Parallelization of Scan Matching for Robotic 3D Mapping

Andreas Nüchter University of Osnabrück Institute of Computer Science Knowledge Based Systems Research Group

- State of the Art in Robotic Mapping
- 6D SLAM with ICP Scan Matching
- Parallelization
- **3D Mapping Examples**

State of the Art in Robotic Mapping

UNIVERSITÄT

OSNABRÜCK

- 6D SLAM with ICP Scan Matching
- Parallelization

175-5

3D Mapping Examples

Simultaneous Localization and Mapping

- If one knows the pose (position and orientation) of a mobile robot precisely, then the sensor readings can be used to build a map.
- Unfortunately, pose measurements are always imprecise ☺
- The pose of a robot is easy to compute from sensor readings, given a map.

State of the Art in Robotic Mapping (1)

Related work: Freiburg (Burgard), UW (Fox), Stanford (Thrun)

State of the Art in Robotic Mapping (2)

		Dimensionality of pose representation				
		3D	6D			
Sensor data	2D	2D mapping of planar sonar and laser scans. See (Thrun, 2002) for an overview.	3D mapping using a precise localiza- tion, considering the x,y,z -position and the roll yaw and pitch angle			
	3D	3D mapping using a planar localiza- tion method and, e.g., an upward looking laser scanner	3D mapping using 3D laser scanners or (stereo) cameras with pose estimates calculated from the sensor data			

- State of the Art in Robotic Mapping
- 6D SLAM with ICP Scan Matching
- Parallelization

100

11000

3D Mapping Examples

The ICP-Algorithm

Scan registration Put two independent scans into one frame of reference

Iterative Closest Point algorithm [Besl/McKay 1992]

For prior point set M ("model set") and data set D

- **1.** Select point correspondences $w_{i,j}$ in {0,1}
- 2. Minimize for rotation R, translation t

$$E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N_m} \sum_{j=1}^{N_d} w_{i,j} ||\mathbf{m}_i - (\mathbf{R}\mathbf{d}_j + \mathbf{t})||^2$$

3. Iterate **1.** and **2.**

SVD-based calculation of rotation

- works in 3 translation plus 3 rotation dimensions
 - \Rightarrow 6D SLAM with closed loop detection and global relaxation.

• Consecutive Scan Matching with ICP results in an erronous map, since small matching errors sum up.

• Consecutive Scan Matching with ICP results in an erronous map, since small matching errors sum up.

• Consecutive Scan Matching with ICP results in an erronous map, since small matching errors sum up.

- Consecutive Scan Matching with ICP results in an erronous map, since small matching errors sum up.
- ⇒ Replace the ICP error function by a global one, i.e.,

$$D_{i,j} = X_i - X_j$$
$$W = \sum_{(i,j)} (D_{i,j} - \bar{D}_{i,j})^T C_{i,j}^{-1} (D_{i,j} - \bar{D}_{i,j})$$

where $\overline{D}_{i,j} = D_{i,j} + \Delta D_{i,j}$ models random Gaussian noise, added to the unkown exact pose $D_{i,j}$ and $C_{i,j}$ the covariance matrix of the overlapping scans computed from **closest point pairs**.

(Video 1) (Video 2) (Video 3)

- State of the Art in Robotic Mapping
- 6D SLAM with ICP Scan Matching
- Parallelization

100

11000

3D Mapping Examples

Parallel Transformation Computation

Computing the optimal rotation

 $R = VU^T$ from the correlation matrix $H = UAV^T$ via SVD

$$\begin{split} \mathbf{H} &= \sum_{i=1}^{N} \mathbf{m}_{i}^{\prime T} \mathbf{d}_{i}^{\prime} = \sum_{i=1}^{N} (\mathbf{m}_{i} - \mathbf{c}_{m}) (\mathbf{d}_{i} - \mathbf{c}_{d})^{T} \\ &= \begin{pmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{pmatrix}, \end{split}$$

with $S_{xx} = \sum_{i=1}^{N} m'_{ix} d'_{ix}, \ S_{xy} = \sum_{i=1}^{N} m'_{ix} d'_{iy}, \ \dots$

- Idea: Compute closest points in parallel and transfer point pairs back to master
- ⇒ This takes too long…

Transfer an intermediate

correlation matrix back to master!

