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Abstract—The computational complexity of SLAM is large
and constitutes a challenge for real-time processing of a huge
amount of sensor data with the limited resources of a mobile
robot. Often, notebooks are used to control a mobile system and
even these computing devices have nowadays graphics cards
which allow general purpose computation using many cores.
SLAM à la carte (graphique) exploits these capabilities and
carries out 3D scan registrations on the GPU. A speed-up of
more than one order of magnitude for precise 3D mapping is
reported.

I. INTRODUCTION

Many basic robot tasks require a globally consistent rep-

resentation of the environment. Many modern robots are

equipped with 3D scanners, that either work according to one

of the following principles: the time-of-flight principle using

pulsed or continuously emitted laser light, triangulation using

projections of laser patterns or the projection of structured

light, i.e., light coding. These sensors acquire 3D point

clouds in a local coordinate frame from their surround-

ing. Local representations have to be matched to build a
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Fig. 1. Timing of GraphSLAM based globally consistent scan matching. Initial sequential ICP alignment is refined by an iterative procedure (cf. [16]).
Most of the time are spent in nearest neighbor search, which is carried out on a k-d tree.

global map. The well-known iterative closest point algorithm

(ICP) [2] puts two independently acquired 3D point clouds

into one frame of reference. Instead of performing the scan

matching based on extracted features, it uses closest points in

Cartesian coordinates and an iterative procedure to compute

the registration.

In previous work we have extended the ICP algorithm to

globally consistent 3D scan matching [3], [16]. To yield a

high-precise 3D mapping algorithm, it differs in an important

aspect from other state-of-the-art simultaneous localization

and mapping (SLAM) procedures. It repeatedly matches

closest points of 3D scans stored in a pose graph to build a

linear system of equations, that is also solved repeatedly to

update the pose estimates. Thus, globally consistent 3D scan

matching performs GraphSLAM in every iteration. Unlike

Grisetti et al. who claims in [10, page 9] that “[. . .] the

time to compute the linear system is negligible compared to

the time to solve it” we experienced otherwise and strongly

object (cf. Fig. 1). The data association is the bottleneck

in scan matching based SLAM: Image to match n point

clouds, each containing N 3D points. Usually it holds:

N ≫ n. For example typical 3D scans taken by the robot

Kurt3D [17] contain up to 300,000 points and a typical

3D scan acquired by our robot Irma3D contains 3,000,000

points, while typical scenes contain only a few thousand

scan poses. Finding nearest neigbors can be accomplished

on average in O(N logN)-time by using search trees [8]



while solving the linear system is in O(n3). However, since
the system of equations refers usually to a sparse graph,

the letter Landau notation turns out to be not relevant,

since a sparse Choleskey decomposition [6] is applicable.

Therefore, speeding-up the data association, i.e., the search

for correspondences, remains a central point. To this end,

we have suggested in [15] to employ OPENMP to perform

computing closest points in a parallel fashion. Of course,

for feature based SLAM the number of equations grows

with every associated feature and then the SLAM back-end

becomes the bottleneck.

This paper presents results obtained by incorporating the

immense computational power of GPUs (Graphics Process-

ing Units) into our SLAM framework and into 3DTK –

The 3D Toolkit (http://threedtk.de). The increasing

programmability of graphics cards enables general-purpose

computing on graphics processing units (GPGPU) and yields

a powerful massive parallel processing alternative to conven-

tional multi-computer or multi-processor systems. Moreover,

costs of commodity graphics cards are lower when measured

in cost per FLOPS.

Traditional methods for computing closest points are diffi-

cult to be implemented on GPUs due to their recursive nature.

We take advantage of Arya’s priority search algorithm [1],

to fit nearest neighbor search (NNS) in the Single Instruction

Multiple Data (SIMD) model, so that it is possible to

be accelerated by the use of a GPU [21]. The proposed

algorithm, is implemented using CUDA, NVIDIA’s parallel

computing architecture [18].

II. STATE OF THE ART

An introduction to robotic mapping and SLAM is given

in [24]. Recently, Grisetti et al. published a tutorial on graph-

based SLAM [10]. To avoid repeating these summaries, the

focus in this related work section is on related GPGPU

algorithms. Up to our knowledge, this has not been applied

to 3D robotic mapping. Our own previous algorithms have

been published for example in [3], [16] and [15].

NNS is typically implemented using brute force meth-

ods on GPUs, which are by nature highly parallelizable.

