
Delta filter - robust visual-inertial pose estimation in real-time:

A multi-trajectory filter on a spherical mobile mapping system*

Fabian Arzberger1, Fabian Wiecha1, Jasper Zevering1, Julian Rothe2,

Dorit Borrmann3, Sergio Montenegro2, and Andreas Nüchter1

Abstract— Precise, real-time, and onboard 3D localization
is mandatory for many robotic systems nowdays. Numerous
ways exist to achive this: Many state-of-the-art mobile map-
ping systems accomplish reliable and robust pose estimation
utilizing combinations of inertial measurement units (IMUs),
global navigation satellite systems (GNSS), visual-inertial- or
LiDAR-inertial odometry (VIO/LIO). However, on a spherical
mobile mapping system the underlying inherent rolling motion
introduces high angular velocities, thus the quality of pose
estimates, images, and laser-scans, degrade. In this work we
propose a pose filter design that is able to do real-time sensor
fusion between two unreliable trajectories - which are sampled
asynchronously - into one, more reliable trajectory. It is a simple
yet effective filter design that does not require the user to esti-
mate the uncertanty of the sensors. The approach is not limited
to spherical robots and theoretically is also suitable for sensor
fusion of an arbitrary number of estimators. Furthermore, the
filter does not refine its trajectory with information from future
measurements and is able to run at 125Hz on a Raspberry Pi
4. This work compares this filter against two pose estimation
methods on our spherical system: (1) An approach that is based
solely on IMU measurements and a motion model, and (2)
stereo-VIO with an Intel® RealSense™ tracking camera. The
proposed “Delta” filter takes as input (1), (2), and a motion
model. Our implementation gets rid of the drift in (1) and
(2), estimates the scale of the trajectory, and deals with slow
and fast motion as well as driving curves. To quantify our
results, we evaluate the trajectories against ground truth pose
measurement using an OptiTrack™ motion capturing system.
Furthermore, as our spherical system is equipped with a laser-
scanner, we evaluate the resulting point clouds against ground
truth maps available from a Riegl VZ-400 terrestrial laser
scanner (TLS). Our source code can be found on github1.

I. INTRODUCTION

Spherical mobile mapping systems are just comming of

age, as current research in the robotics community shows:

The majority of research dealing with spherical systems is

about locomotion mechanisms, e.g. [1]–[6]. Using spherical

*We acknowledge funding from the ESA Contract No.
4000130925/20/NL/GLC for the study “DAEDALUS – Descent And
Exploration in Deep Autonomy of Lava Underground Structures” within
the Open Space Innovation Platform (OSIP) lunar caves-system and the
Elite Network Bavaria (ENB) for providing funds for the academic program
“Satellite Technology”

1The authors are with Computer Science XVII - Robotics, Julius-
Maximilians-University Würzburg, 97074 Am Hubland, Germany. Contact:
fabian.arzberger@uni-wuerzburg.de

2The authors are with Computer Science VIII - Aerospace Information
Technology, Julius-Maximilians-University Würzburg, 97074 Am Hubland,
Germany. Contact: julian.rothe@uni-wuerzburg.de

3Dorit Borrmann is with THWS Robotics, Technische-Hochschule-
Würzburg-Schweinfurt, 97421 Schweinfurt, Germany. Contact:
dorit.borrmann@thws.de

1https://github.com/publish_after_acceptance

Fig. 1: (Left:) Spherical mobile mapping system equipped

with Phidget IMUs, an Intel T265 stereo-tracking camera,

Livox Mid-100 LiDAR, and optitrack IR-reflectors. (Right:)

Resulting point cloud when applying the estimated trajectory

of the proposed Delta-filter, which uses information from the

IMUs and internal camera, but not the LiDAR. The optitrack

trajectories and resulting point clouds are used for evaluation.

A video that demonstrates our implementation is available at

https://youtu.be/2yu1RHtTesc.

robots for mobile mapping (cf. Figure 1) is a rather novel

field. To the best of our knowledge, Borrmann et al. [7]

first used a 2D laserscanner mounted on a unicycle’s wheel

axis, to generate maps via offline- simultaneous localization

and mapping (SLAM). In a follow-up study from our own

lab [8] we used the same laserscanner inside a spherical robot

with a protective outer plastic shell. The robot is capable

of self-initiated motion via flywheels utilizing an IBCOAM

(impulse by conservation of angular momentum) approach.

