θ, ρ) so that the back-projection returns only lines with at least T points. This is
typically done on binary images for which H(θ, ρ) gives a direct estimate of the number
of points making a line.

ρ = x cos θ − y sin θ (3.3)

y =
{
− cos θ

sin θ

}
x+

{ ρ

sin θ

}
(3.4)

In our implementation we employ a well tested line detection method from OpenCV
called cv::HoughLines which returns all the detected lines in an array. We then iterate
over all the lines and merge those lines that are arbitrarily close to each other based on

A Cheap Chess Robot : Planning and Perception



3.3. PERCEPTION 17

distance between corresponding points on the lines. With the merged lines, we again
iterate over all lines and search for extreme lines corresponding to bounding lines. This
approach requires that the background on which the chessboard is placed be ’plain’ so that
the extreme lines correspond to the edges of the chessboard. This procedure identifies the
four bounding lines and returns these in an array, from which we compute the intersections
of these four lines with each other using standard linear algebra to determine the four
corners of the chessboard.

3.3.2 Projection of the View

Using the coordinates of the four corners on the chessboard given by executing 1, we then
project the chessboard on to a 2D plane by performing a perspective transformation.
The transformation involves multiplication with a homography matrix. The homography
matrix can be computed from a set of points by solving a system of linear equations. The
problem can be stated as;

Given a 2D point ~p = (x, y) on the image plane, find a matrix H such that the point
~p′ = (x′, y′) given by ~p′ = H~p lies on a 2D plane P 2 of choice. Usually these points are
then represented as 3D vectors using homogenous coordinates as shown in Eq. 3.5 and
Eq. 3.6.

~p = (a, b, c), s.t x =
a

c
, y =

b

c
and c 6= 0 (3.5)

~p′ = (a′, b′, c′), s.t x′ =
a′

c′
, y′ =

b′

c′
and c′ 6= 0 (3.6)

Since the mapping from P 2 → P ′2 can only be a projection if and only if it is an
invertible mapping from P 2 to itself such that any set of points that line a line before the
projection, still lie on a line after the projection [4]. H therefore must be a non-singular
3× 3 matrix so that the 3D vectors can be related as; a′

b′

c′

 =

 h1 h2 h3

h4 h5 h6

h7 h8 h9


 a

b

c

 (3.7)

This system can be solved using the DLT (Direct Linear Transform) algorithm [4].
For a given set of 2D point correspondences, we can expand Eq. 3.7 and normalize with
respect to the homogenous components (c, c′) to arrive at Eq. 3.8 and Eq. 3.9.

a′i =
h1ai + h2bi + h3

h7ai + h8bi + h9
(3.8)
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b′i =
h4ai + h5bi + h6

h7ai + h8bi + h9
(3.9)

We can re-arrange Eq. 3.8 and Eq. 3.9 to arrive at two equations that are linear in the
elements of H, meaning that every point correspondence yields two equations. To solve
for the full matrix, we therefore need four point correspondences. We therefore get eight
linearly independent equations given by Eq. 3.10.

a1 b1 1 0 0 0 −a1a′1 −b1a′1
a2 b2 1 0 0 0 −a2a′2 −b2a′2
a3 b3 1 0 0 0 −a3a′3 −b3a′3
a4 b4 1 0 0 0 −a4a′4 −b4a′4
0 0 0 a1 b1 1 −a1b′1 −b1b′1
0 0 0 a2 b2 1 −a2b′2 −b2b′2
0 0 0 a3 b3 1 −a3b′3 −b3b′3
0 0 0 a4 b4 1 −a4b′4 −b4b′4





h1

h2

h3

h4

h5

h6

h7

h8


=



a′1
a′2
a′3
a′4
b′1
b′2
b′3
b′4


(3.10)

Which is then solved using standard numerical algorithms. In our implementation, we
make use of certain handy functions in OpenCV namely, cv::getPerspectiveTransform
which takes the four point correspondences and returns a 3× 3 matrix. We then project
the chessboard image on to a 2D plane by again using another handy OpenCV method
called cv::warpPerspective which takes the original board image, the matrix and a size
and returns a new image projected according to the matrix provided.

3.3.3 Detecting Chessboard Changes

In order to detect changes on the chessboard and consequently the chess moves made, we
analyze successive chessboard images. We compare difference images and utilize informa-
tion about the state of the game to determine changes on the chessboard. The analysis
process is summarized into 2.

Starting with a difference image of successive scene observations, we remove noise by
performing two morphological operations on the image in succession. These operations
are defined as given.

Definition Let A and B be sets in Z2. Further, let the sets have components a = (a1, a2)
for set A and a = (b1, b2) for set B, then;

Translation of a set A by z = (z1, z2) denoted as (A)z is defined as;

(A)z := {c|c = a+ z, for a ∈ A} (3.11)

Reflection of a set A denoted by Â is defined as;

Â := {x|x = −a, for a ∈ A} (3.12)
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Algorithm 2: Detect Changes on the Chessboard

Data: A Difference Image (img)
Result: A list of changes (change string)
begin

change string ←− Null;
thresh←− some value;
erode(img);
dilate(img);
img dt←− distance transform(img);
large←− find maximum(img dt);
while large > thresh do

locate coordinates of blob at large;
map coordinates to board dimensions;
append result to change string;
flood fill(img, large);
img dt←− distance transform(img);

return change string;
end

Erosion of a set A by set B the mask, denoted by A	B is defined as;

A	B := {x s.t. (B)x ⊆ A}

Dilation of a set A by set B the mask, denoted by A⊕B is defined as;

A⊕B := {x|(B)x ∩ A 6= ∅}

The implementation of the erosion and dilation is done using handy OpenCV methods,
namely cv::erode and cv::dilate respectively.

The Distance Transform procedure labels each pixel in the image with the distance
to the closest background pixel and can be computed using a number of established algo-
rithms. Most of the algorithms differ mainly in the metrics used in the distance compu-
tation. For our purposes, we do not care which of these are used, as the simplest of these,
the Euclidean Distance Transform works well for our needs. For the implementation, we
employ a method in OpenCV called cv::distanceTransform which takes a binary image
and returns another image with the distances. To find the pixel with the largest distance
to the background pixels, we employ 3. The algorithm utilizes simple routines which
locate pixels and retrieve their distances. In our implementation we represent a pixel by
a struct hence making these routines simple one line statements of code.

Once the pixel is found, we infer the existence of a blob centered on the pixel whose
size depends on the pixel’s distance to background pixels. This information allows us
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Algorithm 3: Find pixel with largest distance to background

Data: Labelled Image (img)
Result: Pixel
begin

pixel←− GetP ixelAt(0, 0);
for i← 0 to GetRows(img) do

for j ← 0 to GetColumns(img) do
if GetDistance(GetP ixelAt(i, j)) > GetDistance(pixel) then

pixel←− GetP ixelAt(i, j)

return pixel;
end

to associate the blob with a change on the chessboard. We map the pixels coordinates
to ’chessboard dimensions (a – h, 1 – 8)’ by first subtracting an offset from the pixel’s
coordinates, after which we divide the result by eight and these map directly to the
chessboard squares. The exact offset is found by repeated tuning. After mapping the
coordinates, we fill the blob with background color using OpenCV method cv::floodFill

and repeat the procedure for all blobs of ’reasonable size’.

3.3.4 Detecting Chess Moves

In order to find out which chess pieces moved to which location, we analyze the change
strings from Section 3.3.3 and compare against previous chessboard configuration to de-
termine moves. We keep the chessboard configuration state in a 8 × 8 matrix of binary
values 0 = empty, 1 = occupied, and update this matrix at each step. Using this matrix
we can infer whether a change say a2b3 is a move from cell a2 to cell b3 or the reverse
by comparing the current cell status with the previous status. We iterate over the change
string, each time treating a pair of changes at a time.

With all the changes now converted into chess moves, we now generate poses for use
in planning for manipulation of the chess pieces. For each move we generate a start
pose and a goal pose in free space defined by a 3D vector ~v = (x, y, z)T representing
position and a quaternion ~q = (x, y, z, w)T representing the orientation of the piece. For
simplicity and because we do not have an object recognition system in our implementation,
the quaternion component is always the default quaternion ~q = (0, 0, 0, 1)T assuming
that all pieces stand ’straight’ on the board. Using the coordinates of the blob centers
from Section 3.3.3, we compute the x and y components of the 3D position vector using
information about the size of the chessboard squares (in our case 40mm × 40mm). The
z component is again for simplicity assumed constant. Providing all these values albeit
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using ’default ones’ allows flexibility in the planner design as we then employ a generic
pose and orientation representation scheme.

3.4 Manipulation

Overview The Manipulation Pipeline comprises of three ROS nodes and a manipulator.
Figure 3.8 gives a brief overview.

OpenRave 

Client

GUI
Arm

Control

Control

InterfaceROS (rec move piece,

return success)

ROS (query, 

    response)

Core Control Manager

USB

Grasping

Filtering

Optimising

OpenRave

(IK,K,ODE,BiRRT)

Hardware

Abstraction

ttyUSB0
ROS (command, 

joint/servo status)

SAC

MCN

OCN

Figure 3.8: From top to bottom one can identify the SAC, MCN and ORN

In the center, one can see the main node which we will refer to as the ”Manipulation
Core Node” or ”MCN” for short. In brief, it is responsible for organizing, visualizing and
executing all manipulation related tasks. It boasts a heavy GUI where all parameters and
configurations can be altered, (pre)viewed, saved and experimented with. It is the only
node within the Manipulation Pipeline that provides services to the Core Control Node.
For more details, see Section 3.4.11.

Above the MCN is the Smart Arm Controller (SAC) developed by the U.A. Robotics
Research Group. Its purpose is to control the actual hardware and monitor the servo and
joint states. More details in Section 3.4.9.
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Under the MCN is the OpenRAVE Node (ORN). Using OpenRAVE (See ssec:or),
the node is responsible for all manipulation calculations, algorithms, plan generation, IK
solving, collision checking, etc. It also simulates the environment and is the heart of the
Manipulation Pipeline. In this implementation, it is used as a server where the MCN can
request plans or IK solutions from it. Described in detail in Section 3.4.10

The MCN relies on the SAC to control the hardware and on the ORN for more
intelligent behavior. However, it depends on neither. A user can control and monitor the
hardware without the ORN or can visualize the environment and generate plans without
the SAC. This modular nature aids testing and development as the SAC and ORN are
completely decoupled.