This property makes brute force based NNS methods easily

adaptable for a GPU implementation and there are several

implementations available. Purcell et al. used cells to rep-

resent photon locations [20]. By calculating the distances

between photons in cells that are intersected with a search

radius, and a query point, k nearest neighbors are located

to estimate the radiance. Purcell et al. stressed that k-d

tree and priority queue methods are efficient but difficult to

be implemented on GPU [20]. Bustos et al. stored indices

and distance information as quaternion in RGBA channels

of a texture buffer. They used three fragment programs to

calculate Manhattan distances and to minimize them by

reduction [4]. Rozen et al. adopted a bucket sort primitive to

search nearest neighbors [22]. Van Kooten et al. introduced a

nearest neighbor search method based on projection for the

particle repulsion problem [25], which chooses a viewport

encompassing every particle (or as many as possible), and

projects particles onto a projection plane. The approach

takes advantage of the hardware accelerated functionalities of

GPUs, such as projection and 2D layout of the texture buffer

for grid calculation. Garcia et al. implemented a brute force

NNS approach using CUDA [9]. When the data dimension

is more than 96, and the number of points is less than

around 10000, a speed up of 40 comparing to the CPU-

based k-d tree implementation is reported. However, if the

data dimension is less than 8 and the number of points is

larger than around 19000, their algorithm becomes slower

than the CPU implementation.

Other than brute force implementations, GPU-based NNS

with advanced search structures are also available in the

field of global illustration. In the context of ray tracing,

the NNS procedure builds trees from a triangle soup, and

takes also triangles but not points as the objects of interest.

These algorithms cannot be used as general point-based NNS

algorithms. On the other hand, the NNS algorithm for photon

mapping shares a similar model with a general point-based

NNS problem. Foley built a k-d tree on CPU and used

the GPU to accelerate the search procedure [7]. Horn et

al. extended Foley’s work by restarting the search at half

of the tree but not from the root [11]. Singh presented an

SIMD photon mapping framework, using stack based k-d

tree traverse to search k nearest neighbors [23]. Lieberman

et al. used quad-tree for the similarity joint algorithm [14].

Zhou et al. implemented k-d tree based NNS on GPU for

both – ray tracing and photon mapping – using the CPU

as a coordinator [26]. They applied a heuristic function to

construct k-d trees. In the k-d tree traverse stage, range

searching is used to find the k nearest neighbors.

In recent GPU-accelerated NNS implementations, most

NNS kernels are based on brute force methods. They are easy

to implement but possess the natural drawback of low effi-

ciency compared with advanced data structures. On the other

hand, brute force methods mostly need reduction kernels in

order to find the minimum in distance. A reduction kernel

is slow due to its non-parallel nature, even implemented by

highly optimized blocks. Tree-based NNS algorithms have

shown a performance leap in global illumination. Hints and

inspirations can be gained from these algorithms. Therefore

the purpose for which they were designed makes them not

easily adoptable for non-graphics purposes.

III. NEAREST NEIGHBOR SEARCH USING THE GPU

GPU-based algorithms conform to the SIMD model. In

our GPU-NNS algorithm, all nearest neighbor searches (as

many as the number of points in the scene point cloud) are

executed simultaneously. When the number of searches is not

the same as the number of threads the processor can allocate,

the CUDA driver will schedule and assign the threads to the

multi-processors, which is transparent to the users. Our GPU-

NNS procedure features three steps.

a) k-d Trees: k-d trees are a generalization of binary

search trees. Every node represents a partition of a point

set to the two successor nodes. The root represents the

whole point cloud and the leaves provide a complete disjoint



partition of the points. These leaves are called buckets. Every

node contains the ranges of the represented point set.

b) Array-based k-d Tree: Before the search procedure

is performed, a piece of page-locked memory is allocated on

the host side. As a convention, we refer to graphics cards

as devices, and to CPU and main memory as host. A left-

balanced k-d tree is built for the point set S by splitting

the space always at the median of the longest axis. Being

left-balanced, the k-d tree can be serialized into a flat array,

and thus stored in the page-locked memory. Since the device

memory cannot be dynamically allocated on the device, the

array-based k-d tree is downloaded to the device before NNS.

It is worth mentioning that in order to satisfy the coalescing

of CUDA global memory, a Structure of Array (SoA) is used.