[13] C. Langis, M. Greenspan, and G. Godin. The parallel iterative closest point algorithm. In Proc. IEEE 3DIM, Quebec City, Canada, June 2001.

OSNABRÜCK UNIVERSITÄ

Parallel Computation of Point Pairs (1)

- Single threaded computation of Point Pairs is accomplished by k-d trees
- We have shared memory ⇒ No need to duplicate the points
 - Parallel constuction a *k*-d tree

• Parallel searching in k-d trees

Parallel Computation of Point Pairs (2)

```
class KDParams {
                                             k-d trees use back-
public:
                                             tracking to determine
  /** pointer to the closest point.
       size = 4 bytes of 32 bit machines
    *
                                             the closest point and
    */
                                             global variables
  double *closest;
  /** distance to the closest point.
                                          ⇒ Encapsulate global
    * size = 8 bytes
                                             variables in a class
    */
  double closest d2;
                                             Pay attention to
                                          /** pointer to the point,
                                             padding to avoid
    * size = 4 bytes of 32 bit machines
    */
                                             conflicts with the
  double *p;
                                             hardware cache
  /** expand to 128 bytes to avoid
    * false-sharing, 16 bytes from above
    * + 28*4 bytes = 128 bytes */
  int padding[28];
};
                class KDtree {
                  // [snip]
                public:
                   __declspec (align(16)) \
                       static KDParams params [MAX_OPENMP_NUM_THREADS];
                 };
```

Parallel Computation of Point Pairs (3)

- Since Lu / Milios style 6D SLAM is also based on closest point pairs, we can immediately apply our ICP improvement
- Better: Compute point pairs in parallel of every link of the GraphSLAM graph.
 - It turns out, you don't need to change the *k*-d tree search structure.

How fast are we now?

1. 3D data sets acquired by Kurt3D (small 11 scans, single loop, office environment)

Speedup: 23,8%

algorithm	one thread	two threads	four threads
ICP	12688	9821	9750
LUM	703	610	453
total	13391	10431	10203

 3D data sets acquired by Kurt3D (large, e.g., Dagstuhl castle, 83 scans, single loop)

Speedup: 37,3%

- Countinously acquired 3D data by Leibnitz Univ. Hannover (large, 1000 scans, trajectory up to 1 km, multiple loops) Speedup: 24,4%
- 4. Riegl data set (11 3D scans, single loop, high resolution, wide apex angle)

Speedup: 23,7% (overall)

48,2% (ICP alone)

Up to 70% on a 4 processor

number of 3D scans	one thread	two threads	four threads
2 (ICP)	20750	10985	10938
3 (ICP)	41984	21750	21750
6 (ICP)	134031	77390	77047
11 (ICP)	369828	218125	210515
11 (LUM)	794110	690023	678111
total	1163938	908148	888626

dual core Itanium-2 (Osnabrück's compute server)

- State of the Art in Robotic Mapping
- 6D SLAM with ICP Scan Matching
- Parallelization

100

175-5

3D Mapping Examples

3D Mapping of Urban Environments

3D Robotic Mapping in Urban Environments

Oliver Wulf Andreas Nüchter Joachim Hertzberg Bernardo Wagner

UNIVERSITAT V USINADRUCK

3D Mapping of Urban Environments

We acknowledge Oliver Wulf and Bernardo Wagner (Leibniz Universität Hannover) for providing the data set.

(Video)

UNIVERSITÄT

3D Mapping of Urban Environments

We acknowledge Nikolaus Studnicka (RIEGL Laser measurement Systems GmbH, Horn) for providing the data set.

(Video courtesy Riegl)