3.4.1 Frames and coordinate systems

Before we continue, we must define our coordinate systems. Three coordinate systems are
of special interest that will be used to give a frame of reference to describe the transform
of objects in them: the world frame ref , the end effector’s frame eef and an object frame
obj, which are all illustrated in 3.9 below. Generally, the X-axis will point forward, the
Y-axis to the left and and the Z-axis upwards.

The world frame’s origin lies at the intersection of the floor and wall panels, halfway
along the width, on the ground and will be denoted as ref , for reference frame. See 3.9a.

The end effector frame’s origin lies in line with the X axis that defines the wrist
rotation, in front of the gripper such that the gripper closes around the EEF’s origin’s
location. This is useful, as it allows us to grip objects by putting them in the origin of
this frame. This frame will be denoted as eef . See 3.9b.

Each object has its own frame, where the origin lies in its center of the object. Note,
that the only objects of relevance here are chess pieces, which are approximated as cylin-
ders. This frame will be referenced as obj. See 3.9c

(a) World frame: ref (b) EEF frame: eef (c) Object frame: obj

Figure 3.9: Overview of frame coordinate systems and origins
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3.4.2 Transforms

We describe the 3 DOF translational displacement (up/down, left/right, forward/backward)
and 3 DOF rotational displacement (pitch, yaw, roll) of rigid bodies relative to the refer-
ence coordinate systems described above with the use of rotation matrices and translation
vectors respectively. For a full 6 DOF description, we use the homogeneous transformation
matrices.

Rotation A rotation matrix describes the relative orientation of an object to a
reference frame. The columns of the following matrix consist of the unit vectors along the
axes of the object, relative to the reference frame. We denote the relative orientation of
an object frame obj with respect to a reference frame ref as:

obj
refR =

(
refx

obj
refy

obj
refz

obj
)

=

xobj · xref yobj · xref zobj · xref

xobj · yref yobj · yref zobj · yref

xobj · zref yobj · zref zobj · zref


Using this, we can derive the elementary rotations around the reference frame axes:

Roll, rotation around the X axis Rx(α) =

1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)


Pitch, rotation around the Y axis: Ry(β) =

cos(β) 0 − sin(β)

0 1 0

sin(β) 0 cos(β)


Yaw, rotation around the Z axis: Rz(γ) =

cos(γ) − sin(γ) 0

sin(γ) cos(γ) 0

0 0 1


The roll, pitch and yaw rotations can be used to place a 3D body in any orientation.

A single rotation matrix can be formed by multiplying these rotation matrices to obtain:

R(γ,β, α) = Rz(γ)Ry(β)Rx(α) =cos γ cos β cos γ sin β sinα− sin γ cosα cos γ sin β cosα + sin γ sinα

sin γ cos β sin γ sin β sinα + cos γ cosα sin γ sin β cosα− cos γ sinα

− sin β cos β sinα cos β cosα

 .
(3.13)

Note that since b
aR is orthonormal :

a
bR = b

aR
−1 = b

aR
T (3.14)

Translation Translation is where an object is displaced along its reference frame’s
axis without any rotation. The translation vector obj

ref
~P = (PxPyPz)

T displaces an object
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obj along the x, y, z axis of reference frame ref . To obtain the translation of object obj
that lies in the frame b, in the reference frame ref , one simply adds the translation of obj
in its frame to the translation of frame b in the reference frame ref :

obj
refP = b

refP + obj
b P . (3.15)

Homogeneous Transform The coordinates of an object obj, relative to a frame b,
rotated and translated with respect to a reference frame ref , are given by:

obj
refP = b

refR
obj
b P +b

ref P. (3.16)

This can be compacted into the form of a homogeneous transformation matrix that is
defined as:

b
aT =

(
b
aR

b
aP

01×3 1

)
(3.17)

.
This matrix represents the orientation and position of a frame b, whose orientation

relative to the reference frame a is described by the rotation matrix b
aR and whose origin,

relative to the same reference frame a, is described by b
aP is, thus, the full 6 DOF repre-

sentation of a frame in three-dimensional space. If the coordinates of an object obj are
known with respect to a frame b, then its coordinates, relative to reference frame ref are
found by: (

obj
refP

1

)
= b

refT

(
bP

obj

1

)
(3.18)

Note that this is the same as (3.16).
The following examples illustrate how to change frames:
If for example object frame obj, is known, relative to end effector frame eef , whose

pose is known with respect to the world frame ref , we can obtain the object in the world
frame transform obj

refT as follows:

obj
refT =eef

ref T
obj
eefT (3.19)

This will later prove useful, when converting transforms in the eef frame to the ref
frame. If one would like to go the other way, i.e. one is given the end effector frame eef
and an object frame obj, both relative to the world frame ref , and would like obtain the
transform of the object frame obj in the end effector frame eef , i.e. obj

eefT , one uses the
inverse or the transpose since (3.14):

obj
eefT =eef

ref T
−1 obj

refT =eef
ref T

−T obj
refT (3.20)
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This will be used when we plan with objects that are grasped, i.e. attached to the
gripper.

3.4.3 Important Functions

The most important and frequently used functions are defined below.

Line-Plane intersection angle

It will be of essential importance to extract the angle between obj
refaxisY , obj

refaxisX and
obj
refaxisZ of a given transform obj

refT and the plane spanned by ref
refaxisX and ref

refaxisY , in
order to later define ”uprightness” and ”levelness”. To do this, we first identify the normal
vector to the plane and the directional component of obj

refT that represents the axis we wish
to intersect the plane with:

obj
refaxisX =


obj
refT0,0
obj
refT1,0
obj
refT2,0

 obj
refaxisY =


obj
refT0,1
obj
refT1,1
obj
refT2,1

 obj
refaxisZ =


obj
refT0,2
obj
refT1,2
obj
refT2,2


The normal vector of the plane spanned by ref

refaxisX and ref
refaxisY is ~planeXY =

(0, 0, 1)T . Note that the four vectors need not necessarily be normalised. Let ~P be the

plane vector and ~Aa an axis vector, where a denotes the axis. Then

∠
(
~P , ~Aaxis

)
= arcsin

(
|PxAax + PyAay + PzAaz|√

P 2
x + P 2

y + P 2
z

√
Aa

2
x + Aa

2
y + Aa

2
z

)
= arcsin

(
|P · Aa|
||P || ||Aa||

)
(3.21)

Levelness of a transform

Here we will define our notion of levelness and a function which evaluates how level a
given transform is. This will be used in Section 3.4.10 to grasp an object with the EEF
being as level as possible.

Intuitively, levelness describes how parallel to the floor an object is in the world frame,
where parallelism is not affected by rotation around the objects local Y axis. This lets
us describe parallelism in terms of the intersection angle between the objects local Y axis
and the floor. For this, we make use of (3.21):
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levelness(objrefT ) = ∠
(
~P , ~Ay

)
= ∠


0

0

1

 ,


obj
refT0,1
obj
refT1,1
obj
refT2,1




= arcsin

 |objrefT2,1|√
obj
refT0,1

2
+ obj

refT1,1
2

+ obj
refT2,1

2

 (3.22)

Given the transform of an object in the world frame obj
refT , function levelness(objrefT ) now

returns the angle away from perfect levelness. Therefore, the lower the angle obtained,
the more level the object is. Some examples of non-level and level objects are shown in
3.10.

(a) Level (b) Level (c) Non Level (d) Non Level

Figure 3.10: Examples of non level and level transforms of an object.

Uprightness of a transform

Here we define our notion of uprightness. Intuitively, uprightness is how little an object
is ”tipped over”. For example, a glass of water sitting on a flat table is perfectly upright.
To pour water out of the glass, one must tip it over somewhat (i.e. rotate it around
its local Y and/or X axis), thereby reducing its uprightness. Maximising uprightness is
synonymous with maximising the objects local Z axis and floor intersection angle, which
is obviously bounded by 0◦ (lying on its side) and 90◦ (perfectly upright). Technically,
this would mean a perfectly upside down glass would also be considered perfectly upright,
as its Z axis intersects the floor at 90◦ too. Therefore, we will also introduce a function
which evaluates whether the given transform of an object in the world frame is upside
down or not. Using this, we can enlarge the interval from -90◦ (fully upside down) to 90◦

(fully upright). As we wish to use this as an error function, we will shift the interval such
that 0◦ is perfectly upright and 180◦ is fully upside down.

First we must determine if an object transform is not upside down. Intuitively, we
construct a transform that does nothing other than translate along its Z axis positively,
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apply it to the transform of the object and then check whether the obtained transform
lies over or under the object transform by comparing Z coordinates in the world frame:

isUpright(objrefT ) =

{
1 if (objrefT ·M)2,3 ≥ obj

refT2,3

0 elsewise

where M is the transform that goes one step in positive Z direction,

i.e. M =


1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1

.

Now we can put it all together to define uprightness:

uprightness(objrefT ) =
∣∣∣1.57c − ∠

(
~P , ~Az

)
−
(

1.57cc · isUpright(objrefT )
)∣∣∣

=

∣∣∣∣∣∣∣1.57c − ∠


0

0

1

 ,


obj
refT0,2
obj
refT1,2
obj
refT2,2


− (1.57c · isUpright(objrefT )

)∣∣∣∣∣∣∣
=

∣∣∣∣∣∣1.57c − arcsin

 |objrefT2,2|√
obj
refT0,2

2
+ obj

refT1,2
2

+ obj
refT2,2

2


−
(

1.57c · isUpright(objrefT )
)∣∣∣ (3.23)

This function now returns the angle that transforms are away from perfect uprightness,
even if they are upside down. This will be used in Section 4.2.1 to place chess pieces as
upright as possible.

3.4.4 OpenRave

Introduction OpenRAVE is the main manipulation framework we used in the manip-
ulation pipeline. It stands for Open Robotics Automation Virtual Environment and is
maintained by Rosen Diankov. It provides basic simulation and visualisation, transform
querries of loaded kinematic bodies and kinematic chain link, IK solution generation,
planning, collision check querries (ODE) and many other things. How it works and what
exactly it provides is not scope of this thesis. For more information see [2]. For more
information on how we used the viewer and simulation see Section 3.4.10.

