
1

An Explicit Loop Closing Technique for 6D SLAM
Jochen Sprickerhof, Andreas Nüchter, Kai Lingemann, Joachim Hertzberg

Institute of Computer Science, University of Osnabrück, D-49069 Osnabrück, Germany
{jspricke|nuechter|lingemann|hertzberg}@informatik.uni-osnabrueck.de

Abstract— Simultaneous Localization and Mapping (SLAM) is
the problem of building a map of an unknown environment by a
mobile robot while at the same time navigating the environment,
using the unfinished map. For SLAM, two tasks have to be solved:
First reliable feature extraction and data association, second the
optimal estimation of poses and features. These two parts are
often referred to as SLAM frontend and backend. Algorithms
that solve SLAM by using laser scans commonly rely on matching
closest points in the frontend part. Then the SLAM front- and
backend have to be iterated to ensure that the map converges.

This paper presents a novel approach for solving SLAM using
3D laser range scans. We aim at avoiding the iteration between
the SLAM front- and backend and propose a novel explicit loop
closing heuristic (ELCH). It dissociates the last scan of a sequence
of acquired scans, reassociates it to the map, built so far by scan
registration, and distributes the difference in the pose error over
the SLAM graph. We describe ELCH in the context of SLAM
with 3D scans considering 6 DoF. The performance is evaluated
using ground truth data of an urban environment.

I. INTRODUCTION

Robots in recent research tend to leave the small laboratories
and operate in large scale outdoor environments. This imposes
two new challenges for mapping algorithms: First, they have
to cope with non-flat surroundings, making 3D environment
mapping necessary. Second, the size of the areas increases. In
the past, automatic 3D mapping approaches in unstructured
environments have been presented and successfully evaluated
[18, 28] in competitions such as Robocup Rescue [26], the
European Land Robotics Trial ELROB [7] or the DARPA
Grand Challenge [5]. However, most of the approaches aim
at mapping small environments or at constructing only local
maps used for navigation tasks, in order to cope with the
immense amount of data.

This paper presents a novel approach to large-scale 3D
mapping. We aim at reducing the run time of our mapping
system such that it performs fast in large environments using
3D laser scans. In particular, this paper presents an algorithm
for efficient loop closing and consistent scan alignment that
avoids iterative scan matching over all scans.

II. RELATED WORK

A globally consistent representation of a robot’s environ-
ment is crucial for many robotic applications. Equipped with
a 3D depth-perceiving sensor, many mobile systems gather
spatial information about their local 3D environments. Recent
progress in environment sensing in robotics has led from
initially custom made 3D scanners, as in [13, 25, 30], to
sophisticated highly accurate 3D scanning systems, e.g., Riegl,
Leica or Zoller+Fröhlich scanners, very fast scanning systems,
like the Velodyne 3D scanner, and the emerging technology of

A

B
C

D

E

F

G

H I
J

K

L

Fig. 1. Example trajectory (top view) that was automatically acquired by a
mobile robot [29]. The overall time needed to process this data was reduced
from 80.5 minutes to 6.4 minutes, which is faster than acquisition time. The
3D scans marked in yellow are used for evaluation. The scans have been taken
according to the sequence: A-B-C-D-A-B-E-F-A-D-G-H-I-J-H-K-F-E-L-I-K-
A. The bottom part of the figure shows two rendered 3D views. Left: Before
loop closing. Right: Corrected scene.

3D cameras. The software development has to keep up with
this progress in sensing hardware. This implies the need of
new algorithms and data structures for handling the data. Fig. 1
presents a 3D map in bird’s eye view that contains 15,338,164
data points from 924 automatically acquired 3D scans.

The local data contained in single 3D scans have to be
registered to build a global map. A well established method
for incremental registration of 3D point clouds is the iterative
closest points (ICP) algorithm [2]. However, any incremental
application of such matching algorithms leads to inconsis-
tencies due to sensing errors and due to accumulating reg-
istration tolerances. To avoid these problems, global matching
algorithms are needed, taking global correspondences between
scans into account.