The idea of using spherical robots for mapping was explored

in more depth by the European Space Agency (ESA) in

2021 during a concurrent design facility (CDF) study. This

CDF study consideres the general concept of a spherical

robot for environment mapping and exploring lunar caves,

but also terrestrial vents, to be feasible [9], [10]. Advantages

of using spherical robots are a shell that protects internal

sensors and a versatile locomotion mechanism that inherently

results in sensor rotation leading to optimal coverage of the

environment. During SLAM, large and aggressive rotations

are the least favorable motions that a mobile mapping system

could experience. This is because for any falsely estimated

translation, the errors in the resulting environment grow

linearly, wheras for rotation these errors grow exponen-

tially with increasing distance. While working with spherical

robots, non-centered rotation is the main movement of the

https://github.com/publish_after_acceptance
https://youtu.be/2yu1RHtTesc

internal sensors, which proposes a huge challenge to state

of the art SLAM algorithms. In previous work, we proposed

initial offline-SLAM solutions for simplified sub-problems,

i.e., rotation while descending [11], and rolling on flat

surfaces [12]. However, in this work we address only the

localization of the system and do not perform offline-SLAM,

by introducing a pose estimation filter. Our implementation

fuses information from three IMUs and a stereo-tracking

camera onboard in real-time. The contributions of this work

are as follows:

• A robust yet simple 6-DoF multi-trajectory filter, de-

signed for but not limited to visual-inertial sensor fu-

sion.

• An evaluation of our spherical mobile mapping systems

accuracy based not only on ground truth point-clouds,

but also on ground truth trajectories, which is stated as

an open problem in [12].

The paper is structured as follows: In the next section,

we provide an overview of state of the art 6-DoF pose

filters, and outline the most similar approaches. Then, we

introduce the “Delta”-filter in a general fashion and show

an example implementation on a spherical mobile mapping

system. Finally, we introduce our accuracy measures and

experiments and show that the filter is able to deal with slow

and fast motion as well as driving curves.

II. STATE-OF-THE-ART

Many onboard multi-sensor pose estimation approaches

exist in the community. The majority of which being

implemented and developed towards autonomous driving

cars [13], [14], and unmanned aerial vehicles (UAV) [15],

[16]. Soloviev et al. [17] give a broad outline on the sensor

types used for navigation: They define a self-contained

inertial navigation system (INS) as the primary sensor, as it

is available on any platform. Further, the authors consider the

following secondary sensors which are qualified for fusion

with the INS solution: Global Navigation Satellite System

(GNSS) based (e.g. GPS), feature based (e.g. cameras or

LiDAR), beacon based (e.g. using specialized navigation

signals), or based on signals of opportunity (SoOP) (e.g.

radio-frequency signals). In this work we will focus on

visual-inertial navigation systems (VINS) and later propose a

filter for our spherical system. Santoso et al. [18] categorize

popular filters in the robotics community: (1) The Kalman

Filter (KF) [19] has been designed to estimate the most

likely system state under Gaussian noise by minimizing the

covariances of the estimation error. It has since been rein-

vented and extended serval times, leading to variants such as

the Unscented Kalman Filter (UKF) [20], Extended Kalman

Filter (EKF) [21], or Multistate Constrained Kalman Filter

(MSCKF) [22], just to name a few. KF-based approaches

are by far the most popular state estimators among the

robotics community. Example implementations on different

systems include [16], [23]–[27]. (2) The H∞ filter approach

originates from control theory where it is used as an optimal

robust controller. Instead of minimizing the covariance of

the estimation error, the H∞ filter minimizes the worst-

case estimation error, which leads to better performance if

modelling uncertanties are present [28]. (3) Particle filters

(PF), or Monte-Carlo Methods, are known for being applied

in many stochastic estimation problems [29]. By now, it is

well-known that PF outperforms KF in nonlinear systems

underlying non-Gaussian noise [30]. Its biggest drawback

is the computational load required for processing many

particles representing a single state. (4) Rao-Blackwellized

Particle filters (RBPF) combine the advantages of PF and

KF while getting rid of their major issues [31]. Therefore, if

the system state model contains linear parts with Gaussian

noise, these components are seperated and processed using

KFs, while nonlinear parts with non-Gaussian noise are dealt

with PFs. And finally, in recent years we have noticed

the use of (5) graph optimization based methods such as

GOMSF [32] and VIRAL-Fusion [33], where the system

states are represented and optimized in a pose-graph.