IK solver generation OpenRAVE automatically generates a closed form analytic IK
solver for a given kinematic structure. For the ones we used, please see Section 3.4.5.
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Planning OpenRAVE has many inbuilt planners. We stick with the default one called
BiRRT that is based on the RRT-Connect algorithm outlined in Section 3.4.6.

3.4.5 FK and IK

FK Forward kinematics is the computation of the transform of an element of a kinematic
chain. In our case the element is usually the EEF (and occasionally the object it has
grasped) and the kinematic chain are the links and joints that the arm is comprised
of. In short, given the manipulators joint angles, forward kinematics calculates the EEF
transform. Most of the time we rely on OpenRAVE (see Section 3.4.4) to do all FK
calculations for us, except for when we manually add a grasped object to the kinematic
chain of the manipulator. To do this, we use 3.20 to calculate obj

eefT from obj
refT and eef

refT .
This gives us the transform that takes us from the EEF to the grasped object. Then we
can simply multiply obj

eefT with eef
refT at any time to obtain obj

refT , dependent on the current

joint angles, as eef
refT varies with different joint angles. Of course, every time we release

and grasp the object again, obj
eefT needs to be recalculated as a new grasp might result

in a new relationship between the EEF and the attached object. Later, knowing obj
refT in

terms of joint configurations will allow us to use 3.23 on it to select the joint angles that
puts the grasped object as upright as possible.

IK Inverse kinematics is a little more complicated, as many or no solutions may ex-
ist. Inverse kinematics is the computation that finds joint angles of a kinematic chain
that brings the desired link (e.g. the EEF or attached object) to a desired transform.
OpenRAVE (see Section 3.4.4) can generate many different types of IK solvers for a given
kinematic chain. In our case, the manipulator has 4 DOF, which severely limits the type
of IK solver we can use. We will only use two IK solvers:

• Translation3D IK - given a goal translation goal
ref P , calculate the required joint angles

that places the desired link there. Useful for finding joint configurations that allow
the manipulator to grasp an object at a specified position.

• TranslationLocalGlobal6D IK - given a goal translation goal
ref P and an offset transla-

tion goal
linkP , calculate the required joint angles that places the desired link (e.g. EEF)

on the goal after the offset has been applied. This is useful to find joint configu-
rations to release a grasped object at a specific goal. This IK solver did not exist
prior to this project. I suggested it to the OpenRAVE maintainer Rosen Diankov
who agreed it would be useful and implemented it very quickly.

Note that each of these IK solvers requires only 3 DOF. Therefore, the 4th DOF of the
manipulator (i.e. the wrist rotation) is set as a free joint, meaning it is not used in the
IK calculations. This intuitively makes sense as rotating the wrist does not change the
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EEF translation. For every IK solution generated, infinite solutions exist as we can ar-
bitrarily chose the 4th DOF value that is within the joint limits. To overcome this, we
discretise this continuous space in 0.1c intervals, limiting the number of solutions gener-
ated for each solution of the first 3 DOF to a maximum of

⌊
Upperwristlimit−Lowerwristlimit

0.1

⌋
=⌊

2.617−(−2.617)
0.1

⌋
= 52 solutions. fig:ik shows Ik solutions for the given green point repre-

senting a translation. The first 4 are filtered to show one IK solution per IK solution of the
first 3 DOF, while the last picture demonstrates all the IK solutions before discretisation.
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(a) One IK solution (b) Two IK solutions

(c) Three IK solutions (d) Four IK solutions

(e) All IK solutions

Figure 3.11: IK solutions for different translations. The first 4 only show IK where the wrist
is fixed, while the last image demonstrates all IK solutions
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3.4.6 Planning and Trajectories

Trajectory Trajectories are the results of planners. Valid trajectories consist of a list
of valid manipulator joint configurations that incrementally vary in such a way that move
the arm step by step from one joint configuration to another. In our case, this would
be a list of vectors of length 5, one element for each DOF. If the incremental difference
between each vectors respective elements are small enough, the arm will appear to move
continuously. Intuitively, a trajectory is the ”path” a manipulator takes to reach a goal
configuration from an initial configuration. Usually, each incremental configuration also
has an associated time stamp, thereby allowing the trajectory to accelerate and decelerate
the arm along the course of execution. For simplicity, we omit this. Below in Figure 3.12
one can see every 10th joint configuration that brings the object to the specified translation
without causing collisions or joint limit invalidation.

(a) Initial configuration (b) Trajectory generated (c) Different perspective

Figure 3.12: The resulting BiRRT plan: a trajectory to move the piece to the given goal
translation. Every 10th joint configuration is plotted with decreasing transparency

Planning In our implementation planning can be seen as searching for valid trajectories
that bring the manipulator from an initial configuration to a goal configuration while
satisfying various navigation constraints, such as never violating the joint limits and
never causing arm → arm (self) collisions or arm → environment collisions. Note that a
grasped object is considered to be part of the arm.

There are many approaches to finding a solution in this complex search space, such as
employing potential fields or sampling-based algorithms. OpenRAVE has various planners
such as RRT, BiRRT, RA*, etc and we will use its default planner BiRRT, which grows
two RRTs and attempts to connect them. RRTs and BiRRTs are both outlined in relevant
context in Section 3.4.6 and Section 3.4.6 below. An example of the result of such a plan
is shown in Figure 3.12. Before we can look at BiRRTs, we must first understand the
underlying RRT algorithm and data structure.
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RRT RRT stands for Rapidly-Exploring Random Trees, which is detailed in [10].
Briefly put, the RRT algorithm constructs a tree τ in Cfree rooted at an initial config-

uration qinit ∈ Cfree and incrementally grows itself until a continuous connection between
qinit and a desired configuration qgoal ∈ Cfree is found, at which point it returns the
qis∈ Cfree on the found path. To do this effectively, the construction of a RRT is biased
towards unexplored portions of C, meaning it will generally attempt to explore in the di-
rection of the greatest unknown region at every iteration of construction. In our context,
each node qi of the tree τ represents a joint configuration and every edge a valid move
from one configuration to another, meaning the path of qis returned by the algorithm
corresponds to a list of joint configurations which are successively near, i.e. a trajectory
as described in Section 3.4.6.

[6] has shown that RRTs are probabilistically complete, meaning the probability that
they will produce a solution increases with time spent, but they cannot determine if no
solution exists. Therefore the runtime and/or maximum number of nodes is capped, and
if the cap is reached the problem is deemed insolvable.

The basic RRT construction algorithm is given in algorithm 4.

Algorithm 4: BUILD(): Construct an RRT that eventually creates a path between
qinit and qgoal if one exists

Input: Initial configuration qinit, goal configuration qgoal, number of nodes Imax,
incremental distance ε

Output: Path qinit, . . . , qgoal ⊆ RRTtreeτ
begin

τ.INIT(qinit) ;
for i← 1 to Imax do

qrand ← BIASED RANDOM CONFIG() ;
if EXTEND(τ, qrand, ε) = Solved then

// Return found solution

return τ.PATH(qinit, qgoal);

// No solution found within Imax nodes

return No Solution;
end

After the tree τ has been initialised with just its root qinit, nodes are iteratively added
to τ in the following way: τ is extended towards a random but biasedly chosen node qrand
selected by BIASED RANDOM CONFIG(). This function selects a node to extend towards
with probability proportional to the area of its Voronoi region (intuitively large Voronoi
cells represent large unexplored areas), which causes the RRT to be biased towards rapid
exploration before ultimately covering Cfree uniformly. Illustration of the explorative
behaviour is illustrated in Figure 3.13, where an RRT is applied to 2D square space and
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is grown from the center. Figure 3.14 shows the corresponding Voronoi Cells.

(a) Initial Branching
out

(b) Rapidly exploring (c) Continued explor-
ing

(d) Uniformly coverag-
ing the space

Figure 3.13: Four snapshots of an RRT expanding in 2D square space. Notice the exploratory
behaviour and eventual uniform space convergence trend (from [6])

(a) Initial Branching
out

(b) Rapidly exploring (c) Continued explor-
ing

(d) Uniformly coverag-
ing the space

Figure 3.14: Four snapshots of an RRT rapdily expanding biasedly towards large Voronoi
regions which are indicated by red outlines (from [6])

Once qrand is picked, the RRT τ then attempts to extend towards it using function
EXTEND() outlined in algorithm 5. EXTEND() first determines qnear, the closest node to
qrand already in the RRT τ. The function NEW CONFIG() steps in direction qrand with a
new node qnew with distance ε and returns qnew if qnew ∈ Cfree, i.e. is valid. One of four
things can then happen:

Reached qrand is directly added to RRT τ, as τ, already contains a node within ε of
qrand, i.e. qrand = qnew

Advanced qnew 6= qrand indicating a successful but not final step towards qrand. qnew then
becomes a new node of RRT τ and an edge is added between qnear and qnew

Trapped qnew /∈ Cfree, i.e. the proposed new node is rejected due to invalidity
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Solved After every successful EXTEND() operation, CHECK FINISHED() checks in a
greedy fashion whether one can directly reach qgoal from qnew. If this is the case, an
edge from qnew to qgoal is added to RRT τ, which then successfully bridges qinit to
qgoal resulting in a sequence of nodes that can be returned as the solution, and if
not, the RRT continues to expand until a solution is found or the maximum number
of nodes Imax is reached and the problem deemed insolvable.

The EXTEND() operation is illustrated in Figure 3.15. Note that this subsection on
planning is to provide a general overview and idea of how RRTs work and can be applied
to finding trajectories. Details, such as how to sample C and determine ε by using swept
joint volumes to value more important joints higher are omitted. For exact details on how
RRT is used and implemented see [2].

Algorithm 5: EXTEND(): Extend τ towards qrand with distance ε and check if
qgoal can be reached

Input: random node qrand, goal node qgoal, an RRT tree τ, incremental distance ε
Output: Status
begin

qnear ← NEAREST NEIGBOUR(qrand,τ);
qnew ← NEW CONFIG(qrand, qnear, ε);
if qnew 6= NULL then

τ.ADD NODE(qnew);
τ.ADD EDGE(qnear, qnew);
if CHECK FINISHED(qnew, qgoal) then

// qnew connects to qgoal, so we have a compelte path

τ.ADD EDGE(qnew, qgoal);
return Solved;

else if qnew = qrand then
// reached qrand
return Reached;

else
// extended towards qrand
return Advanced;

else
// qnew /∈ Cfree
return Trapped;

end
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(a) Initial configuration after 10 steps. White ∈
Cfree, red /∈ Cfree

(b) qrand selected

(c) qnear identified as closest to qrand (d) Checked if qnew can greedily reach qgoal. As it
cannot (highlighted red), the continues

Figure 3.15: The steps of the EXTEND() operation while building an RRT tree. Note that if
the tree illustrated was one of the BiRRT trees, qgoal would be the closest node of the opposite
tree.