As [27] states, “virtually all state-of-the-art robotic mapping
algorithms are probabilistic”. All sensor readings are noisy,
so they can patently be modeled by probability distributions.
If one chooses to model measurements by Gaussians, i.e.,

2

using a mean and a standard deviation, solving SLAM reduces
to solving a system of linear equations [9]. Closed loops,
i.e., a second encounter of a previously visited area of the
environment, play a special role in SLAM algorithms. Once
detected, they enable the algorithms to bound the global error
by deforming the already mapped area to make the model
locally consistent. However, there is no guarantee for the
model to be correct.

Global relaxation techniques can be divided into two major
categories. First, direct methods establish correspondences be-
tween features, i.e., they address the data association problem
and minimize the overall error in the SLAM graph. EKF
based methods like [6, 8, 17] are examples. These methods
are computationally expensive, since large linear equation
systems have to be solved. The number of unknown variables
depends on the number of poses and on the number of
features to be estimated. Furthermore, feature detection and
association need to be reliable, and difficulties occur due to
linearization [9]. The second category is based on iterative
methods, which overcome the feature extraction and data
association problem. The input usually consists of unprocessed
scan data, and correspondences between poses are computed
based on closest data points. An example is the method by
Lu and Milios [16] for 2D scans and its extension to 3D [4].
These algorithms solve systems of linear equations, too, to
yield pose estimations. They iterate two steps, namely, scan
matching and pose estimation, to compute a consistent global
map. Loop closing is performed by adding additional edges,
iff the robot encounters a position close to another where it
had been before [12, 15, 23].

Since SLAM implies solving a system of linear equations
when updating a single map hypothesis, the computational
requirements are high, due to increasing matrix sizes during
exploration and mapping. [15] presents a divide and conquer
algorithm to handle large matrices, but it still suffers from the
iterative approach of Lu and Milios style SLAM.

To build fast SLAM backends, Olson and Grisetti have
proposed methods for distributing the error during loop closing
over the SLAM graph [11, 20, 21]. The result corresponds to a
fast solution of the linear system of equations, which is based
on exploiting the graph structure. Similarly, [14] presents a re-
ordering of the equations to compute the solution faster. [3]
consequently exploits the sparseness of the equation system,
obtaining similar results. [22] presents a divide and conquer
method for the EKF SLAM approach. The tree map algorithm
of Frese uses a partition of the map as well, and yields an
approximative solution to SLAM [10]. Graph simplification is
used in [8], aiming at reducing the number of vertices in the
SLAM graph, thus reducing the number of equations. Note:
All these SLAM backend approaches have to be combined
with a SLAM frontend, i.e., with data association or scan
matching. In the scan matching case, both methods have to
be iterated. The assumption is that the point correspondences
are correct in the last iteration. Grisetti et al. close a loop by
using a spanning tree [11] to distribute the error.

In contrast to the previously mentioned algorithms, rather
simple methods to distribute the error in a single closed loop
have been proposed. They distribute the error uniformly in

6DoF ELCH Optimisation

6DoF ICP

Covariance calculation

6DoF ICP

Loop Optimizer

LUM

Loop
detection

no loop

loop

post processing

Fig. 2. Schematic overview of the complete algorithm, namely the interaction
of ICP, ELCH and LUM. The dashed line separates the global optimization
part that is executed as a post processing step.

the loop, or weighted by the path length [18]. However, this
technique is incapable of handling multiple, intertwined loops.

III. EXPLICIT LOOP CLOSING

A. Loop Detection and Graph Construction

Our previous work [4] to consistent mapping has applied
global Lu/Milios style relaxation when a closed loop is de-
tected (LUM). The procedure has been shown to perform well
in many applications, but it suffers from its high computational
complexity. When mapping large-scale outdoor environments,
the scenes may contain hundreds of 3D scans. The global
relaxation has to iterate the SLAM front- and backend. We
have to compute closest point correspondences for all links in
the SLAM graph in every iteration.

Explicit loop closing is proposed here to overcome this
problem. When detecting a closed loop, scan matching is
applied to transform the last acquired scan. This transformation
dissociates the last vertex from the current SLAM graph and
yields a transformation vector ∆X that consists of a rotation
R and translation t. An additional effect of scan matching
is that the last vertex is moved to a position with minimal
error with respect to the first vertex of the loop. Afterwards,
the transformation vector ∆X has to be distributed over the
SLAM graph, i.e., over the previously encountered poses. In
our current system, global LUM style optimization is used as
a post processing step to improve global consistency of the
map.