The abovementioned examples solely treat filters imple-

mented on ground vehicles or UAV. Yet other examples

exist that implement multi-sensor pose estimation on more

challenging systems. Kim et al. [34] fuse data from four sens-

ing modalities on an unmanned underwater vehicle (UUV)

using an approach using covariance intersection based on

nonlinear optimization. They consider measurements taken

via acoustic ultra-short baseline (USBL), Differential GPS

(DGPS), Doppler Velocity Logs (DVL), and an INS. Fang

et al. [35] use three different sensors for pose estimation on

wearable augmented reality (WAR): a monocular camera, a

depth sensor, and an INS. They use a KF-based approach in

a sliding window fashion. To our knowledge there exists only

one onboard pose estimation filter for spherical robots [36].

This approach [36] comes from our own lab and uses only

data from inertial measurement units (IMU). The basic idea

is to combine the well known IMU orientation filters: the

Madgwick filter [37] and Complementary filter [38]. As

for translation, the filter performs dead-reckoning using the

motion model of a rolling sphere and adding constraints for

slipping and sliding effects. Furthermore, the output of the

filter in [36] is being utilized as input for the filter proposed

in this paper. Lastly, we want to mention another filter that

is much simpler than any of the approaches stated above,

yet surprisingly effective: Gyrodometry [39]. This filter has

been implemented to combine data from wheel encoders

(Odometry) with data from a gyroscope by considering not

the measured state, but instead the change of state. Therefore,

the filter considers the similarity of the measurements to

each other to eliminate outliers and update the current state

accordingly. The proposed Delta-filter in this paper is similar

in these two aspects (change of state and similarity of

measurements), but extends the idea to an arbitrary number

of estimators in 6-DoF and adds a motion model.

III. SENSOR FUSION WITH 6-DOF DELTA-FILTER

In this section we propose a new pose filter design: the

“Delta” filter. Its purpose is to receive 6-DoF trajectory

estimates from multiple sources, which are known to be

X0(tq)

Xk(tq-1) Xk(tq+1)

Measurement X0

Inerpolation Xk

Xk(tq)

t

t

Fig. 2: Timelines showing two sensors publishing pose data

at different rates. The sensor having the slower rate is

defined as the “measurement”, the other trajectories Xk get

interpolated at measurement time tq .

unreliable, and filter them in a probabilistic way. We consider

a trajectory “unreliable” if it accumulates drift or makes

sudden jumps - which are common effects in IMU- and VIO-

based estimators. The filtered trajectory does not use any

information from future measurements and is computed in

real-time. However, similar to a Kalman filter, the Delta-filter

requires a motion model, which is also considered unreliable.

In our implementation we filter only two trajectory estimates

with a given motion model, yet the Delta-filter is theoretically

suitable for an arbitrary number of estimators.

A. Proposed filter design

Suppose we have multiple 6-DoF pose estimators

X = [R, t]
τ
∈ SE(3), where R is a 3×3 rotation matrix

and t is a vector in R
3. The pose of the k-th estimator at

time t is denoted by Xk(t) = [Rk(t), tk(t)]
τ
: R → SE(3).

Note that all poses from all estimators must first be transfered

in a shared global coordinate frame. As the poses arrive at

different time stamps, it is necessary to interpolate between

measurements to capture all estimates at the same point

in time. Thus, the Delta-filter computes an estimate at the

rate of the slowest estimator, denoted as X0 , yielding

a query time tq. We call the resulting pose X0(tq) the

“measurement”. All other estimators Xk are queried at time

tq , by interpolating between two measurements at given

timestamps tq±1, as shown in Figure 2. Note that rotation

matrices and unit quaternions are isomorphic, thus we use

qk(t) and Rk(t) interchangably as they represent the same

elements in SO(3). Then, the interpolation is constructed

using quaternion slerp and linear vector interpolation as

described by Equations (1) - (5):

Xk(tq) = [Rk(tq), tk(tq)]
τ
, (1)

t̂ =
tq − tq+1

tq−1 − tq+1

∈ [0; 1] , (2)

Ω = cos−1 (qk(tq−1) · qk(tq+1)) , (3)

Rk(tq) = Slerp
(

qk(tq−1), qk(tq+1), t̂
)

(4)

=
sin((1− t̂)Ω)

sin(Ω)
· qk(tq−1) +

sin(t̂Ω)

sin(Ω)
· qk(tq+1),

tk(tq) = (1− t̂) · tk(tq−1) + t̂ · tk(tq+1) (5)

The idea of the Delta-filter is to track the changes between

given timestamps t1 and t2 (also known as “deltas”) of the

measurements and interpolations

∆X =
[

R−1(t2) ·R(t1) , t(t2)− t(t1)
]τ

(6)

and estimate a new delta that makes more sense. That is to

say that the Delta-filter estimates the most likely pose change

between given timestamps. Therefore, the filter first estimates

a model delta

∆Xm = [∆Rm,∆tm]
τ

(7)

= f (∆X0 , {∆Xk : k ∈ N})

where f denotes the motion model that estimates the true

motion given the measured and interpolated deltas, ∆X0

and ∆Xk. In a later section we will give an example for the

motion model f when implementing the filter on a spherical

robot.