BiRRT BiRRT stands for Bi-directional Rapidly-Exploring Random Trees, which
uses the RRT-Connect algorithm detailed in [6] and was specifically implemeneted for
manipulation planning in [2]. Intuitively, BiRRTs grow two RRTs, τI from initial node
qinit and τG from goal node qgoal ,towards each other, utilising the rapidly exploring nature
of RRTs to grow and a Connect Heuristic to join the trees, even over long distances. A
connection between the two trees implies that a valid path has been found from the
starting node qinit to the goal node qgoal. BiRRTs keep the nice properties of RRTs such
as probabilistic completeness [6].

The Connect Heuristic CONNECT() is a greedy function that can be considered an
alternative to the EXTEND() function of RRTs described in algorithm 5 . It works similarly
to the CHECK FINISHED() function mentioned in Figure 3.4.6, but instead of greedily
trying to reach qgoal after every qnew is created, it tries to reach the new node qnew from
the closest node of the opposite tree by continuously iterating with step size ε towards
qnew, until it either reaches an invalid state or connects. CONNECT BIRRT() is shown in
algorithm 6.

Function BUILD BIRRT() is responsible for building both RRTs τI and τG and is shown
in algorithm 7. First, it initialises both trees with their respective first nodes. Then, it
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iteratively expands each RRT in succession with qnew using the function EXTEND BIRRT()

shown in algorithm 8. Note that EXTEND BIRRT() is very similar to the EXTEND() function
of RRTs. It does the same, except for skipping trying to connect each new node qnew to
qgoal, as in this case the goal is to connect both RRTs. Therefore, BUILD BIRRT() first
defines qgoal after expansion to be the closest node to qnew of the opposite tree, which it
then tries to greedily connect with using CONNECT BIRRT(). If connection is successful,
the path that links both RRTs is the solution and can be returned. If the connection
fails, the iteration continues on the opposite tree, then back on the initial tree, etc. until
either a connection is found and the solution returned or the maximum number of nodes
Imax is reached and the problem deemed insolvable.

Algorithm 6: EXTEND BIRRT(): Extend τ towards qrand with distance ε. Note
that this is very similar to EXTEND(), but lacks the qgoal check as qgoal changes as
BUILD BIRRT() progresses

Input: random node qrand, an RRT tree τ, incremental distance ε
Output: Extend Status
begin

qnear ← NEAREST NEIGBOUR(qrand, τ);
qnew ← NEW CONFIG(qrand, qnear, ε);
if qnew 6= NULL then

τ.ADD NODE(qnew);
τ.ADD EDGE(qnear, qnew);
if qnew = qrand then

// reached qrand
return Reached;

else
// extended towards qrand
return Advanced;

else
// qnew /∈ Cfree
return Trapped;

end
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Algorithm 7: CONNECT BIRRT(): Extend τ as far as possible towards q in a
greedy fashion

Input: Node q, RRT tree τ, incremental distance ε
Output: Status of connection attempt; either Reached or Trapped
begin

repeat
// Incrementally step towards q
S ← EXTEND BIRRT (τ, q, ε);

until S 6= Advanced ;
// q is either Reached or Trapped
return S;

end

Algorithm 8: BUILD BIRRT(): Construct two RRTs from qinit and qgoal respec-
tively, that eventually connect thereby creating path between qinit and qgoal if one
exists

Input: Initial configuration qinit, goal configuration qgoal, number of nodes Imax,
incremental distance ε

Output: Path qinit, . . . , qgoal ⊆τI ∪ τG
begin

τI .INIT(qinit) ;
τG.INIT(qgoal) ;
for i← 1 to Imax do

qrand ← BIASED RANDOM CONFIG() ;
if EXTEND BIRRT(τI , qrand, ε) 6= Trapped then

if CONNECT BIRRT(qnew, τG, ε) = Reached then
// Solution found as τI and τG connected

return PATH(τI , τG);

// Continue expanding other tree

SWAP(τI , τG);

// No solution found within Imax nodes

return No Solution;
end
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3.4.7 The Environment

Overview Before we look at the details of the manipulator hardware and how to inter-
face with it, we focus on the environment. The environment consists of the mount, the
chess board and the chess pieces.

(a) Proposed Environment (b) Simulated Environment (c) Real Environment

Figure 3.16: Comparison of environment representations

The Mount

The manipulator will be mounted on a vertical wall at a height of 370mm, such that it can
reach the entire playing space, a subsection of the horizontal floor to which the vertical
wall will be mounted using triangular brackets. The setup is robust and does not vibrate
with the arm movement, therefore providing a stable environment for the chess pieces and
eliminating one factor of accuracy decline. Figure 3.16 shows a comparison between the
initially proposed environment, the simulated environment and a photo of the real result.

The wall and floor are constructed of 15mm thick pressed wood, each slab being
500mm*600mm in dimension. The triangular brackets constrain the arm’s movement
only at the extremities of its reach, where it does not affect the reachability in the chess
playing zone and are large enough to provide the required robustness. The two wooden
slabs form a 90◦ angle along their long sides. The camera is positioned above this setup
in a non-fixed manner, facing downwards.

A plot of the manipulator’s reachability is given in Table 3.1 that helped choose the
manipulator height.
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Base Height Top View 3/4 View 3/4 Chess Pieces

height300mm

370mm

400mm

Table 3.1: reachability for manipulators at different height attempting to reach points goal
ref

~P =

(i ∗ 10mmj ∗ 10mm 25mm)T . Note the unreachable zone directly under the arm for the 300mm
height configuration, and the lack of corner reachability for the 400mm configuration

The Chess Elements

The Chess Board A usual 8x8 cell black and white chess board with the dimensions
of 400mm*400mm*1mm board is used. The board is fixed and aligned to the floor board
and the center is at board

ref
~P = (450mm 0mm 0mm)T . This placement proved to have the

best overall arm reachability while still leaving enough space around the edges. The board
does not have any special markers, magnets, pressure pads or any other type of sensor
or sensor aid, i.e. it is perfectly regular. Table 3.2 plots all the IK solutions for arm
height 370mm for the center of every chess square at 25mm height. Generally, the more
IK solutions per square center the better, as this gives the manipulator more approach
angles which can be exploited later. Table 3.2 shows that the areas with most IK solutions
are in the center two thirds of the board (especially rows 3 to 6), suggesting that a smaller
board scaled to rows 3-6 would be better in terms of diverse reachability. However, that
felt too inaccurate and clumsy to deal with such small pieces and movements. Therefore,
the largest board possible was chosen according to Table 3.1.
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Row Top View Side View 3/4 View

0

1

2

3

4

5

6

7

Table 3.2: All IK solutions (with fixed wrist rotation) row-wise for the center of each chess
square at 25mm height
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The Chess Pieces Regular pieces are to used, more specifically the standardized
Staunton 4 set (height of king: 78mm, base width 32mm). The pieces are made of
wood and are matt black and beige. Initially we opted for larger pieces, but the board
became too cluttered so we opted for the size mentioned above.

3.4.8 The Manipulator

Overview In this section we will focus on the actual hardware. To manipulate the chess
figures an AX-12+ Smart Robot Arm by CrustCrawler was chosen due to its low cost,
servo feedback and simplicity. It has four rotational degrees of freedom (4 DOF) and a
single linear DOF gripper. The objective of the arm is to continuously send feedback and
upon request, move successfully and accurately to a specified joint configuration, which
it should be able to maintain. Figure 3.17 shows in the arm in pieces, in construction
and fully assembled. The arm was built twice, once as a proof of concept to make sure
all pieces were there, no defects present and experiment with different configurations. At
first, we did not have the -45◦ pitch between DOF 0 and 1 as shown in the transformation
in line 2 of Table 3.3. However, we intuitively decided that it would make sense to
add this slight rotational offset to increase the IK solutions for certain goals. This can
be observed in image (c) of Figure 3.11: if the rotation after the torso and before the
shoulder would not exisit, the shoulder joint would like on the rotational axis of the torso,
thereby potentially halving the available IK solutions. The two left solutions of (c) in
Figure 3.11 would merge. Once we were satisfied with the (kinematic) structure of the
arm, we rebuilt it and applied generous amounts of loctite to the nuts and bolts, as they
were already loosening with just a few preliminary tests.

(a) Disassembled (b) Assembly (c) Assembled

Figure 3.17: Construction of the arm

Structure and Dimensions

Structure The reach radius around the manipulators’ torso’s (DOF 0) XY plane is
445mm. Due to this limited reach, the arm would not be able to reach across the chess

A Cheap Chess Robot : Planning and Perception



42 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

board. Therefore, the arm shown in Figure 3.18 with the CrustCrawler [15] setup will
be mounted horizontally, i.e. rotated 90◦ around the Y axis so it sits on the global YZ
plane resulting in a setup shown in Figure 3.16. The arm has a configuration specified in
Table 3.3 with DOF in the order of kinematic chain. A corresponding image is shown in
Figure 3.18.

Figure 3.18: CrustCrawler AX12 Smart Arm with labelled DOF

Actuators To power the arm, a total of seven servos are used, where the mass bearing
joints, i.e. the shoulder and elbow, use pairwise opposed servos. However, in our chosen
configuration (see Section 3.4.7, the shoulder rotation is the most mass-bearing joint and
unfortunately powered by a single servo only. This led to the servo shutting off if the
arm’s torso was rotated over ± 55◦ angle. The servos are Dynamixel AX-12 actuators,
pictured in Figure 3.19. While not being the most powerful or accurate servos available,
they are cost efficient, flexible and compact. They communicate through 8 bit half duplex
asynchronous serial communication at a baud rate of 1000000 BPS. The actuators pro-
vide position, load, voltage and temperature feedback. To receive servo feedback and send
commands, we will interface the servos to our host system with a USB2Dynamixel. Phys-
ically they link in a daisy chain fashion, i.e. all servos are connected in series forming a
Dynamixel Network. Instruction packets are sent to the Dynamixel network that set reg-
isters in the servos, and status packets are returned exposing the content of the registers.
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Servos are addressed by unique IDs. For a detailed description of the 49 RAM/EEPROM
registers (i.e. temperature, goal position, etc) and instruction/status packet formats, see
the AX12 Manual.