The following subsections describe the algorithm in detail.
The algorithm operates on a graph G = (V,E), where the
set of vertices V is given by the scan poses X and the set of
edges E contain pairs of vertices that were already matched
with ICP. Edges are labeled with the covariances Cl,k that
approximate the uncertainty of the connected poses vl and vk.

B. Loop Closing using ICP

Using the robot trajectory estimated by means of the local
ICP algorithm, we detect loops in the path using the Euclidean

3

distance between the current and all previous poses (distance
threshold of 5 meters), or using GPS data if available. A
threshold of minimal number of intermediate scans (e.g., 20) is
used to circumvent continuous loop closing within consecutive
scans. Given the first and last scan of a detected loop, we build
two small metascans consisting of only few scans (here: two)
around the first and last scan, respectively, and match those
metascans using ICP. The difference in the pose of the last scan
before and after application of ICP yields a transformation
error ∆X that has to be distributed between all poses on the
loop, preserving the topology of the map. For example, laser
scans that are near to another scan of the loop should still be
close to the same scan after applying the deformation.

After the error distribution, only one edge is added to the
graph, connecting the first and the last scan of the loop. Fig. 4
(right) emphasizes the difference of our SLAM graphs and
graphs used for solving SLAM in [4, 11, 20, 21], where any
two vertices that are close enough are connected.

C. Loop Optimization in SLAM Graphs

To motivate our graph optimization algorithm, consider the
following two examples. Fig. 3 (left) presents a graph of a
simple loop, where vertex E closes the loop to vertex A. The
edges are labeled with the relative error between the connected
vertices. We aim at calculating weights for the vertices that
specify the fraction of the vector ∆X by which the pose need
to be changed to achieve a consistent map. It is obvious that
vertex E has to be transformed by ∆X while vertex A does not
need to be transformed at all. The remaining vertices, except
F , G, and H are adjusted by a fraction wi ∈ [0, 1] of the
vector ∆X. The weight wi of the vertex vi is computed as
follows:

wi =
d(vs, vi)
d(vs, ve)

,

where vs is the first vertex in the loop and ve last one. d(vl, vk)
specifies the summed uncertainties between the vertices vl and
vk using the sum of the edge weights ci,j on the way, i.e.,

d(vl, vk) :=
∑

edge{i,j}∈ Path
from vl to vk

ci,j . (1)

The attached vertices F , G, and H are adjusted in the same
way as the vertex of the loop is transformed. The table on the
right specifies the values.

Note: The example presents a graph with vertices specified
as scalars, thus we use a scalar ci,j as edge weight. In case
of k-dimensional input, we dissociate every single coordinate
and decompose the problem into k subproblems. Hence, only
the diagonal of the covariance matrix, i.e., the variances, is
used in the k-dimensional case. In case of using SLERP we
have k = 4 [11, 24], i.e., three for the position and one for the
quaternion describing the rotation. Covariances are computed
as described in [19].

As a second example we use the graph in Fig. 3 (right)
with two alternate pathways. Since we want to distribute the
∆X with the smallest possible error, we find the shortest path
between the two loop closing vertices. After the correction

is distributed over the shortest path, we adjust the remaining
pathways to achieve consistency. To obtain the updates, we
recursively exploit the same algorithm as for the main loop,
but with the already computed weights of the start and end of
the alternate path, instead of the default weighting of 0 and 1.

D. The Loop Optimizer Algorithm

To compute the weights for arbitrary graphs, we propose the
Loop Optimizer Algorithm (LOA) as listed in Algorithm 1. Its
input is a connected, undirected graph G = (V,E) with two
special vertices vf and vl, specifying the first and the last
vertex of a closed loop. The weights associated with vf and
vl are set to 0 and 1, respectively, and both are added to a
set Ω that holds vertices for later processing. The first part of
the algorithm searches for all loops in the graph, using the
Dijkstra algorithm. To this end, it iterates over the set Ω until
all loops are processed. Dijkstra’s algorithm is started for all
elements of Ω to compute a path from Ω into Ω and the overall
shortest one is used (starting at vs and ending at ve). On its
first iteration, these vertices will be vf and vl, as these are
the only vertices in Ω. A collateral outcome of the Dijkstra
algorithm is the path cost to reach a vertex vi from the start
vertex vs, which is equal to d(vs, vi), as defined in (1). Based
on these costs, we update the weights (wi) of the vertices (vi)
on this path according to

wi = ws +
d(vs, vi)
d(vs, ve)

(we − ws).