1) Measurement, interpolation, and model: The measure-

ment, interpolation, and model deltas ∆X0, ∆Xk, and

∆Xm respectivley, are all considered unreliable. They are

used to estimate the filtered pose Xe(tj) by iterativley

applying an estimated filtered delta ∆Xe that happened

between tj−1 and tj :

Xe(tj) = ∆Xe ·Xe(tj−1) (8)

= [∆Re ·Re(tj−1),∆te + te(tj−1)]
τ
.

We seperate the rotation and translation parts by assuming

that the measured and interpolated orientations are suffi-

ciently reliable estimates, i.e., they dont drift or jump during

a short time period. This assumption is valid for most

inertial- and visual-tracking systems. To obtain the estimated

filtered rotation delta ∆Re, we compute

∆Re = Slerp

(

∆q0,∆qk,
1

2

)

(9)

Note that for more than two estimators, the Slerp in Equa-

tion (9) must be replaced with a different quaternion average,

e.g. [40]. Furthermore, we assume that the estimated trans-

lation deltas ∆t0, ∆tk, and ∆tm are not sufficiently reliable

to just average them, as inertial-tracking tends to drift and

visual-tracking tends to jump.

2) Probabilistic weighted geometric mean: Therefore, we

use a probabilistic approach that averages the translation

direction and then scales it.

∆te =
d

|
∑

i ∆ti|
·
∑

i

∆ti (10)

where ∆ti refers to the measurement, interpolation, and

model deltas. An estimate of the true scale of the translated

distance d is given by a probabilistically weighted geometric

mean:

d =

(

∏

ωi

|∆ti|
ωi

)(
∑

i
ωi)

−1

(11)

We calculate weights ωi for each delta that correspond to the

similarity of the deltas to their geometric mean, thus outliers

Fig. 3: (Left:) Spherical mobile mapping system without its

protecting shell. (Right:) CAD model of the spherical system

with sensor frames.

get a damped weighting while similar values get a higher

weighting:

|t̂| =

(

n
∏

i=1

|∆ti|

)n−1

, (12)

s =

√

√

√

√

1

n− 1

n
∑

i=0

(

|∆ti| − |t̂|
)2

, (13)

wi = 1− s−1 ·
(

|∆ti| − |t̂|
)

(14)

B. Implementation on a spherical system

The implementation on our spherical robot uses two

estimators, the IMU operating at 125 Hz defines the mea-

surement X0, and the camera operating at 200 Hz defines the

interpolation Xk. For the motion model f of the spherical

system with known radius r = 0.145 m, we assume that

rotation leads to translation, thus we calculate the estimated

model delta using the arc length of rotation:

f(∆X0,∆Xk) =

[

∆Re, r · ∠ (∆Re) ·
∆t0 +∆tk

|∆t0 +∆tk|

]τ

,

(15)

where ∠ (·) denotes the angle around the axis described by

the rotation matrix. Note that we just defined the model

rotation ∆Rm from Equation (8) to be equal to ∆Re from

Equation (9), as the orientation estimation is considered

sufficiently reliable.

The simplicity of the filter design allows for the introduc-

tion of simple but effective design choices. As an example

we notice that our IMUs tends to drift without the use

of a magnetometer, especially in the yaw-axis, wheras the

tracking camera does not. Due to the background of our

spherical system, we do not want to use the magnetometers

by design. Thus, we must rely more on the camera esti-

mations for the yaw angle, which is why we exchange the

estimation of the rotation delta in Equation (9). Instead of

only using Slerp, which is more universal, we first use Slerp
and then replace the yaw-part of the resulting delta with the

interpolated camera yaw delta. Hence, the change in yaw is

only estimated via the camera.

