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ABSTRACT

This paper describes the control algorithms of the high speed
mobile robot Kurt3D. Kurt3D drives up to 4 m/s autono-
mously and reliably in an unknown office environment. We
present the reliable hardware, fast control cycle algorithms
and a novel set value computation scheme for achieving
these velocities. In addition we sketch a real-time capable
laser based position tracking method that is well suited for
driving with these velocities.

1. INTRODUCTION

Many car companies use their experience gathered during
car races to improve their products. In analogy we have
equipped the KURT?2 robot platform [4] with more power-
ful motors and designed high speed control and localiza-
tion algorithms to build more reliable robots. The devel-
oped control cycle including set value computation is fast
(100 Hz), real time capable and easy to maintain. The motor
controller consists of a feed forward PI controller combined
with a lookup table for mapping speed to PWM values and
linearizating the motor signal. It combines open and closed
loop control concepts and ensures a fast response time with
only a small overshoot. In the control cycle, the set val-
ues for the controllers are computed by one of three meth-
ods: Joysticks commands for manual control, fuzzy rules
for autonomous driving, or a coordinate based control for
goal directed motion. The control loop is round off with the
precise planar pose tracking algorithm HAYAI that was first
presented in [6]. Features are extracted from two consec-
utive laser scans and matched in order to track the robot’s
movement. The resulting control architecture shows many
benefits even for slower robots.

The rest of the paper is organized as follows: Next we
present related work and the robot Kurt3D itself. Then we
discuss the high speed control, followed by the pose track-
ing algorithm. Since the spirit of autonomously driving high
speed robots cannot really be presented in a paper, we ad-
vise the reader in Section 4 to view the WWW resources in
order to gain an impression of the experiments and results.
Section 5 provides a summary and outlook.
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1.1. Related Work — High Speed Robotics

Current robots that drive indoor with “high speed” are re-
ported achieving maximum velocities of 0.4 m/s to 1.6 m/s
[5,9,11]. Santiso et al. present an algorithm for localization
within a given map while driving with 2 m/s [8], without
actually performing real world experiments at that speed,
though. Methods for dealing with special aspects of driv-
ing and controlling a robot with high velocity, e.g., obstacle
avoidance that takes into account the robot’s speed, or re-
actively adapting paths for optimizing the driven trajectory,
can be found in [1,3,9].

In applications with restricted, predefined environments,
i.e., RoboCup, robots of a size similar to Kurt3D and with
maximum velocities in the range of several meters per sec-
ond can be found. However, their maximal velocities can-
not be controlled autonomously nor can the pose be tracked
in general environments like an office building [12]. In
RoboCup scenarios, a high acceleration is mandatory to be
successful, but is only maintained during a very short pe-
riod of time due to space restrictions of the play field [13].
In the rest of the paper, we consider as high-speed for an
indoor robot all speeds > 2 m/s, i.e., speeds considerably
faster than walking speed.

1.2. The Mobile Robot Kurt3D

Kurt3D (Fig. 1, left) is a mobile robot platform with a size
of 45 cm (length) x 33 cm (width) x 47 cm (height) and
a weight of 22.6 kg. Its theoretical maximal velocity (idle
motion) is 5.2 m/s; actually driving under autonomous con-
trol, up to 4 m/s has been achieved. It is equipped with a 3D
laser range finder. Two 90 W (short-time 200 W) motors
are used to power the 6 wheels, whereas the front and rear
wheels have no tread pattern to enhance rotating. The core
of the robot is a Pentium-III-600 MHz with 384 MB RAM.

The main sensor of Kurt is a tiltable laser range finder.
While driving, the scanner is used in fixed horizontal posi-
tion only. 181 distance values are measured in 13 ms. This
high frequency is the basis of the safe and reliable control
and localization.
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Figure 2: Left: Step response to maximum velocity (mea-
sured on carpet), approximating PT; The measurement er-
ror at £ = 1200 is due to odometry: We measure the ticks
per second at the motor, not the wheels; errors occur if
the transmission belt slips. Right: Speed of left and right
wheels as a function of incoming PWM signals, measured
with no-load. In comparison, the robot’s speed when driv-
ing on carpet differs approximately by a constant offset.

2. HIGH SPEED ROBOT CONTROL

Localizing a robot that drives with high speed (e.g., 4 m/s)
does not only call for a very fast tracking algorithm to keep
being localized. It also requires a vehicle that is able to
drive safely with such velocities in an indoor environment,
including the ability to react in real time to sudden changes
of the surrounding, like opening doors or people walking
around. The robot control implemented on Kurt3D consists
of two parts, namely a fast motor controller and a set of
behaviors for set value computation.