By updating the vertices on the shortest path, we detect
junctions, i.e., vertices whose degree is greater than 2, and
add these vertices to the set Ω for later processing. Afterwards,
we remove the processed path, i.e., the edges from the graph
G, such that these edges are not used again, and remove the
first and last vertex vs and ve, iff their degrees are reduced
to zero. The algorithm is then iterated over the remaining set
Ω, thus we process all loops connected to the loop closed by
the vertices vf and vl. After repeating this algorithm for every
path doubly connected to the main loop, vertices of a path that
has only one connection to the main loop remain in Ω. These
are finally processed by simply distributing their connecting
weight to all vertices on such a path.

E. 6D SLAM with an Explicit Loop Closing Heuristic

Assume that in the process of acquiring and matching scans
consecutively using ICP, we detect a closed loop. The Explicit
Loop Closing Heuristics (ELCH) starts with covariance cal-
culation of adjacent poses, after matching the 3D scans that
form the closed loop, yielding a 4-dimensional translation
vector ∆X. The LOA algorithm is executed separately for
every dimension. Computing a fraction of a possibly large
rotation cannot be performed by using Euler angles, since
these consist of three angles that depend on each other. SLERP
does not have this property and is therefore usually used for
interpolation tasks.

In a post processing step we still iterate the scan matching
and update the poses as presented in [4] to slightly improve
overall consistency. This step is necessary since the difference

4

A

B

1

C

3
D 2

E

1 F
1

G5

H

4

2

Vertex Weight

A 0
B 1/7
C 4/7
D 6/7
E 1
F 1/7
G 1/7
H 1/7

A

H

G 1
F

1

E

1

D
1

C1

1

B

1

1

Vertex Weight

A 0
B 1/4
C 2/4
D 9/16
E 10/16
F 11/16
G 3/4
H 1

Fig. 3. Left: Graph with an extra branch connected to only one vertex. The table shows the computed weights of the vertices. Right: Two alternate circles
and the resulting weights. The shortest path from A to H is A-B-C-G-H .

between the first and last scan of a loop and its distribution
over the SLAM graph alone does not yield a map with an
overall minimal error. Using LUM takes significantly more
iterations to minimize the error and to close loops, because in
every iteration the loops are closed in small steps. This strategy
always considers all edges in the SLAM graph, while we gain
performance by initially dissociating one link and adding it
back afterwards.

So, the time-consuming iteration over all scans during
acquisition is avoided, allowing a much larger number of scans
to be handled in reasonable time. Experiments described in the
next section confirm that the reduction is in fact significant
(Table I). Since the number N of data points in a single scan
(in the order of 30,000) is typically still larger than the number
of scans n (in the order of 1,000), the run time is dominated
by computing the scan matching, which is in O(N log N).
The required Dijkstra algorithm is implemented in O(n log n)
time for each loop.

IV. EXPERIMENTS AND RESULTS

In this paper, we use the publicly available dataset HAN-
NOVER2, provided by Oliver Wulf, Leibniz University Han-
nover, to evaluate our algorithm. The data set, part of the
Robotic 3D Scan Repository [1], has been acquired in an
urban area and consists of 924 3D scans, each containing up
to 35,000 3D data points (cf. Fig. 1). The mobile robot Erika
[29] uses a continuously rotating 3D scanner to deliver the
data. In [29] a benchmark for this data set has been presented
using 6D SLAM with ICP and LUM. Although parts of the
path are traversed repeatedly, as described in the caption of
Fig. 1, only two distinctive loop closing events are triggered,
marked as a and b in Fig. 4.

To evaluate the map computed by our algorithm, some kind
of ground truth is necessary. In [29] we presented a method
to compute planar reference poses and a reference orientation
about the vertical axis. For the evaluation in this paper we
extend our results: A 2D ground truth map of the area is
provided by the German land registry office (Katasteramt).
It contains the buildings with a precision of 1 cm. In addition,
we obtained airborne based 3D data. Based on this data, so-
called reference data is generated as follows (see Figure 5):
The 2D map is extrapolated to 3D by vertical 3D points and
fused with the 3D data from the airplane. The result is a precise
3D reference map. Using this 3D reference map, we generate
ground truth poses for all 924 3D laser scans by matching the
scans with the reference map. We will refer to these poses as
“ground truth”.