IV. EXPERIMENTS AND EVALUATION

Qualitative results are presented in Figure 4. The IMU-

based approach (a) suffers from drift in the yaw axis

and overestimates the scale of the trajectory. The visual-

inertial (b) tracking approach tends to jump whenever the

camera looses track, which happens quite often given the

unfavourable type of sensor motion. Our proposed Delta-

filter (c) combines both trajectories in real-time at 125Hz
on a Raspberry Pi 4, gets rid of the drift and jumps, and

estimates the scale of the trajectory better. The following

sections quantify the results using ground truth trajectories

and maps.

A. Error metrics

To quantify the quality of pose estimation, we use two

principal approaches: On the one hand, we measure ground

truth trajectories with an Optitrack system using IR reflec-

tors. On the other hand, we also compare the resulting

point clouds against ground truth measurements in larger

environments, when Optitrack is no longer available. We

denote the ground truth trajectory Xref = [Rref , tref]
τ
, and

the other estimated trajectories Xest = [Rest, test]
τ

. For

each timestamp in the ground truth trajectory, we sample

the closest pose in time from the estimated trajectory for

correspondence. Note that all the trajectories must be aligned

with the ground truth trajectory. Therefore we align the

origins of the trajectories first, as we know that all trajectories

started from the same point. Afterwards we rotate around

the shared origin using a least-squares alignment according

to Umeyama [42]. Note that we only use the estimated

rotation of the Umeyama method, since we already aligned

the origins. From this point, we use Grupps [43] software for

trajectory evaluation. The resulting point clouds are aligned

to ground truth using the well-known Iterative Closest Points

(ICP) algorithm. We use 3DTK [44] for the processing of the

point clouds.

1) Absolute position error: The absolute position error

(APE) represents the error of the translation estimation and

is given by

APEi = |test,i − tref,i| [m] . (16)

2) Relative pose error: The relative pose error (RPE)

represents the error of the orientation estimation and is given

by

RPEi =

∣

∣

∣

∣

∠

(

(

R−1

ref,iRref,i−1

)−1
(

R−1
est,iRest,i−1

)

)∣

∣

∣

∣

[deg] .

(17)

3) Point cloud error: The point cloud error represents

the root of the mean squared point-to-point errors (RMSE).

Suppose, after matching with ICP, there are N corresponding

model- and data-points in the same coordinate frame, de-

noted mi,di ∈ R
3 respectivley. Then, the root mean squared

error is given by

RMSE =
1

N

N
∑

i=0

|mi − di|
2

(18)

B. Experiments

The experiments consist of three types of motion: rolling

a straight line slowly, fast, and driving curves at moderate

(a) Dead-reckoning IMU-only based pose estimation due to Zevering et al. [41]

(b) Visual-inertial tracking using an Intel RealSense T265 stereo-camera

(c) The proposed Delta-filter using (a), (b), and a motion model

(d) Ground truth point cloud available from a RIEGL VZ-400 TLS

Fig. 4: Resulting point clouds when using three different estimators (a), (b), and (c) are orthographically vizualized. A

ground truth point cloud is shown in (d). Images in one column were shot from the same point of view. The colors in the

point clouds denotes height. The left column shows sliced views from the side, wheras the right column shows sliced views

from the birdseye perspective.

speed. In the first two experiments, an OptiTrack system is

available to capture ground truth trajectories, such that we

are able to use Equations (17) and (16). However, in the last

experiment (driving curves), the environment and trajectory

is larger, making the OptiTrack system unavailable. In this

experiment, we use a Riegl VZ-400 terrestrial laser scanner

(TLS) with an angular resolution of 0.04◦ and accuracy of

5mm to provide accurate ground truth point clouds. As our

system is equipped with a laser scanner (cf. Figure 3), we

compare the resulting point cloud to the ground truth map

using Equation (18). Both setups are shown in Figure 5.

1) Fast motion: In this experiment, the sphere traversed

a distance of approx. 4m in about 10 s. Figure 6 shows the

APE (16) of all estimators over time. The T265 suffers from

the highest error due to tracking loss, which forces it to

rely solely on error prone double integration of acceleration

measurements. The IMU-based approach show a consider-

able increase of error due to the accumulated drift. The

error of the proposed Delta-filter are orders of magnitude

smaller compared to the IMUs and T265. Figure 7 shows

the comparison of RPE (17) over time. Note that the Savgol-

filter [45] is applied to the error signals. This is because the

ground truth orientations from the OptiTrack system contain

many outliers due to mirroring of the IR-reflectors on the

spherical shell. The Savgol-filter removes the effect of these

outliers but preserves the signal tendency. The RPE of all

TABLE I: Comparison of the estimated translation of the trajectory produced by the Delta-filter with its two source estimators,

based on several statistical metrics. Each column compares three values where lower is better.