Members of the structure are mostly 32-bit words, so that all

threads of a half-warp (16 threads) are coalesced into one

64-byte global memory transaction.

c) Priority Search Method: Because recursion is not

possible with CUDA, the traditional k-d tree search method

cannot be used. However, the priority search method provides

a way to put NNS on the GPU [1]. Priority queues are

maintained in the registers of the GPU. The priority search

algorithm iteratively executes the following three steps: First,

extract the element having minimal distance to the query

point from the queue. Second, expand the extracted node.

Insert the higher node in the queue and then expand the

lower node. This step is repeated till the leaf node. Third,

update the nearest neighbor so far. The complete GPU-NNS

algorithm is shown in Algorithm 1.

Algorithm 1 GPU-NNS Algorithm

Require: download the k-d tree, model point cloud and

scene point cloud to GPU global memory.

1: assign n threads, where n = number of query points.

2: assign arrays pair[n] and distance[n] in GPU memory

for results.

3: for every query point in parallel, do

4: assign the query point to a thread

5: allocate a dynamic list for the thread

6: construct dynamic queue q

7: Initialize q with the root node

8: do priority search, find: pair w. shortest distance d

9: if d < distance threshold then

10: pair[threadID] = pair

11: distance[threadID] = d

12: else

13: pair[threadID] = non-pair flag

14: distance[threadID] = 0
15: end if

16: end for

IV. GPU-ACCELERATED ICP

Given two independently acquired sets of 3D points, M̂

(model set) and D̂ (data set) which correspond to a single

shape, we want to find the transformation (R, t) consisting

of a rotation matrix R and a translation vector t which

minimizes the following cost function [2]:

E(R, t) =
1

N

N∑

i=1

||mi − (Rdi + t)||
2
, (1)

All corresponding points can be represented in a tuple

(mi,di) wheremi ∈ M ⊂ M̂ and di ∈ D ⊂ D̂. Two things

have to be calculated: First, the corresponding points, and

second, the transformation (R, t) that minimizes E(R, t)
on the basis of the corresponding points. The ICP algorithm

uses closest points as corresponding points. A sufficiently

good starting guess enables the ICP algorithm to converge

to the correct minimum.

Respecting the GPU-based ICP approach, there are only

a few implementations yet, due to the very recent develop-

ment of the GPGPU technique. Kitaaki et al. implemented

Modified ICP (M-ICP) [12] on GPU [13]. For nearest

neighbor search, they took advantage of the massive raw

computational power of GPU, calculating NM × ND times

the distances between query points and model points, in

which, NM and ND are the numbers of points in the model

and data point cloud respectively. The method of transforma-

tion estimation was not presented, although the whole ICP

pipeline is declared to have been implemented on GPU. As a

result, their method is reported to be 2 to 3 times faster than

the original one. Park et al. implemented a GPU-based pose

estimation pipeline [19]. ICP was used as the last stage for

fine-tuning, which is unfortunately not implemented on GPU.

Choi et al. [5] applied Iterative Projection Point (IPP) instead

of searching for the closest points to register 3D shapes.

Since no searching procedure is required, a registration time

of more than 200 milliseconds was reported for point clouds

with 320 × 240 points. However, the matching accuracy

might not be comparable to the ICP algorithm, which is not

discussed in the publication.

Our extension of the ICP to the SIMD model accelerates

not only the NNS stage but also the remaining parts of the

ICP algorithm, namely the scene point cloud transformation,

zero mean alignment by computing centroids [2] and the

covariance matrix for the SVD based minimizer [16], which

take also observable amount of time. Fig. 2 illustrates the

coordination between the host and the device of the GPU-

ICP algorithm. The major steps are:

Centroids Calculation: To calculate the centroids of

the point clouds, the coordinates need to be summed up

separately over all the points, yielding 6 sums to be divided

by the number of points. To sum up the values, the reduction

kernel in CUBLAS library (CUDA implementation of basic

linear algebra methods) is applied, which heavily uses the

shared memory.

Unlike on CPU, where the number of nearest neighbor

pairs is a natural gain in the end of the loop, GPU finds

the pairs by threads in parallel, so that the number of pairs

has to be counted after the NNS procedure. Counting the

number of pairs is implemented by the compact function

of CUDPP library (CUDA Data Parallel Primitives Library),



Fig. 2. The coordination between CPU and GPU in the GPU-ICP algorithm.
Notice that other than constructing the k-d tree, CPU does only negligible
work. The data transfer over the PCIe is minimized. Pictures of the chips
are taken from manufacturer websites.

which compacts an array according to a predefined mask

array. The number of pairs is a side gain of the function. The

six divisions are executed on the CPU in double precision,

and then the centroids are send to GPU.