-80

-60

-40

-20

0

20

40

60

80

100

-60 -40 -20 0 20 40 60 80 100 120 140

m
et

er

meter

a

b

Fig. 4. Left: Ground truth () and ELCH corrected () trajectory with
closed loops marked as (please refer to the pdf file for a color versions).
Right: Zoom into the box drawn on the left shows the loops closing edges
() of our ELCH algorithm (top) and of reference strategies (bottom) [4, 11,
20, 21]. At a the robot starts to drive the same track, so a loop closing event
is triggered. At b the trajectories diverged so far that a new loop is closed.

For analyzing the optimization of different SLAM strategies,
we plot the error in the transformation of three exemplary
scans. To visualize the translational error of every iteration,
we use the Euclidean distance of the scan to the ground truth
position as

etranslation =
∣∣∣∣∣∣X̂i − X̂i,ref

∣∣∣∣∣∣ ,
where a scan pose X is defined as (X̂, X̃)T , with X̂ =
(x, y, z)T . To describe the rotational error, we convert the rota-
tion part X̃ of their poses X into the quaternion representation,
i.e., X̃ = (p, q, r, s)T . The inner product of it yields the angle
between the two 4 dimensional vectors.

erotation = arccos
∣∣∣X̃i · X̃i,ref

∣∣∣ .
Fig. 6 presents the rotational and translational errors for two

scans while executing our new strategy ELCH in comparison

5

Algorithm 1 Loop Optimizer
Input: Graph G = (V,E)

first vertex vf

last vertex vl

edge costs cl,k : E → R+

Output: vertex weights wi : V → [0, 1]

1: wf ← 0
2: wl ← 1
3: Ω← {vf , vl} /* Loop Closing */

/* Dijkstra returns a path p := (vs, v1, v2, . . . , vn, ve) */
/* and minimal costs d(vs, vs), d(vs, v1), . . . , d(vs, ve) */

4: while find shortest path between any two vertices
{vs, ve} ∈ Ω with Dijkstra do

5: for all vertices vi on the path p do
6: wi ← ws + d(vs,vi)

d(vs,ve) (we − ws)
7: if deg(vi) > 2 then /* i.e. junction */
8: Ω = Ω ∪ {vi}
9: end if

10: end for
11: remove edges of path p in G
12: if deg(vs) = 0 then
13: Ω = Ω \ {vs}
14: end if
15: if deg(ve) = 0 then
16: Ω = Ω \ {ve}
17: end if
18: end while
19: while Ω 6= ∅ do /* Error Propagation */
20: select vi ∈ Ω
21: for all neighbors vn of vi do
22: wn ← wi

23: delete edge {vi, vn}
24: if deg(vn) > 0 then
25: Ω = Ω ∪ {vn}
26: end if
27: end for
28: Ω = Ω \ {vi}
29: end while

to our previous strategy LUM. The corresponding scans have
been colored yellow in Fig. 1. To give greater detail, we
zoom into the curves of the ELCH algorithm on the right
side, showing the individual steps. In the first iteration (white
background, very small), the initial pose correction is applied.
Then (shown in very light gray), the ICP algorithm registers
the scan, relative to the previous scan. The third step (in light
gray) depicts the error during the ICP loop closing iterations.
Scans not at the end of a closed loop do not have this step.
Fourth (gray) are the corrections of LOA, and last (dark gray)
the iterations of the final relaxation algorithm can be seen.

The left part shows scan 344 which closes the second loop,
thus the two compared strategies display different initial errors.
We notice that LUM starts to move the scan slowly into the
right position, getting faster when it is almost done. The reason
is that the movement is forced by the other scans of the
loop at this stage of the procedure, rather by the loop closing

Fig. 5. Top left: Schema of the airborne based acquisition of reference
data. Top right: 3D map consisting of aerial laser data and extrapolated 2D
reference data. Bottom: Airborne and 3D map (green) with superimposed 3D
scans (black).

TABLE I
RUNTIME COMPARISON ON AN INTEL CORE 2 QUAD AT 2.66 GHZ WITH

4 GB RAM PROCESSING THE COMPLETE DATASET HANNOVER2.

Algorithm runtime (sec)

LUM 4831
ELCH (without post processing) 89
ELCH (with post processing LUM) 384

constraint itself. The ELCH algorithm, on the other hand, has
only the loop closing constraint, such that the ICP algorithm
starts converging later, yet in fewer iterations.