Error metrics to ground truth trajectories for fast and slow motion with respect to translation

Estimator
RMSE [m] Mean [m] Std. [m] Max. [m]

Slow Fast Slow Fast Slow Fast Slow Fast

Dead-reckoning INS 1.713 1.736 1.447 1.291 0.917 1.160 2.882 3.001

Intel T265 Stereo-VIO 4.486 7.441 4.012 5.290 2.008 5.234 5.848 13.549

Proposed Delta-filter 0.114 0.248 0.103 0.193 0.049 0.165 0.189 0.428

TABLE II: Comparison of the estimated rotation of the trajectory produced by the Delta-filter with its two source estimators,

based on several statistical metrics. Each column compares three values where lower is better.

Error metrics to ground truth trajectories for fast and slow motion with respect to rotation

Estimator
RMSE [deg] Mean [deg] Std. [deg] Max. [deg]

Slow Fast Slow Fast Slow Fast Slow Fast

Dead-reckoning INS 1.389 4.318 1.281 3.270 0.537 2.819 2.653 8.883

Intel T265 Stereo-VIO 1.374 4.213 1.264 3.190 0.541 2.753 2.701 8.852

Proposed Delta-filter 1.384 4.305 1.273 3.248 0.543 2.825 2.752 9.199

Fig. 5: (Left:) Laboratory test setup in a flycage equipped

with an Optitrack system. The sphere has IR reflectors

attached to its shell, which are detected by the cameras

(red circles). (Right:) Laboratory test setup in the Computer

Science building. A RIEGL VZ-400 TLS captures a precise

ground truth point cloud for comparison with the spherical

mobile mapping system. In both images, motion of the sphere

is initiated manually by hand.

0.0

0

2.5 5.0 7.5 10.0 12.5 15.0 17.5

2

4

6

8

10

12

14
IMU

T265

Delta Filter

A
P

E
[m

]

t [s]

Absolute position error comparison for fast motion

Fig. 6: The absolute position error of all estimators during

fast motion over time.

estimators do not differ particularly from each other, which

is also evident from the error metrics in Table II. In fact,

the RMSE of the RPE of the Delta-filter is between the

INS- and T265-solution, which makes sense considering the

interpolation in Equation (9).

2) Slow motion: In this experiment, the sphere traversed

a distance of approx. 4m in about 45 s. Figure 8 shows the

comparison of APE over time. The Delta-filter compensates

for the linear accumulation of error of the IMU and the

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0

5

10

15

20

25

30

35
IMU

T265

Delta Filter

Relative pose error comparison for fast motion

t [s]

R
P

E
[d

eg
]

Fig. 7: The relative pose error of all estimators during fast

motion over time. The Savgol-filter is applied with a window

size of 51 and a polynomial degree of 3 to remove the effect

of outliers. In the background the noisy pre-filtered data is

shown with low opacity.

0

0

10 20 30 40 50

1

2

3

4

5

6
IMU

T265

Delta Filter

A
P

E
[m

]

t [s]

Absolute position error comparison for slow motion

Fig. 8: The absolute position error of all estimators during

slow motion over time.

sudden jump of the T265, resulting in a lower overall

translation error. Table I confirms this observation. Figure 9

presents the comparison of RPE over time. As mentioned

above, the Savgol-filter is applied on the error signals. The

orientation errors of all estimators are similar to each other,

yet overall smaller compared to fast motion.

3) Curves: Figure 10 shows the result of the point cloud

analysis. The error to ground truth is vizualized in a point-

to-point distance distribution histogram. Note that the large

0 10 20 30 40 50

0

5

10

15

20

25

IMU

T265

Delta Filter

Relative pose error comparison for slow motion

t [s]

R
P

E
[d

eg
]

Fig. 9: The relative pose error of all estimators during slow

motion over time. The Savgol-filter is applied with a window

size of 51 and a polynomial degree of 3 to remove the effect

of outliers. In the background the noisy pre-filtered errors

are shown with low opacity.

O
cc

u
rr

en
ce

s
×
1
0
4

Distance [cm]

00

00

0 10

10

20

20

30

30

40

40

50

505 15 25 35 45

100 200 300 400 500

5

5

10

10

15

15

20
20

2525

3030
35

35 40

40 45

45

Fig. 10: Resulting point cloud (sliced side-view and birds-eye

view) using the trajectory of the proposed filter, as well as a

histogram showing a distribution of point-to-point distances.