Initially we had some problems with the servos, so a tool with a GUI front-end was
developed that directly interfaced to the Dynamixel network and could read/write to
the registers. This debugging tool proved to be useful and the problems were discovered,
understood and eliminated. The main problem seemed to be when the power supply could
not keep up and servo IDs started to change causing conflicts on the Dynamixel network.
If IDs are not unique, the whole Dynamixel network fails and one must manually check
each individual servo one at a time and correct the IDs. Power supply issues were fixed
by changing from a battery to a desk mounted dedicated power supply that could supply
the required voltage and amps indefinitely. The exact inner workings of the diagnostic
tool are not scope of this thesis. For details on the implementation of the interface used
to control the arm/servos, see Section 3.4.9, the arm driver. For the basic features and
specifications of the servos themselves, see Table 3.4.

Property AX-12

Weight 55g

Gear Reduction 1/254

Input Voltage 7-10V

Max Holding Torque 12-16.5 kgf cm

Operating Angle 300◦

Resolution 0.35◦

Max Speed 114rpm

Table 3.4: Servo specifications

Figure 3.19: Dynamixel AX-12 Servo
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3.4.9 SAC - Smart Arm Controller Node

Overview The Smart Arm Controller Node, or SAC for short, has the responsibility
to bind the arm to the ROS network, thereby allowing ROS nodes to monitor the state
of the manipulator and issue commands to it. We used the ua-ros-pkg developed by the
Cognitive Robotics Group at the University of Arizona. Among other things, ua-ros-pkg
provides a ROS interface to the Dynamixel network and an additional layer of abstraction
to the servos.

Implementation Of the ua-ros-pkg, the smart arm controller node is of primary use
to us. It loads parameters from a .yaml file that specify the properties of the joints
we wish to control (such as joint limits, names, center positions, servo IDs) and then
starts a controller spawner from ax12 controller core that takes a list of joints we wish to
instantiate that correspond to the previously loaded properties. In addition, a low-level
serial driver is started which takes care of communicating with the Dynamixel network.
All the relevant parameters such as baud rate, update rate, port name, etc. are specified
in its own launch file. All of this is done through a single launch file. The launch files
and configuration.yaml files were modified to fit our needs. This package is stable and
flexible, but is not yet fully implemented. However, all the relevant features to enable
motion planning are present. For the features that were missing (such as setting goal
servo speeds), the diagnostic tool mentioned in Section 3.4.8 was used to write to the
EEPROM registers which hold their value after shut down.

ROS Interface The smart arm controller node allows us to treat the Dynamixel net-
work of servos in serial as a manipulator, thanks to the abstraction it provides, such as
coupling opposed servos into a single joints and converting radians into 10bit integers
(and back) that the AX12 servos use. It provides the ROS network with

1. the ability to set the goal angle of each joint

2. servo feedback which consists of: current position, load, temperature and voltage

3. joint feedback which consists of: position, goal position, error between goal and
current position and velocity

Each joint subscribes to its own command message and publishes its own feedback.
Servo feedback is provided as a published array of servo info at the update rate specified
in the .yaml file mentioned above.

Note that the MCN communicates with the SAC, but with a control layer in between,
outlined in Section 3.4.11
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3.4.10 ORN - The OpenRave Node

Overview This section will explain the inner workings of the The OpenRave Node
(ORN ), the interface and functionality it provides to the ROS network and how this
functionality is implemented. The ORN relies heavily on the OpenRAVE library men-
tioned in Section 3.4.4. We first define the functionality it provides and then look at these
in greater detail. It is assumed that the real world can accurately be represented within
the ORN, so that we can therefore plan in the simulation and apply the results to the
real world.

Node Objectives and Capabilities

In short, this nodes provides the higher level planning algorithms that the MCN relies
upon to move chess pieces. It sits as a lookup server on the ROS network where it can
be asked to generate plans, visualise solutions and simulate movements. Together with
the OpenRAVE library (see Section 3.4.4) it provides the following functionality either
through a GUI or over the ROS network:

1. Initialise OpenRAVE with an accurate description of the environment and robot

2. Interact with the simulation - move the simulated arm joints and objects in the
environment

3. Allow the state of the arm in the simulation to be polled

4. Change planners on the fly

5. Grasp and release simulated objects

6. Visualise and simulate the arm and environment

7. Visualise trajectories and multiple IK solutions

8. Visualise joint configurations and translations

9. Generate visual reachability maps

10. Filter IK solutions by various filters

11. Sort IK solutions by various preferences

12. Find the best IK solution to grasp from by minimising an error function

13. Find the best IK solution to release from by minimising an error function

14. Find the best pair of IK solutions to grasp then release from by minimising an error
function
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15. Generate a trajectory that brings the arm to a desired joint configuration

16. Generate a trajectory that brings the EEF or attached object to a desired translation

17. Generate a set of trajectories that moves a chess piece from a to b and the arm back
to an initial configuration

A detailed explanation of the most important aspects in the list is given in the next
few subsections.

Simulation and Visualisation

Concept The main concept behind the ORN is simulate the real world as closely as
possible, then plan, calculate and solve with this simulated, virtual world, and apply the
solutions to the real world. To do this, we use the OpenRAVE’s viewer to visualise the
state of the simulation, which comprises of the manipulator itself and the environment
described in Section 3.4.7. The viewer also allows for interaction, allowing the user to
move pieces and rotate arm joints in the simulated world. This is especially useful to
create situations to test the arm, IK and planners with, to manually match the real world
to the simulated world, to quickly run different experiments with different configurations
and to intuitively tele-operate the arm. See Figure 3.16 for a visual comparison between
the simulated world and real world.

Environment Description The ORN starts by initialising OpenRAVE and loading
the environment. The environment is described in an .XML file that contains a list of
kinematic bodies and their transforms. Simple shapes such as the floor and wall boards
are represented as OpenRAVE boxes while more complex shapes such as the brackets
that hold the boards together were modelled and are included as .iv files. A distinction
is made between static bodies (i.e. the floor, wall, etc.) which cannot be moved and
dynamic bodies (i.e. chess pieces) which can be manipulated. The .XML file is created
in such a way that the resulting world frame results in the reference frame ref described
in Section 3.4.1.

Chess pieces were initially modelled accurately. This causes problems as loading an
environment with 32 highly detailed chess figures degraded performance so badly that the
node could not be used. Therefore cylinders were used to approximate chess pieces. This
was also problematic at first because the main collision checker (ODE) does not support
cylinder ↔ cylinder collision checks, allowing the simulation to not detect approximated
chess pieces passing through one another. This was patched by a later ROS version of
OpenRAVE, but we also approximated chess pieces with boxes.

Robot Description Once the environment has successfully been loaded the robot is
loaded. The robot is also described in the OpenRAVE XML robot format, which consists
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of a kinematic chain description and EEF description. The robot file used was heavily
inspired by a similar robot file from the Prairie Dog project of the Correll Lab of the
University of Colorado, especially the kinematic XML description of the gripper. As the
arm had a different configuration/dimensions a new description was made that modelled
our manipulator and EEF more accurately.

Once the robot has loaded, the robot specific IK solver and planner are loaded.

Pitfalls The obvious pitfall is the assumption that the real world we act in and the
simulated world we plan in are the same. Tiny errors in rotation or dimension can
have large consequences. The biggest problem is accurately simulating object ↔ EEF
interactions and gravity, which can cause the real world manipulator to droop. For more
specific information, please see autorefssec:manexp

A couple of OpenRAVE viewer screenshots are shown below in Figure 3.20.

(a) Simulated EEF (b) Rotation a joint (c) Moving a kinbody

Figure 3.20: Three screen shots showing details of the OpenRAVE simulation and interaction

Move to Joint Configuration

Functionality Given an initial joint configuration, find a trajectory that reaches a given
joint configuration.

Details This functionality is provided as a service over the ROS network. The initial
joint configuration is assumed to be the current joint configuration of the simulated arm,
which can be set at any time. The function is called with a goal configuration and the
ORN simply uses the currently selected planner to generate a trajectory, which is then
parsed to a simplified format containing nothing more than a list of joint configurations
which it then returns, along with the total number of configurations. If no such trajectory
is found (none exists or the start/goal configuration is invalid) a negative total is returned,
thus indicating failure.

A Cheap Chess Robot : Planning and Perception



3.4. MANIPULATION 49

Move to goal
ref P

Functionality Given a goal transform, find a trajectory that places the EEF (or op-
tionally grasped object) on it. This is similar to Section 3.4.10 (it actually calls it) but
with an additional step: Before it knows where to must find an IK solution that it can
move to. Once an IK solution is found, it can call Move to Joint Configuration. If this
fails, it can optionally retry with a different IK solution where the first 3 DOFs differ.

This function is actually the main work horse of the ORN and can be optimised in
many ways. As Section 3.4.5 explains and both Figure 3.11 and Table 3.2 show, many
IK solutions may exist, so naturally the question arises: Which IK solution do we pick as
the goal configuration? The short answer: It depends.

Simple Case - Speed If speed is a goal, we simply take the first IK solution the IK
solver finds. This is useful for two things:

Quickly testing if a solution exists Sometimes this is desirable. For example, the
MCN graphically display in real time if a solution exists by displaying a small green
point instead of a red one.

Grasping objects that just fit inside the gipper In this case, the found IK solution
is probably unique and/or very good. If the object is large enough the gripper will
have to come from a certain angle to accommodate it. Normally the angle is very
well aligned. This generally works very well in simulation cannot really be applied
to real world situations.

Quickly moving to an unimportant position If one does not care about the end
configuration and just wishes to place the EEF in a different zone, this approach
is the fastest when moving to a goal translation. Generally though, one would use
Move to Joint Configuration in these situations.

Optimise Grasp - Levelness When moving towards an object to grasp it, it is desir-
able to find a solution with an angle of approach that maximises the chance of getting
a good grip on the object when a grasp is attempted. With our simple gripper and re-
stricted DOF (and therefore limited angles of approach) the most successful solution was
generally the most level one (level is defined in Section 3.4.3). This is more of a real world
optimisation rather than a simulation based one. The simulator does not care at what
angle the object is grasped: it closes the grippers until a contact between the object to
grasp and the gripper is identified, at which point the gripper holds its position and the
object is attached to the kinematic chain of the arm and considered grasped. However,
in the real world the gripper would move the object in a non-determinable way before
(hopefully) grasping it. Using a level approach helps two-fold: (1) It increases the likeli-
hood of a successful real world grasp and (2) it helps keep the real world and simulation
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world synced, as a level grasp is usual determinable (i.e. the object behaves as expected
while being grasped.