2.1. Motor Controller

Designing a control program for autonomous mobile robots
consists of implementing a controller or set of behaviors in-
cluding a set value computation for the controller. Hereby,
the goal is to adjust the input signal to external disturbances,
e.g., fluctuations of battery voltage and friction. Appropri-
ate set values, e.g., the robot speed or turning velocity, are
mapped by a controller or set of behaviors to the actors, i.e.,
its motors. The control cycle of Kurt3D’s motors runs with
100 Hz. In order to model the physical characteristics, dif-
ferent step responses and the speed of the motors with no-
load and on carpet have been measured. Fig. 2 (left) shows

the step response to maximum velocity, following the char-
acteristics of a PT; element. The right plot presents the
speed of the two motors when operating with no-load and
on carpet moving straight forward. Every discrete PWM
value from O up to 1023 is given to the system for one sec-
ond, and the reaction, i.e., the speed at the end of the sec-
ond, is measured. The system shows non-linearities in the
upper speed range. The no-load measurement and the one
on carpet differ only by a constant offset. The controller
works under the assumption that this offset stays constant
throughout the complete velocity interval, since it was not
possible to measure the whole speed range on carpet due to
physical limitations of the testing environment (the longest
corridor was too short). The inverse of the lookup table T’
(Fig. 2, right) together with the offset build the base for the
open loop part of the controller. A given speed and steering
angle are scaled by two feed forward terms F, and F, (see
Fig. 1, right) [7] and mapped to a PWM value according to
T. F, is set to 1 according to the design of the lookup ta-
ble and offset. An additional feed forward term is needed
for the angular velocity (F,, = 7~! cm) according to the
significant friction during turning.

The fast reaction time of the overall system and the re-
liable closed loop motor control is formed by adding a PI-
term. By design, PI controllers generate a correction term iff
a control deviation exists. The P-term decreases the reaction
time until reaching a modified set value. The I-term avoids
steady state errors but leads to a small overshoot. However,
the combination of feed forward terms with the lookup ta-
ble shifts the motor signals near the working point so that
the PI controller only controls small disturbances, e.g., dif-
ferent battery states and robot loads. Therefore, a D-term in
the controller part is neither necessary nor desirable, since
derivative terms do have difficulties with noise in the mea-
surement, compare Fig. 2 (left).

Finally, the motors receive bandpass filtered PWM sig-
nals as inputs. Fig. 3 right shows the overall system, con-
taining the motor controllers for the left and right wheels as
well as the state transformation formulas.
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Figure 3: Left: For safe navigation, the reference velocity vy is computed as a function of the distance to an obstacle lying
within a virtual roadway. Right: Schematic overview of the robot’s control system, containing two motor controllers (see

Fig. 1) for the left and right wheel.

2.2. Set Value Computation

‘We have implemented three alternatives for computating the
set values for Kurt3D. Depending on the application, tele-
operated control by a human operator, fuzzy control for au-
tonomous high-speed driving or globally stable robot con-
trol for driving precisely to specified coordinates is used.

2.2.1. Teleoperation
For teleoperation, a joystick is used. The joystick signals are
directly mapped to the reference velocity vg and the refer-
ence turning velocity wg. To our experience, it is difficult
for human operators to control Kurt3D manually beyond a
speed of 1 m/s.

2.2.2. Fuzzy Control

To overcome the problems with a human operator and to
enable the robot to drive full speed, a fuzzy controller is
implemented that steers the robot autonomously into free
space, yielding an autonomous “wander around” behaviour
with obstacle avoidance. In addition, the driving direction is
relatively stable and the robot’s trajectory does not oscillate.
181 instances of a fuzzy rule with the following structure
(Eq. (1)) are used to calculate the driving direction. These
fuzzy rules operate directly on the 2D laser range data of the
scanner: The i-th rule is applied to the i-th measurement,
i.e., there is exactly one rule per measured scan value:

IF (angle_i is in driving direction) AND
(distance_1i is large)
THEN drive in this direction.
The fuzzy AND is implemented as multiplication, the
steering angle « results from the addition of all + computed
direction vectors. In detail, given a set of measurements

{(®i,7i)}i=1,... 181, the angle « is calculated by
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Figure 4: Set value generation with fuzzy rules, see Eq. (1),
(2). Left: Function f; weighs the orientation of the data
(“is in driving direction”). Right: f, implements
a weighting on the measured distance (“is large”).

Fig. 4 shows the used functions fi, fo, implementing
a weighting on orientation resp. distance according to the
fuzzy rules (1). The turning velocity wg is directly propor-
tional to the heading a.

In order to drive safely with high speed, we apply the
following algorithm to set Kurt3D’s velocity: A virtual road-
way is defined according to the robot’s width (Fig. 3, left).
If there is no obstacle on this roadway in front of the robot
within a certain distance dton,y, the reference velocity v
is set to a maximal velocity vmax. Otherwise, the speed is
scaled down t0 vsey = dto/dtOmax * Umax, With the mea-
sured distance to the obstacle dto. In this way, the fuzzy
control navigates safely around obstacles. Nevertheless, if
dto falls below a fixed value dton,, a different behavior is
evoked, i.e., Vs 18 set to 0, wee to a constant. This results
in a rotation of the vehicle until the virtual roadway is free
again. For the set value computation we use the following
constants: dtomin = 50 cm, dtomax = 600 cm and vpyax Of
4 m/s.