As a second example (Fig. 6, right) is the 556th scan
(label H in Fig. 1). Again, it is a scan that closes a loop,
so the ICP loop closing iterations are shown. Being a small
loop with no big error, the correction of it is quite small.
Note that this scan is far away from the origin and not
connected to any other loops when it is first corrected, so
LOA changes its position again once it gets connected to
other loops. As in all three scans, the LUM algorithm at
the end of the ELCH part converges much faster because
of the previous corrections. This is visible in table I, too,
where we compare the runtime of the different strategies. An
animated comparison between ELCH and LUM can be seen
at http://kos.informatik.uni-osnabrueck.de/
download/elch/ 1.

V. OUTLOOK AND CONCLUSION

This paper has introduced a novel approach to scan match-
ing based GraphSLAM. The usual approach to loop closing

1The video compares our previous strategy LUM (on the left) with our new
strategy ELCH. It shows the different steps during computation the elapsed
computing time.

http://kos.informatik.uni-osnabrueck.de/download/elch/
http://kos.informatik.uni-osnabrueck.de/download/elch/

6

0

2

4

6

8

10

12
Tr

an
sl

at
io

n
er

ro
r

in
m

et
er

0

2

4

6

8

10

12

0 100 200 300 400 500

R
ot

at
io

n
er

ro
r

in
de

gr
ee

Iteration
0 50 100 150 200

Iteration

ELCH
LUM

0
5

10
15
20
25
30
35

Tr
an

sl
at

io
n

er
ro

r
in

m
et

er

0
2
4
6
8

10
12
14
16
18

0 100 200 300 400

R
ot

at
io

n
er

ro
r

in
de

gr
ee

Iteration
0 50 100 150

Iteration

ELCH
LUM

Fig. 6. Convergence of the 344th and the 556th scan. The right side shows the stages of ELCH, namely ICP , ELCH ICP , LOA and LUM

is to build a graph of poses and optimize it afterwards by
iterating scan matching and graph optimization. Our approach
dissociates the scan that closes the loop from its previous scan
and registers it explicitly. The resulting offset is distributed
over the SLAM graph such that a minimal error occurs, with
respect to the uncertainties in correlated poses.

In addition, this paper has applied a new method for
evaluating the accuracy of 3D scans acquired in an outdoor
setting, extending our benchmarking attempts in [18]. We use
independently acquired aerial 3D scans in combination with
a 2D reference map from the land registry office as genuine
truth. This enabled us to measure derivations with 6 degrees
of freedom.

The ELCH algorithm proposed in this paper yields an
improved structure of the scene that speeds up the global
post processing step LUM, if not enabling a correct global
optimization in the first place by closing loops smartly. The
major part of the algorithm’s run time, however, is consumed
by this post processing step, which is still necessary to obtain
a globally consistent optimization at a detailed level. Thus,
further research will be invested on speeding up the LUM
algorithm.

REFERENCES

[1] 3D Scan Repository, 2008.
http://kos.informatik.uni-osnabrueck.de/3Dscans/

[2] P. Besl and N. McKay. A method for Registration of 3–D Shapes. IEEE
Transactions on PAMI, 14(2):239 – 256, 1992.

[3] D. Borrmann, J. Elseberg, K.Lingemann, A. Nüchter, and J. Hertzberg.
The Efficient Extension of Globally Consistent Scan Matching to 6 DoF.
In Proc. of the 4th Int. Symp. on 3D Data Processing, Visualization and
Transmission (3DPVT ’08), pages 29–36, Atlanta, GA, USA, June 2008.

[4] D. Borrmann, J. Elseberg, K. Lingemann, A. Nüchter, and J. Hertzberg.
Globally Consistent 3D Mapping with Scan Matching. J. Robotics and
Autonomous Sytems, 65(2):130–142, 2008.

[5] DARPA. http://www.darpa.mil/grandchallenge/, 2007.
[6] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte,

and M. Csorba. A Solution to the Simultaneous Localization and
Map Building (SLAM) Problem. IEEE Transactions on Robotics and
Automation, 17(3):229 – 241, June 2001.