So, when moving towards a translation to grasp an object one first calculates all the IK
solutions, and then rates each solution with levelness(EEF

ref T ), defined in (3.22). Normally
there are two ”perfectly level” solutions for every unique IK solution of the first 3 DOF:
one with the wrist upside down and one with the wrist upright. At this state we do not
have preference towards either, as we do not know where we are moving the object to
next. See Section 3.4.10 for the case where we do know in advance where the object is
going to be released.

(a) Default Move to goal
ref P (b) Level Move to goal

ref P

(c) Default Grasp (d) Level Grasp

Figure 3.21: Ik solutions applied to a grasp task. Top row shows the resulting configuration
of Move to goal

ref P and the bottom row a zoom in of the resulting grasp. Imagine what the grasp
and grasped object would look like in real life, and in which case the simulation would be most
authentic

In summary, grasping an object with a level EEF helps real life grasps be more suc-
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cessful and the simulation simulate the interactions more accurately. Figure 3.21 shows
two IK solutions applied to a grasping task: the first found solution and the most level
solution. Looking at how the post grasp looks, one might find it intuitive that a level
grasp is more likely to succeed. Figure 3.22 shows IK solutions, pairwise level and non
level.

(a) First solution (b) Level solution

Figure 3.22: Showing all IK solutions (with unique first 3 DOF). Left shows the first found
solution and right the most level of all found solutions.

Optimise Release - Uprightness EEF levelness also helps when releasing objects
for the same reasons as it helps with grasping. However, we can improve on this as
Figure 3.24 shows. When we placing a wine glass down on a table, we try to orientate it
such that the bottom of the glass is parallel to the table top to minimise the chance of
the glass falling over. The same idea can be applied to our manipulator. In Section 3.4.3
we devised the function (3.23) which given a transform T returns the degrees away from
perfect uprightness. To obtain the best joint configuration that places the object at a
given translation goal

ref P , we commence as follows:

• Determine the transform obj
eefT between the grasped objected obj and the EEF eef

as explained in Eq. 3.20 and in Section 3.4.5 (See algorithm 9 CALC OFFSET())
• Extract the translation obj

eefP component from transform obj
eefT

• Optional: Calculate the maximum height of the object and update goal translation.
To do this, we create a bounding box around the object and compute the largest
(diagonal) distance from one corner to the opposite. This gives us the worst case
scenario height of the object if placed on its tip. The height is therefore half of this
and can replace the z component of the goal translation goal

ref P . See algorithm 11
CALC MAX HEIGHT()
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• Call the TranslationGlobalLocal6D IK solver with goal=goal
ref P and offset=obj

eefT to
obtain all IK solutions. Explained in Section 3.4.5
• Evaluate every solution with uprightness(): Set joints to solution values, get new

eef
refT , multiply with obj

eefT (See (3.19)), feed into uprightness() to get rotation offset
from perfect uprightness
• Pick solution with least rotation offset (See algorithm 12 GENERATE PQ())
• Call planner to reach picked solution
• Optional: if failed, dismiss any other solutions that one can reach from the one

attempted and try with next best. Repeat until none left or solution found (See
algorithm 13 GET BEST TRAJ())

(a) Default: the object center is at the
given translation

(b) autoheight() applied: the object
center is as low as possible under the given
translation

Figure 3.23: Demonstrating the function autoheight() that can be applied when working
with the object as part of the kinematic chain

The images in Figure 3.24 show the benefits of working with the grasped object over
the EEF and what advantages selecting an upright solution can have. Note that by using
obj as reference we increase the number of IK solutions (intuitively, if the arm was less
constrained an IK solution plot would form a sphere around the goal). Working with obj
also allows us to apply autoheight() demonstrated in Figure 3.23. Using autoheight()

has the further benefit that it helps keep objects as low as possible in the simulation
without having to apply gravity (as this is still very much unsupported).
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(a) Upright, using obj (b) Upright, using eef

(c) Level, using obj (d) Level, using eef

(e) Default, using eef (f) All, using obj

Figure 3.24: Showing difference between using eef or obj as reference, as well as selecting
level or upright solutions. Note that in this case the first two images are almost the same - in
this case it is obvious why, but this is not generally the case as often it is better to grasp from
a higher angle than a lower one
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Algorithm 10 PLAN TO() compiles the ideas mentioned in this section into one universal
function that generates a plan from the current configuration to a goal translation goal

ref P . It
takes either ToGrasp, ToRelease, Fast as an argument to specify the ultimate objective
of the plan. The following functions are assumed known:

GET EEF(a) gets the active EEF of a
GET GRASPED OBJ(a) returns the object grasped by a if one exists, otherwise

NULL
CALC BOUNDING BOX(a) calculates a bounding box of
GET DIM(a) get the dimensions of a, returns vector with 3 elements representing the

size in x,y,z direction
GET TRANSFORM(a) returns the transform of a
TranslationGlobalLocal6D IK(goal, offset, x) calls IK function described in Sec-

tion 3.4.5 and returns the first X solutions
GET BiRRT PLAN(a,b) generates a trajectory from configuration a to configuration

b using the BiRRT planner described in algorithm 7
PRIORITY QUEUE.INIT() create an empty priority queue
INSERT WITH PRIORITY(element, pri) add element with priority pri to a pri-

ority queue
LEVELNESS(transform) function defined in Section 3.4.3
UPRIGHTNESS(transform) function defined in Section 3.4.3
SET JOINT CONFIG(config) set the simulated arm’s joints to the configuration

config

Algorithm 9: CALC OFFSET(): Determine the translation from EEF eef to the
object obj

Input: Grasped object obj, EEF eef)
Output: Translation obj

eefP

begin
// Get transforms
eef
refT ← GET TRANSFORM(eef);
obj
refT ← GET TRANSFORM(obj);

// Determine transform from EEF to object
obj
eefT ←

eef
refT

T · objrefT ;

// Extract translation from transform
obj
eefP ← (objeefT3,0

obj
eefT3,1

obj
eefT3,2)

T ;

return obj
eefP ;

end
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Algorithm 10: PLAN TO(): Create a trajectory that brings the specified manip-
ulator’s EEF eef or grasped object obj to goal translation goal

ref P such that the final
joint configuration is optimised for objective O. If an obj is grasped and A is True,
put the object on the ground

Input: Goal translation goal
ref P , objective O, autoheight A, manipulator arm

Output: Trajectory traj
begin

eef ← GET EEF (arm) obj← GET GRASPED OBJ(eef) obj
eefP ←(0 0 0)T ;

if obj 6= NULL then
// An object is attached

if A = True then

// Calculate max height of obj and update
goal
ref P

goal
ref Pz ← CALC MAX HEIGHT(obj);

// Get translation between grasped object and EEF
obj
eefP ← CALC OFFSET(obj, eef)

if O = Fast then
// Determine first solution quickly

jointConfig ← TranslationGlobalLocal6D IK(goalref P , offset, 1);

if jointConfig 6= NULL then
traj ← GET BiRRT PLAN(arm.CONFIG(), jointConfig);
if traj 6= NULL then

// Path to jointConfig found and trajectory generated

return traj;

return FAILED;

else
// Optimising for Release or Grasp objective

jointConfigList ← TranslationGlobalLocal6D IK(goalref P , obj
eefP , ALL);

if jointConfigList = EMPTY then
return FAILED;

else
// Sort IK solutions by objective value

pq ← GENERATE PQ(arm, O, jointConfigList);
// Return the trajectory to the best reachable IK solution

return GET BEST TRAJ(pq, arm);

end
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Algorithm 11: CALC MAX HEIGHT(): Determine the maximum height of obj by
assuming the worst case scenario: obj stands on one corner with its opposite corner
(diagonally across) is as high as possible

Input: An object obj)
Output: Maximum height of object obj
begin

// Obtain objects bounding box dimensions

bb ← CALC BOUNDING BOX(obj) dim← GET DIM(bb);
// Calculate diagonal of bounding box

max height ←
√

dim2
x+dim2

y+dim2
z

2
;

return max height;
end

Algorithm 12: GENERATE PQ(): Create a queue of solutions pq from IK solu-
tions jointConfigList ranked by their value according to objective O

Input: manipulator arm, objective O, all IK solutions jointConfigList)
Output: Trajectory traj
begin

arrmconfig ← arm.CONFIG() eef ← GET EEF(arm);
pq ← PRIORITY QUEUE.INIT(∅);
if O = Grasp then

// Prioritise EEF levelness

for config ∈ jointConfigList do
arm.SET JOINT CONFIG(config);
eef
refT

T ← GET TRANSFORM(eef);

pq.INSERT WITH PRIORITY(config, LEVELNESS(temp
ref T T ));

if O = Release then
for config ∈ jointConfigList do

// Prioritise grasped object’s uprightness

arm.SET JOINT CONFIG(config);
eef
refT

T ← GET TRANSFORM(eef);
temp
ref T T ← eef

refT
T · objeefT ;

pq.INSERT WITH PRIORITY(config, UPRIGHTNESS(temp
ref T T ));

// Return arm to initial configuration

arm.SET JOINT CONFIG(arrmconfig);
return pq;

end
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Algorithm 13: GET BEST TRAJ(): Attempts to find a trajectory from the arm’s
current state to the best valid and reachable joint configuration. Notice the follow-
ing optimization: Similar joint configurations are assumed to be similarly valid and
assumed to have similar positions in the priority queue. Therefore instead of repeat-
edly trying to connect the current arm configuration to similar and probably invalid
states, remove large invalid portions first: Once an invalid configuration qinvalid is
found, all the configurations q ∈ pq that the planner can connect to qinvalid are also
removed from pq with the rational that if the planner could reach qinvalid, it could
also reach q. BiRRT is really fast when planning over small distances, potentially
saving much time by avoiding repeatedly planning over long distances

Input: Priority queue pq, manipulator arm
Output: Trajectory traj
begin

while pq 6= ∅ do
config ← pq.POP HIGHEST PRI Element();
traj ← GET BiRRT PLAN(arm.CONFIG(), jointConfig);
if traj 6= NULL then

// Path found to best valid reachable configuration

return traj;

else
// No path to current best configuration found

for config ∈ pq do
// Remove all configurations reachable from latest

non-reachable

if GET BiRRT PLAN(arm.CONFIG(), jointConfig) 6= NULL
then

pq.REMOVE(config);

return FAILED;
end
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Move Chess piece from start
ref P → goal

ref P

Pre-computing Grasp and Release pair Due to the lack of DOF of the manipulator,
it is very constrained in the number of approaches it has to grasp and release objects.
While it can grasp a chess piece in every position perfectly levelly (look at Table 3.2 closely,
every IK solutions is within 0.0001c level), it often cannot release chess pieces within 45◦

of perfect uprightness. Therefore, we must make use of every possible opportunity to
maximize the chance of being able to release a chess piece safely. If multiple level grasp
angles exist, we must choose the one that allows us to eventually release the object as
upright as possible.