2.2.3. Coordinate Based Robot Control

The coordinate based robot control is used for approach-
ing discrete coordinates, e.g., computed by a next best view
planner that is utilized for the autonomous generation of
consistent 3D environment models [10]. In this mode, the
non holonomic robot Kurt3D is controlled by a closed loop,



time invariant and globally stable motor controller, devel-
oped by G. Indiveri [2]. The target configuration is always
approached on a straight line and the vehicle is requested to
move in only one specified forward direction, thus avoiding
cusps in the paths and satisfying a major requirement for the
implementation of such strategy on many real systems. Fol-
lowing the notation in [10], let (x¢, Y, ) be the robot pose
in the target centered coordinate system. The controller is
based on a Cartesian kinematic model described by:

TG = Vset *COS QY YG = Vser * SINY P = Weet = Vset * C.

Thereby wg is the robot’s linear velocity, wse the angu-
lar velocity and ¢ the (bounded) curvature. (0,0,0) is the
final position. The transformation of the Cartesian coordi-
nates into polar like coordinates results in

e=+vza? +yc?

6 = atan2(—ya, —xq) = &= Vs (c — s1na>
e

€ = —Uset + COS ¢

a=0—¢ gb:vset-w.

G. Indiveri uses for the robot speed the equation vy =
v - e with v > 0 and a Lyapunov-like based control law
synthesis to derive the following formula for the curvature:

o sin +h€ sina +ﬂg7
(& e « (&

with A > 1 and 2 < # < h + 1 [2]. These two formulas
for the velocity and curvature (or angular velocity) form the
closed loop, time-invariant and globally stable motor con-

troller with constant time complexity.

2.3. The Robot Control Architecture

Fig. 5 shows an overview of the complete system, including
the previously presented set value units and the localization
algorithm HAYAI described in the next section. The mo-
tor control loop runs with 100 Hz on a Linux laptop. The
generated PWM signals are set via an Infineon C167 micro-
controller connected with a CAN bus and a Microcontrol
PCMCIA CAN card. The set value computation runs inside
this loop, iff new input signals, i.e., sensor data, are present.
The fuzzy control generates new values with 75 Hz. The
fast localization algorithm HAYAI is executed in the control
loop, restricting the time for scan matching to 10 ms. The
following section describes this fast computation.

3. POSE TRACKING WITH HAYAI

This section describes the newly developed algorithm HAYAI
(Highspeed And Yet Accurate Indoor/outdoor-tracking), orig-
inally published in [6], whose main points we recapitulate
here to make this paper self-sufficient. The matching algo-
rithm is based on the following scheme:

1. Detect features within scan R, yielding a feature set
M (model set). Likewise compute a set D (data set)
from a previous scan S.
2. Search for pairwise corresponding features from both
sets, resulting in two subsets M C M and D C D.
3. Compute the pose shift Ap = (Az, Ay, A)T as the
optimal transformation for mapping D onto M.
4. Update the robot’s pose p,, <o P41 acCOI-
ding to formula (3). P
5. Save the current scan as new reference scan R «+— S.
Given a pose p,, = (Zn,Yn,0,) and a transformation
Ap = (Az, Ay, Af), the transition p, o Pnt1 is
calculated as follows: P

Tni1 Tn cosl, sinf, O Ax
Ynt1 | = | yn | +| —sinb, cosh, 0] -| Ay | 3
Ont1 0n 0 0 1 Af

3.1. Extraction and Matching of Features

As described above, the scan matching algorithm computes
a transformation Ap such that a set of features, extracted
from the first scan, is mapped optimally to a feature set of
the second scan. In order to be usable for a pose tracking
algorithm, these features have to fulfill two requirements:
First, they have to be invariant with respect to rotation and
translation. Second, they have to be efficiently computable
in order to satisfy real time constraints.

Using the inherent order of the scan data allows the ap-
plication of linear filters for a fast and reliable feature detec-
tion. HAYAI chooses extrema in the polar representation of
a scan as natural landmarks. These extrema correlate to cor-
ners and jump edges in Cartesian space. The usage of polar
coordinates implicates a reduction by one dimension, since
all operations deployed for feature extraction are fast linear
filters, operating on the sequence of range values (7;);en of
ascan S = ((¢i,14)),

i=1,..., N*
Given a one dimensional filter ¥ = [¢_1, g, ¥11],
the filtered value rf’ of a scan pointr; (i = 2,...,N — 1)

is defined as rf’ = 211:71 Yrriyr. For feature detec-

tion, the scan signal is filtered by a sharpen filter (¥; =
[—1, 4, —1]), the gradient signal is computed (¥ =
[—2, 0, 1)) and softened softened (¥'5 = [1, 1, 1]). De-
tails can be found in [6], Fig. 6 (left) illustrates the effects
of these filters.