Point Cloud Alignment: The point clouds are aligned

to the original points using the two calculated centroids in

parallel. Similar to the principle of GPU-NNS, the number of

threads is the number of points and each point is translated

by a standalone thread in parallel.

Preparation for SVD: The covariance matrix for the

SVD-based ICP [16] is calculated before it is decomposed.

It is filled by the dot product function of CUBLAS on GPU.

Every thread, i.e., every point pair, contributes in parallel to

the matrix. If a point pair is rejected, we use zero vectors for

the dot product. Since the covariance matrix is small (3× 3)
and needs double precision, the SVD is not implemented

on the GPU. We used the NewMat library to calculate the

decomposition on the CPU.

Further Implementation Details: The block size is

configured to be 192 or 256 to get the optimal compromise

between enough active threads and enough registers per

multi-processor.

V. GPU-ACCELERATED GLOBALLY CONSISTENT SCAN

MATCHING

In the overall scan matching based 3D mapping, global

relaxation takes a longer time than ICP (see Fig. 1). Analyz-

ing the relaxation phase, yields that the most time consuming

part is again the NNS which is required for the covariance

computation.

We summarize our task distribution of the covariance

computation in Fig. 3. Currently, we copy the tree to GPU

in each SLAM iteration to retrieve the covariance matrix for

each link. This is time consuming which can not be solved

easily. Since the number of calls of this method is very high,

it decreases the efficiency of our algorithm. However, the

procedure given by Fig. 3 effectively exploits NNS on the

graphics card.

Fig. 3. The coordination between CPU and GPU in the scan relaxation
algorithm. In every iteration, the pre-computed trees are transferred to GPU
for NNS and the resulting covariance matrices are copied back.

VI. EXPERIMENTS AND RESULTS

The computer for our experiment was a Intel(R)

Core(TM)2 Quad CPU Q9450 @ 2.66GHz with a GeForce

GTX 260 with 216 cores. Its graphics memory is 896MB.

For a system test of the ICP algorithm, we use synthetic

data with known ground truth poses, thus we are able to

analyze the convergence of the proposed algorithm. The 3D

scan registration is based on two artificial cubes (Fig. 4,

left). Each of them consists of N random points lying on

the surface of the cube. The side length of each cube is 10

units. The second cube is generated by translating the first

cube through the vector [1.0, 1.0, 1.0] and rotating it around

the axis [1.0, 1.0, 1.0] for 0.1 radian. The convergence, which
represents the matching quality, is measured by variation as

defined by root mean squared error of the distances between

nearest neighbors. It is observed in Fig. 4 that although GPU-

ICP with different queue lengths present different convergent

rates, they end up with very similar convergent limits. The

reason for this behavior is the iterative fashion of ICP. The

assumption made by the ICP algorithm, is that in the last

iteration, the point pairs are correct. Retrieving approximate

nearest neighbors yields different point pairs for the mini-

mization step. Due to the large number of points in the point

cloud, the computed transformation (R, t) is still similar to
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Fig. 4. The left image shows the artificial cube used for the convergence test. The remaining subfigures present the convergence test results for different
number of points. Comparison of the convergence over 50 iterations between GPU-ICP implementations and the CPU-based ICP implementation. ”Q”
means priority queue length. Approaches with different queue lengths present different convergent rate. However, they end up with very similar convergent
limits.

Convergence test GPU−ICP. 3D laser scan
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Fig. 5. From left to right: (1) Convergence test for a 3D laser scan. (2) Speed test. The result of the 3D registration experiment of 68229 points. 1-6
means the queue length is increased gradually in iterations as follows: 1, 2, 3, 4, 5, 6, and 1-32 as: 1, 2, 4, 8, 16, 32. It is observed from the speed test
that GPU-ICP is 25 times faster than the sequential CPU-based ICP. In addition, the OpenMP results with 4 and 2 threads are given. (3) The runtime
comparison among sequential CPU implementation, OPENMP-based implementation and GPU-ICP. Without k-d tree construction. (4) Including k-d tree
construction.

the exact case. Therefore, more iterations will be needed

to match the point clouds, and again, in the last iteration

the point pairs are correct, since the query point will be in

the bucket, where the true nearest neighbor is. If less points

are present in the point cloud the effect of “initially” wrong

correspondences becomes larger, however, the minimum of

zero is always reached.