Functionality Just as Move to goal
ref P (described in Section 3.4.10), Move Chess piece

from start
ref P → goal

ref P can be called over the ROS network. It is the ultimate function
combining all of the optimizations described so far and is used to move a chess piece from
start
ref P → goal

ref P and optional move the manipulator away to a given configuration. Because
this function can take 10s of seconds to complete, continuous status updates are returned
to the caller such that it can follow the progress. It computes the total number of steps
(which vary depending on factors such as the number if generated IK solutions) and the
current step, allowing the caller to observe the progress continuously.

Details The function works as follows.

• First, it calculates every IK solution for the start
ref P and sorts by levelness, i.e. opti-

mized grasp configurations.
• To reduce the search space later on, only the top 4 solutions are kept. This number

makes sense as a maximum of 4 IK solution can exist where the first 3DOF are
unique. Optionally, all IK solutions within a certain levelness threshold can be
kept.
• For each IK solution kept, it checks if an object is within a close distance, and if so

computes obj
eefT . If not, it assumes obj

eefT to be I4.
obj
eefP is also extracted.

• Then, for each IK solution and corresponding obj
eefT and obj

eefP , TranslationLocal-

Global6D is called with goal=goal
ref P and offset=obj

eefP . Using obj
eefT , it calculates obj

refT
which it can plug into uprightness() to evaluate the uprightness that this combi-
nation of start and goal joint configurations would make obj have.
• Each start and goal pair is saved and put into a priority queue with priority=uprightness
• We continuously pop the most prioritized element from the priority queue and plan

to the popped start configuration from the arms initial state, then from the start
to the goal configuration, and optionally back to a specified return configuration. If
all these plans succeed, we stop popping and return the 3 resulting trajectories.

The resulting two/three trajectories would thereby contain the best combination of
start and goal configurations that maximizes the chance to correctly grasp an object and
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maximizes the chance of successfully releasing it.
Figure 3.25 shows an object being moved from its initial position to the translation

indicated by the green dot. The left sides shows the iterative approach (go to configuration
resulting in most level EEF, grasp, go to configuration resulting in the most upright object
transform, release) and the right side the pre-computed pair. In both cases, each grasp
configuration was optimized for EEF levelness and each release pose for object uprightness.
It might seem unintuitive that the release configuration of the sequential case really is
the most upright possible, but it has no better option without first releasing the object
elsewhere and grasping from a different angle. This is exactly what pre-computing avoids.
Here it is clear that pre-computing pairs can greatly help. The pseudo-code for the
algorithm is given below in algorithm 14.

Algorithm 14: GRASP PLAN(): Precomputes best IK pairs to move an object
from start

ref P to goal
ref P and optionally move the arm to configfinal, return a trajectory

for each interval

Input: Translation start
ref P , translation goal

ref P , joint configuration configfinal,
manipulator arm

Output: Trajectory trajstart, trajgoal and optionally trajaway

begin
arrmconfig ← arm.CONFIG() // Get IK pairs sorted by goal object

levelness

pq ← GET PAIR PQ(startref P , goal
ref P , arm) // Attempt to plan between the

pairs and optional configfinal
for (configstart, configstart) ∈ pq do

if trajstart ← GET BiRRT PLAN(arrmconfig, configstart) 6= NULL then
if trajgoal ← GET BiRRT PLAN(configstart, configgoal) 6= NULL then

if configfinal 6= NULL then
// Planning to move away too

if trajstart ← GET BiRRT PLAN(configgoal, configfinal) 6=
NULL then

// No plan failed, return them

return trajstart, trajgoal, trajaway;

else
// No plan failed, return them

return trajstart, trajgoal;

// Either could not find/plan between IK solutions

return FAILED;
end

A Cheap Chess Robot : Planning and Perception



60 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

Algorithm 15: GET PAIR PQ(): Generates IK pairs to move an object from start
ref P

to goal
ref P and inserts them into a queue prioritised by grasped object uprightness. Note

that GET IK PQ() is the same as PLAN TO() but returns pq instead of traj.

Input: Translation start
ref P , translation goal

ref P , manipulator arm
Output: Priority queue pq
begin

pq ← PRIORITY QUEUE.INIT(∅);
// Get best grasp IK solutions

pqstart ← GET IK PQ(startref P , Grasp, False, arm);

if pqstart = NULL then
return NULL;

else
pqstart.SET MAX SIZE(4);

for configstart ∈ pqstart do
arm.SET JOINT CONFIG(configstart);
arm.GRASP();
obj ← arm.GET GRASPED();
obj
refT ← obj.GET TRANSFORM();

// Get best release IK solutions

pqgoal ← GET IK PQ(goalref P , Release, True, arm);

if pqgoal 6= NULLthen
for configgoal ∈ pqgoal do

arm.SET JOINT CONFIG(configstart);
pq.INSERT WITH PRIORITY((configstart, configgoal),
configgoal.GET PRIO());

// Reset situation for next round

arm.RELEASE();
obj.SET TRANSFORM(objrefT );

return pq;
end
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(a) Initial Configuration

(b) sequential (c) pre-computed

(d) sequential (e) pre-computed

Figure 3.25: Demonstrating the benefits of pre-computing IK solution pairs. The chosen grasp
and release IK solution are shown as transparent overlays.
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3.4.11 MCN - The Manipulation Core Node

Overview The Manipulation Core Node, or MCN, essentially ties together the func-
tionally of both the SAC (detailed in Section 3.4.9) and ORN (detailed in Section 3.4.10)
together with a complex GUI that allows the user to visualize, intercept and set what is
going on behind the scenes. All the functionality is exposed and all relevant parameters
can be set. It is the client of the ORN and therefore works tightly with the visualiza-
tion. As much as the MCN is very much user-interaction based, it can also work fully
anonymously, accepting chess moves over the ROS network that the CCN issues. (See
Section 3.2). While autonomously managing the hardware and ORN, it continues to pro-
vide visual feedback to the user. The MCN can also be used without the SAC, allowing
the user to interactively query the ORN and visualize the results. Likewise, it can also be
used without the ORN and allow the user to monitor and tele-operate the manipulator.
If both the SAC and ORN are available, the user can also tele-operate the arm with
assistance, however that is not scope of this thesis. The whole node was written in c++,
using QT as the GUI framework and roscpp to communicate with the ROS network.

Structure and Graphical User Interface The GUI and program structure are di-
vided into 3 main categories according to the level of abstraction: the low-level (i.e.
servos), medium level (i.e. joints) and high level(i.e. manipulator.) Each level has its
corresponding visualization and control. However the control at lowest level is not possi-
ble due to possibly damaging the servos (especially the opposed ones). In the following
sections we will explorer each level of abstraction and the corresponding GUI elements.

Low-Level: Servo Interface

This level essentially deals with communicating with the SAC. It is subscribed to the
SAC’s servo messages that it receives at 10hz. It parses these and updates the GUI and
a local buffer. This buffer is used in two ways: as a cache to read from the servos and
as a buffer to write to them. For example, when a slider with 1000 increments that
represents a servo’s goal angle is moved from left to right, it is very easy to flood the
Dynamixel network if one would send a new goal position every time a new increment
is selected. Therefore, using the cache/buffer, the Dynamixel network is only addressed
at most, once every 0.01ms and only if the servos goal angle register differs from the
buffers goal within the servos resolution. This prevents flooding the network with similar
messages that have no use and too many different messages at once. Figure 3.26 shows
the servo tab displaying all the relevant information received from the SAC. Note that the
min/max/init values do not dynamically update as they are received from the parameter
server at start up and do not change.
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Figure 3.26: The individual servo details are updated at 10hz

Medium-Level: Joint Interface

This is very similar to the low-level, except for it provides the abstraction from servo to
joint that the SAC provides. The user can directly control the position of joints and view
their properties, as well as graph their goal and current positions. For more details see
the corresponding images Figure 3.27, Figure 3.28 and Figure 3.29 below.

High-Level: OpenRAVE Interface

The high-level section deals with the ORN, asking it to generate plans that are requested
by the user or as indirect consequences of the CCN requesting a chess move.

The user can select which portions of the chess piece moving tasks are done automat-
ically (i.e. upon request via the ROS network) or where manually. The user can call all
algorithms specified in Section 3.4.10 along with the respective parameters such as cre-
ating trajectories to move to joint configurations, given translations, or complete pickup
and release type moves. Optimizations can be enabled or disabled to demonstrate their
benefit.

In addition, the user can preview joint configurations and translations in real time. For
example, sliders can be used to visually move/select a translation around. The translation
is marked by a point that changes color in real time depending on kinematic reachability.
While moving the translation around, the user can optionally view an IK solution in
real-time or view all solutions (with a 1 second delay).

The manipulator can sync to the OpenRAVE simulated arm (i.e. moving the sim-
ulated arm moves the real arm) or vice versa (i.e. the simulated arm follows the joint
configuration of the real arm in real-time). Generated trajectories can be previewed, ex-
ecuted, executed in reverse and the speed of execution can dynamically be changed, also
in real-time during an execution. Manual grasping, release commands can be issued.
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Figure 3.27: Individual joint details are updated at 10hz. Goal and current joint values can
be plotted at different scales.

During the more comprehensive and longer ”move chess piece from here to there and
then return to an initial configuration” queries, progress bars and text boxes allow the
user to observe the status and progress of planning and/or debug what is going wrong.