After generating the sets of features M, D from both
scans, a match between both sets has to be calculated. In-
stead of solving the hard optimization problem of searching
for an optimal match, we use a heuristic approach, utilizing
inherent knowledge about the problem of matching features,
e.g., the fact that the features’ topology cannot change fun-
damentally from one scan to the following. The basic aim
is to build a matrix of possible matching pairs, based on
an error function defining the distance between two points
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m;, d;, withm; = (m%, m?)T in Cartesian, or (m?, m)T

in polar coordinates, resp. (d; analogously):

dist(m, d;) = \/(wl - (m? — d;'?))2 +w2(mj —dj)?
s [ (mF = dg)2 + (md — dY)?
+ @(m“dj) ()]

with constants (W) ke{1,2,3}, implementing a weighting be-
tween the polar and Cartesian distances. The function ©
inhibits matchings between two features of different types:

oo else
with a classification function I': (M U D) +— {max.,
min., inflection point}. The resulting matrix w; ;, denoting
feature correspondences, is simplified until the match is
unique. Fig. 6 shows the match of two scans.

3.2. Pose Calculation

Given two sets of features M = {m;| m; € R? i =
1,...,Npntand D = {d; |d; e R? i=1,...,Nq}, the
calculation of the optimal transformation for mapping D

onto M is an optimization problem of the error function:
Nm Ng

E(R,t) =Y > wi;|lm;— (Rd; + )|,
i=1 j=1
1 N
2
x > llmi — (Rdi +t)]|

. | .
since the match is umdue. In [6] we showed that the optimal
rotational angle Af and translation At are computed, given
N N
mi=m;— + Y.L m; d;=d; — +> ;" d;as
—_——— —_———

Cm Cq
al 1T 1w gy
Af = arctan | =L (%)
N )
Z(m/fd'f —m'idY)
i=1
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4. EXPERIMENTS AND RESULTS

Please refer to http://kos.informatik.uos.de/
download/highspeed/ for videos showing the experi-
ments and results. Kurt3D driving with 1.5 m/s up to 4 m/s
as well as localization results can be found. Furthermore,
safety tests with suddenly changing environments are pre-
sented: When the robot is driving full speed and a dynamic
obstacle suddenly appears within the virtual roadway, Kurt3D
stops safely and, if necessary, bypasses it if the distance to
the obstacle is at least 1 m.

A number of unavoidable problems occur when driving
high-speed: Vibrations, for example, lead in particular to
erroneous sensor readings — check out the URL mentioned
above to see a drive of the robot, viewed from a camera
mounted on top of the laser scanner, to get an impression of
the scanner’s movement. Moreover, the robot itself is bound
to skid when driving and turning on a smooth surface.

On the other hand, even driving slowly benefits from
this high speed architecture, since more reliability, stabil-
ity and availability are achieved. Driving with high speed
made it necessary to implement a fast motor controller that
reaches the set values with very little delay. As a result,
algorithms that are depending on these values (i.e., the co-
ordinate based control, section 2.2.3) can operate at a higher
speed, too, resulting in a more exact execution of tasks like
path following, independent of the actual speed of the robot.

We also used the presented control scheme for a slower,
off-road version of Kurt3D in the RoboCup Rescue 2004
competition in Lisbon. Results and videos of the rescue
robotare availableathttp://kos.informatik.uos.
de/download/Lisbon_RR/. Following the racing car
analogy mentioned in the introduction, extensive tests with
the high speed robot have led to several improvements of the
hardware, which are now transfered to the standard KURT2
platform.

Future work will concentrate on how the control of the
robot has to change with higher speeds: while the dynamics
of a slow moving vehicle can be neglected, the described
scenario leaves no choice than to think about stopping dis-
tance, maximal velocity and minimal turning angle when
driving a curved trajectory, etc.

5. SUMMARY AND OUTLOOK

This paper has presented the control architecture of the high
speed mobile robot Kurt3D. The ability to drive reliably
and safely with velocities considerably faster than walking
speed, e.g. 4 m/s, in an unknown office environment has
been presented using standard hardware. The robot is con-
trolled with a feed forward PI controller combined with a

lookup table for mapping speed to PWM values and for
the linearization of the I/O behavior. Different forms of
set value computations, e.g., a reactive fuzzy control and
a coordinate based one, used for deliberative path planning,
have been discussed. HAYAI, a fast robot localization, fits
into this simple software architecture, since only a few cal-
culations are necessary to match 2D laser scans reliably.
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