These distances to ground truth are also vizualized using

color. The red dashed line in the histogram indicates the

mean point-to-point error, which is 18.6 cm
.

errors at the pillars are caused by global filter drift. On

the other hand, the errors at the ceiling of the upper floor

are rather caused by missing points in the ground truth.

These points, however, are so few that they are only barely

visible in the histogram. The mean point-to-point error from

Equation (18), which is our accuracy estimate for mapping,

is 18.6 cm.

C. Discussion

The evaluation shows that the Delta-filter significantly

improves the pose estimation accuracy, reduces drift, and

eliminates jumps. However, despite reducing the drift, all

experiments show that the filter still suffers from global

drift regarding translation. Furthermore, in the resulting

point clouds, the walls appear to be thicker than in the

ground truth point cloud, which comes down to two factors:

First, the Livox Mid-100 used in the experiment has higher

measurement noise, especially when the laser goes through

the plastic shell. And second, the extrinsic calibration of

the sensors in the spherical system is rather poor, as all the

sensors assume to sit inside the center of the sphere.

V. CONCLUSIONS

In this paper we addressed the problem of precise, real-

time, and onboard localization in 6-DoF for spherical mobile

mapping systems. Usually on these systems, the large angular

velocities and constant aggressive dynamics when rolling

makes state-of-the-art approaches, e.g. INS- or VIO-based

solutions, more difficult. We therefore proposed the simple

yet effective Delta-filter, which is able to do real-time sensor

fusion of an INS- with a VIO-based solution. The filter needs

a motion model defined by the user, greatly decreases the

INS drift, and gets rid of the jumps caused by the VIO. We

showed that the filter is reliable in slow and fast motion,

as well as driving curves. Furthermore, we estimated the

mapping accuracy of the spherical mobile mapping system

to be 18.6 cm without the use of offline-SLAM, which is

considered to be an improvement to our previous work.

Having such a trajectory estimate brings real-time, highly

precise laser-based SLAM for spherical robots closer to

reality in the near future. However, needlessly to say, a lot of

work remains to be done. In the future, we need to address

a proper extrinsic calibration between all sensors to further

increase the accuracy. We will also incorporate the LiDAR

measurements into the localization by building a real-time

onboard laser-based SLAM algorithm designed for spherical

systems. This will also include the extension of the motion

model using environment data to account for slopes, uneven

terrain, or free falling for a short period of time.

REFERENCES

[1] R. Armour, K. Paskins, A. Bowyer, J. Vincent, and W. Megill,
“Jumping robots: a biomimetic solution to locomotion across rough
terrain,” Bioinspiration & biomimetics, vol. 2, no. 3, p. S65, 2007.

[2] K. W. Wait, P. J. Jackson, and L. S. Smoot, “Self locomotion of a
spherical rolling robot using a novel deformable pneumatic method,”
in 2010 IEEE International Conference on Robotics and Automation,
pp. 3757–3762, IEEE, 2010.

[3] R. Mukherjee, “Spherical mobile robot,” 2001. US Patent 6,289,263.

[4] R. Chase and A. Pandya, “A review of active mechanical driving
principles of spherical robots,” Robotics, vol. 1, no. 1, pp. 3–23, 2012.

[5] D. Liu, H. Sun, Q. Jia, and L. Wang, “Motion control of a spherical
mobile robot by feedback linearization,” in 2008 7th World Congress

on Intelligent Control and Automation, pp. 965–970, 2008.
[6] J. Zevering, K. Braun, M. Hesse, K. Mathewos, D. Borrmann, A. ,

Bredenbeck, and A. Nuechter, “The concept the virtual pose instruc-
tion plane (vpip) for controlling rod-driven spherical robots,” in 2023

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2023. submitted for review.
[7] D. Borrmann, S. Jörissen, and A. Nüchter, “RADLER – A RADial

LasER scanning device,” in Proceedings of the International Sympo-

sium on Experimental Research, (Buenos Aires, Argentina), pp. 655–
664, 01 2020.

[8] J. Zevering, A. Bredenbeck, F. Arzberger, D. Borrmann, and
A. Nüchter, “Luna-a laser-mapping unidirectional navigation actuator,”
in Experimental Robotics: The 17th International Symposium, pp. 85–
94, Springer, 2021.

[9] A. P. Rossi, F. Maurelli, V. Unnithan, H. Dreger, K. Mathewos,
N. Pradhan, D.-A. Corbeanu, R. Pozzobon, M. Massironi, S. Ferrari,
et al., “Daedalus-descent and exploration in deep autonomy of lava
underground structures,” 2021.