An example work flow might be the following: Using the translation visualization, the
user can select objects and goal destinations. Then, using the joint state preview option,
he/she can use the knobs to visually determine a joint configuration he would like the arm
to always move to between moving chess pieces. Then the user can select the parameters
and optimizations he/she wishes to use, select auto-execute and start planning. The MCN
then does all the required tasks in conjunction with the ORN to move the selected piece
to the given destination in simulation, and then execute the obtained trajectories on the
real arm, while syncing the simulation to the real world, allowing the user to visualize
discrepancies between the two. These sorts of work flows were essential to debugging
the arm and fine tuning measurements, parameters and settings such as joint limits and
offsets. A screen shot of every tab is shown in Figure 3.30, Figure 3.31 and Figure 3.32.

A Cheap Chess Robot : Planning and Perception



3.4. MANIPULATION 65

Figure 3.28: Individual joints can be graphically monitored and/or controlled. Knobs are
highlighted when joint limits are surpassed

Figure 3.29: The SAC does not yet implement servo/joint speed changes, so this is taken from
the diagnostic tool mentioned in Section 3.4.8 and not implemented here.
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Figure 3.30: The user can chose transforms that are graphically displayed (not shown here)
and invoke plan generation with different IK options. See Section 3.4.10
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Figure 3.31: Joint configurations can be previewed and a plan can be generated to reach the
specified preview. See Section 3.4.10
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Figure 3.32: Entire move to target, grasp, move to goal, release, move to configuration type
actions can be manually invoked here, or set to automatic. See Section 3.4.10
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Chapter 4

Experiments and Results

In this chapter, we describe some of the experiments that we ran in a bid to evaluate the
methodologies that we have proposed in Chapter 3 in Planning, Perception and Control.
We also describe the results found and give illustration of the same. We discuss the
implications of the said results on our methodology and highlight possible improvements
when concluding in Chapter 5.

4.1 Perception

In order to put to test our methodology given in Section 3.3, we ran a series of exper-
iments mainly categorized into the main methodology steps described in Section 3.3.1,
Section 3.3.2 and Section 3.3.4.

4.1.1 Chessboard Detection

We show a sequence of processing from edge detection, line detection to the computation
of bounding lines and their intersections in 4.1a and 4.1b.

4.1.2 Projecting the View

We also show a projected view of the chessboard from 4.1a and 4.1b on a 2D plane in
Figure 4.2. It is from this projected image that we now perform change detection in order
to determine user moves.

4.1.3 Move Detection

The move detection operation largely depends on the nature of the difference image[cite
farahat] produced. Our current implementation requires that the difference image show
two blobs indicating a move from one cell to another. This does not include certain chess
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(a) Edge Detection (b) Line Detection

Figure 4.1: Edge and Line Detection

Figure 4.2: Chessboard view projected onto a 2D plane

moves in which chess pieces are swapped and taken off the board. However, extensions to
our approach can easily made to accommodate such moves. One such a difference image
is shown in 4.3a. Another equally important operation in the move detection is the flood
filling of the blobs after detecting them by running distance transform algorithms. We
show one such flood fill operation result in 4.3b. With these steps conquered the mapping
of the coordinates of the blobs to ’chessboard dimensions’ is a simple operation and the
same for determining the moves using the game state matrix that we keep throughout the
game.

4.1.4 Discussions

The implementation of the move detection is not complete in that not all chess moves can
be detected, we however emphasize that the framework we have set up allows easy exten-
sions to be able to detect such moves. Our implementation also experiences robustness
issues with the chessboard detection and move detection. We attribute this to the rather
raw implementation of the blob finding mechanism. We believe that use of more suitable
blob finding APIs with our framework can improve this performance. The chessboard
detection can be further improved by further tuning of the edge detection parameters as

A Cheap Chess Robot : Planning and Perception



4.2. MANIPULATION 71

(a) Difference Image (b) Flooded Image

Figure 4.3: Difference image and image after one round of floodfill

well as line detection parameters. We also envision experiments with basic tracking to
investigate how this could affect the performance.

4.2 Manipulation

4.2.1 Experiments and Conclusions

Implementations and Optimisations

Experiments can be roughly divided into two types: those in the simulation world and
those in the real world. For each point listed below, we highlight each type’s results where
applicable.

Levelness Figure 3.21 shows applying levelness in action. While levelness did not im-
prove simulated performance, it was vital for real world application. Without lev-
elness being enabled, the arm would fail to pick an object up most of the time. In
addition, levelness greatly improved the synchronisation of the real world and the
arm, as explained in Section 3.4.10. Sorting solutions by levelness means one needs
to generate and then sort all Ik solutions, which usual means an increase of around
0.6-0.8 seconds to pick an optimal IK solution.

Uprightness Figure 3.24 shows the advantages of the using uprightness as a heuristic
to place pieces well. As explains, it prevents objects from falling over when being
placed. The benefits are two fold: (1) as the simulation does not support gravity,
it was very important to try to place objects in such a way that the resulting
transformation is as close to possible of the one the real world object would have
after release, and (2) placing an object upright (obviously) improves the chances of
it remaining upright - a required condition to place chess pieces. Picking the most
upright IK solution takes 0.6-0.8 seconds longer then picking the first IK solution.
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Pre-computing best IK pairs Figure 3.25 shows the difference between planning ahead
and not. If one does not plan ahead, the likelihood of not being able to place an
object upright increases. This was as important in the simulation as it was in the
real world and turned out to greatly improve the overall chance of successful pick up
and place operations, albeit at a slight cost in execution time. The time it takes to
computing the best pair of IK solutions depends heavily on the number of solutions
generated. For best results we filter non-level solutions out early (as explained in
Section 3.4.5 and visualised in Figure 3.11), resulting in an average of 4 · 4 = 16
combinations to evaluate, meaning 1+4 = 5 sets of IK solution need to be generated
resulting in an increase of 6-12 seconds over picking the first available IK solutions.

Autoheight enabled through planning in the attached object frame Figure 3.23
demonstrates planning in the attached object frame by showing the autoheight()

function in actiong. This greatly improved the accuracy of releasing an object at a
given location and helped the simulation keep the pieces low over successive pickup
and drops with minimal user interaction and tweaking. Overall, this worked out
very well in practise.

Planning Figure 3.12 demonstrates a generated plan. In our chess playing case, there
are usually no large/complicated obstacles in the way so that planning works very
fast. To generate a plan to move the EEF from one cell to another would take less
than 0.5s, and a plan to move from one corner of the board to the opposite would
take less then 4 seconds. When many small obstacles clutter the start / goal area,
plan generation is slowed down due to collision checking (can take 1-3 times as long).
Using cylinders instead of detailed chess models greatly improves performance by
several magnitudes (plan generation took minutes). I do not recall the planner
failing to find a solution if one existed. Often, the arm could not release objects
within an uprightness threshold, as too few IK solutions existed. This limited the
ability of the arm to successfully place chess pieces.

Hardware Control and Performance Hardware control worked out well. The SAC
communicated with the arm well, resulting in fluid movement whens the trajectory
interval was set between 30ms (fast) and 50ms (fluid). Servo readings were accurate
and the Dynamixel network dropped very few packets. The power supply was
sufficient. However, as mentioned in Section 3.4.8, the torso servo could not sustain
high angles and would simply deactivate. This strongly affected the performance of
the arm as plans that involve the arm stretching it would simply fail, resulting in
an manipulator that could not recover without user intervention. Gravity also had
a strong affect on the servo cause a large mis-match between the simulated arm and
real arm, often causing collisions in the real world that were avoid in the simulated
one. In addition, the gripper was very difficult to work with. It grasped objects
with unpredictable results, often displacing/rotating them in the process, such that
uprightness optimisations were flawed as the calculations were done with transforms
that were not really the case.
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Environment Section 3.4.7 shows tests of reachability as shown in Figure 3.11 and
Table 3.2, where the general set-up of the environment and arm were justified. The
environment construction was rock solid and did not vibrate and was simple enough
to be accurately modelled. The arm could reach all the desired cells.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Perception We have demonstrated that the constraint of using a modified chessboard
and/or pieces can be relaxed without compromising performance. We have also demon-
strated that the constraint of having a fixed camera directly above the chessboard can
be done away with while still enjoying reasonable real-time performance. We have shown
all of these using very simple hardware and a limited amount of time. Our findings can
therefore serve as a proof of concept for further investigation using more robust hardware.

Manipulation In short, the simulated world worked out well, but the real world tests
did not. The optimisations described in this thesis greatly increase the usability of the
arm in theory (i.e. in simulation) but the arm hardware is still too imprecise to allow the
optimisations to work well. In addition, the too few DOFs meant that pieces could not
be place in an upright fashion, meaning they always fell over. Due to these limitations, a
successful game of chess could not be played.

5.2 Future Work

Perception In the future, we would like to investigate the effect of adding an object
recognition pipeline to our framework to aid in determining the orientations of the chess
pieces on the board. We would also like to investigate the effect of adding additional
sensors to our perception pipeline. These could include using multiple cameras or just
using different additional sensors like the Kinect. As mentioned in Section 4.1.4, we would
also like to add more suited blob detection mechanisms to our pipeline.

Manipulation First, one would have to upgrade the servos to more precise and strong
ones. Dynamixel AX-18F servos would be an easy swap as they have the same dimensions
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and communication protocol, but whether they suffice would have to be tested. Further
more, one would need to increase the DOF of the arm. An additional joint before the wrist
rotation around the local Z axis would probably suffice to greatly increase the ”upright”
reachability of the arm, allowing it to place objects upright independent of where the
object was initially grasped. Ultimately, the arm chosen arm is unsuited for the task.
A much simpler 3DOF manipulator with only translational actuators would be much
more suited, cost efficient, elegant or simpler to implement. However, deciding to solve a
problem with unsuited means gives incentive to overcome some of the shortcomings with
creative improvements. Tighter integration of the ORN and MCN could facilitate user
interaction and cosmetic changes, while simultaneously reducing overhead over the ROS
network.

Writing of the chapters was split as follows:

Chapter Written by

Introduction Oliver Dunkley

State of the Art Billy Okal

Methodology: Core Control Oliver Dunkley

Methodology: Perception Billy Okal

Methodology: Planning Oliver Dunkley

Experiments: Perception Billy Okal

Experiments: Planning Oliver Dunkley

Conclusion Billy Okal and Oliver Dunkley
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