[7] FGAN. http://www.elrob.org/, 2008.
[8] J. Folkesson and H. I. Christensen. Graphical SLAM for Outdoor

Applications. J. of Field Robotics (JFR), 24(1–2):51–70, February 2007.

[9] U. Frese. A Discussion of Simultaneous Localization and Mapping.
Autonomous Robots, 20(1):25–42, 2006.

[10] U. Frese. Efficient 6-DOF SLAM with Treemap as a Generic Backend.
In Proc. of the IEEE ICRA, Rome, Italy, April 2007.

[11] G. Grisetti, C. Stachniss, and W. Burgard. Non-linear constraint network
optimization for efficient map learning. IEEE Transaction on Intelligent
Transportation Systems, 2008.

[12] J.-S. Gutmann and K. Konolige. Incremental Mapping of Large Cyclic
Environments. In Proc. IEEE CIRA, 2000.

[13] D. Hähnel and W. Burgard. Probabilistic Matching for 3D Scan
Registration. In Proce. 2nd German conference on robotics (ROBOTIK
’02), Ludwigsburg, Germany, June 2002.

[14] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Fast incremental
smoothing and mapping with efficient data association. In Proc. IEEE
ICRA, pages 1670–1677, Rome, Italy, 2007.

[15] K. Konolige. Large-scale map-making. In Proc. AAAI, 2004.
[16] F. Lu and E. Milios. Globally Consistent Range Scan Alignment for

Environment Mapping. Autonomous Robots, 4:333 – 349, April 1997.
[17] P. Newman and Kin Ho. Slam-loop closing with visually salient features.

In Proc. IEEE ICRA, pages 635–642, 2005.
[18] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6D SLAM

- 3D Mapping Outdoor Environments. J. of Field Robotics, Special
Issue on Quantitative Performance Evaluation of Robotic and Intelligent
Systems, 24(8/9):699–722, 2007.

[19] Andreas Nüchter. 3D Robotic Mapping – The Simultaneous Localization
and Mapping Problem with Six Degrees of Freedom, volume 52 of STAR.
Springer, Heidelberg, 2009.

[20] E. Olson, J. Leonard, and S. Teller. Fast iterative alignment of pose
graphs with poor initial estimates. In Proc. IEEE ICRA, 2006.

[21] Edwin Olson. Robust and Efficient Robotic Mapping. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 2008.

[22] L.M. Paz, J.D. Tardos, and J. Neira. Divide and Conquer: EKF SLAM
in O(n). IEEE Transactions on Robotics, 24(5):1107–1120, 2008.

[23] P. Pfaff, R. Triebel, and W. Burgard. An efficient extension to elevation
maps for outdoor terrain mapping and loop closing. IJRR, 26, 2007.

[24] K. Shoemake. Animating rotation with quaternion curves. Computer
Graphics, 19(3):245 – 254, July 1985.

[25] H. Surmann, K. Lingemann, A. Nüchter, and J. Hertzberg. A 3D laser
range finder for autonomous mobile robots. In Proc. ISR, April 2001.

[26] The RoboCup Federation. http://www.robocup.org/, 2008.
[27] S. Thrun. Robotic mapping: A survey. In G. Lakemeyer and B. Nebel,

editors, Exploring Artificial Intelligence in the New Millenium. 2002.
[28] S. Thrun et al. Winning the darpa grand challenge. J. of Field Robotics

(JFR), 23(9):661 – 692, August 2006.
[29] O. Wulf, A. Nüchter, J. Hertzberg, and B. Wagner. Benchmarking Urban

Six-Degree-of-Freedom Simultaneous Localization and Mapping. J. of
Field Robotics, 25(3):148–163, 2008.

[30] O. Wulf and B. Wagner. Fast 3D-scanning methods for laser measure-
ment systems. In Int. Conf. Control Systems and Computer Science,
2003.

http://kos.informatik.uni-osnabrueck.de/3Dscans/
http://www.darpa.mil/grandchallenge/
http://www.elrob.org/
http://www.robocup.org/

	Introduction
	Related Work
	Explicit Loop Closing
	Loop Detection and Graph Construction
	Loop Closing using ICP
	Loop Optimization in SLAM Graphs
	The Loop Optimizer Algorithm
	6D SLAM with an Explicit Loop Closing Heuristic

	Experiments and Results
	Outlook and Conclusion
	References