In all experiments a slightly better accuracy could be

observed for the CPU implementation compared to the GPU

implementation. The reason is that the CPU operates in a

double floating mode and allows a longer queue.

The data sets used in our real-life evaluation are avail-

able in the Robotic 3D Scan Repository (http://kos.

informatik.uni-osnabrueck.de/3Dscans/). The

first data set is a typical indoor scan acquired by an actuated,

i.e., tilting SICK LMS200 scanner. Both point clouds contain

68,229 points. The second data set refers to the first 65

3D scans of the set Hannover1 contributed by Oliver Wulf,

Leibniz Universität Hannover, Germany. These 3D scans

have a field of view of 360◦ × 180◦ and each contains

approximately 30,000 3D points. The third data set is the

Koblenz data set acquired by Johannes Pellenz and Dagmar

Lang from the Active Vision Group, University of Koblenz-

Landau, Germany using a Velodyne HDL-64E Laser range

finder with a field of view 360◦× 28.8◦. Each scan contains

roughly 102,000 points.

Registration of two 3D Scans: This experiment is

conducted to compare the performance of the GPU-ICP

algorithm, the OPENMP-based ICP algorithm [15] and the

sequential CPU-based ICP implementation, which uses a

single CPU. The convergence test of GPU-ICP with different

queue lengths is presented in Fig. 5 (1). It is observed that

although the executions with different queue lengths yield

different convergence speeds at the beginning, they all con-

verge to a similar variation limit, so as the one with a single-

element queue. Figure 5 (2) shows the time consumed by

different queue length configurations, as well as the two CPU

implementations. When registering 68,229 points, GPU-ICP

with single-element queues performs more than 25 times

faster than the standard sequential CPU implementation.

Fig. 5 compares the speed of the three implementations: stan-

dard CPU-based ICP, OPENMP-based ICP and GPU-ICP.

When registering 68,229 points, OPENMP multi-threading

on a quad core machine achieves a speed-up of around 3

compared to the sequential execution, while a speed-up of

25 is achieved by GPU implementation. It is observed that

with more points, the speed-up ratio of GPU-ICP to CPU

implementations is improved. Data are transferred to the

GPU only once per ICP registration process (here: 2×68,229

points amounting to ≈ 7MB), which take less than 3msec

in case the GPU is connected by PCIe 2.0.

The data sets Hannover1 and Koblenz were recorded using

continuous 3D scanning. By using this scanning methodol-

ogy a very large number of scans can be recorded. Fig. 6

shows the timing results and two views of the map obtained

by registration of the Koblenz data set. Similar results were

achieved with the Hannover1 data sets. The overall speed-up

is mainly attributed to the acceleration of the ICP algorithm.

The high number of points in every scan is advantageous for

our GPU-accelerated ICP. It turned out, that one can obtain

only a speed-up factor of about 5 for the GraphSLAM part as

given in Fig. 3. This is due to fact that in every GraphSLAM

iteration all trees must be transferred to the GPU in order to

execute the NNS for all graph links.
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Fig. 6. Left two images: 3D views of the point cloud acquired by a Velodyne scanner. Different scans have different colors. Middle: Bird’s-eye view.
Right: Run time comparison for the Koblenz data set.

VII. DISCUSSION, CONCLUSIONS, AND FUTURE WORK

We developed a GPU-accelerated NNS approach and used

this as part of our implementation for the SLAM front-end.

More precisely, we employ a k-d tree based priority search

method for computing closest points. The performance is

enhanced significantly by the massive parallelism of the GPU

SIMD architecture. It is higher by one order of magnitude us-

ing a modern commodity video card. The resulting approach

is still faster than the MIMD-based approaches running on

a state-of-the-art quad core CPU.

Needless to say a lot of work remains to be done. Our

current approach suffers from the fact, that in every iteration

of GraphSLAM, where we conduct a NNS, compute covari-

ances and execute a SLAM back-end, the k-d trees must

be time-consumingly transferred to GPU memory. In future

work, we will concentrate on solving this memory bounded

GraphSLAM optimization problem, where we only store a

certain part of the scans in the limited GPU memory (here

896MB).

With the rapid development of GPU technology, the k-d

tree construction stage will be migrated to GPU, possibly

using a breadth first, dynamic list based approach.
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