[10] J. Zevering, D. Borrmann, A. Bredenbeck, and A. Nüchter, “The
concept of rod-driven locomotion for spherical lunar exploration
robots,” in 2022 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 5656–5663, 2022.
[11] F. Arzberger, A. Bredenbeck, J. Zevering, D. Borrmann, and

A. Nüchter, “Towards spherical robots for mobile mapping in human
made environments,” ISPRS Open Journal of Photogrammetry and

Remote Sensing, vol. 1, p. 100004, 2021.
[12] F. Arzberger, J. Zevering, A. Bredenbeck, D. Borrmann, and

A. Nüchter, “Mobile 3d scanning and mapping for freely rotating and
vertically descended lidar,” in 2022 IEEE International Symposium on

Safety, Security, and Rescue Robotics (SSRR), pp. 122–129, 2022.
[13] Xue, Jian-ru and Wang, Di and Du, Shao-yi and Cui, Di-xiao and

Huang, Yong and Zheng, Nan-ning, “A vision-centered multi-sensor
fusing approach to self-localization and obstacle perception for robotic
cars,” Frontiers of Information Technology & Electronic Engineering,
vol. 18, no. 1, pp. 122–138, 2017.

[14] C. Merfels and C. Stachniss, “Sensor fusion for self-localisation
of automated vehicles,” PFG–Journal of Photogrammetry, Remote

Sensing and Geoinformation Science, vol. 85, pp. 113–126, 2017.
[15] G. Abdi, F. Samadzadegan, and F. Kurz, “Pose estimation of unmanned

aerial vehicles based on a vision-aided multi-sensor fusion,” in XXII

ISPRS Congress, Technical Commission I, vol. 41, pp. 193–199, 2016.
[16] Du, Hao and Wang, Wei and Xu, Chaowen and Xiao, Ran and Sun,

Changyin, “Real-time onboard 3d state estimation of an unmanned
aerial vehicle in multi-environments using multi-sensor data fusion,”
Sensors, vol. 20, no. 3, 2020.

[17] A. Soloviev and M. M. Miller, Navigation in Difficult Environments:

Multi-Sensor Fusion Techniques, pp. 199–229. New York, NY:
Springer New York, 2012.

[18] F. Santoso, M. A. Garratt, and S. G. Anavatti, “Visual–inertial naviga-
tion systems for aerial robotics: Sensor fusion and technology,” IEEE

Transactions on Automation Science and Engineering, vol. 14, no. 1,
pp. 260–275, 2017.

[19] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME–Journal of Basic Engineering,
vol. 82, no. Series D, pp. 35–45, 1960.

[20] E. Wan and R. Van Der Merwe, “The unscented kalman filter for non-
linear estimation,” in Proceedings of the IEEE 2000 Adaptive Systems

for Signal Processing, Communications, and Control Symposium (Cat.

No.00EX373), pp. 153–158, 2000.
[21] F. Daum, “Nonlinear filters: beyond the kalman filter,” IEEE Aerospace

and Electronic Systems Magazine, vol. 20, no. 8, pp. 57–69, 2005.
[22] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman

filter for vision-aided inertial navigation,” in Proceedings 2007 IEEE

International Conference on Robotics and Automation, pp. 3565–3572,
2007.

[23] A. Sakai, Y. Tamura, and Y. Kuroda, “An efficient solution to 6dof
localization using unscented kalman filter for planetary rovers,” in
2009 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pp. 4154–4159, 2009.
[24] G. Ligorio and A. M. Sabatini, “Extended kalman filter-based meth-

ods for pose estimation using visual, inertial and magnetic sensors:

Comparative analysis and performance evaluation,” Sensors, vol. 13,
no. 2, pp. 1919–1941, 2013.

[25] J. Kelly and G. S. Sukhatme, “Visual-inertial sensor fusion: Localiza-
tion, mapping and sensor-to-sensor self-calibration,” The International

Journal of Robotics Research, vol. 30, no. 1, pp. 56–79, 2011.

[26] G. Huang, K. Eckenhoff, and J. Leonard, Optimal-State-Constraint

EKF for Visual-Inertial Navigation, pp. 125–139. Cham: Springer
International Publishing, 2018.

[27] Liao, Jianchi and Li, Xingxing and Wang, Xuanbin and Li, Shengyu
and Wang, Huidan, “Enhancing navigation performance through
visual-inertial odometry in gnss-degraded environment,” Gps Solu-

tions, vol. 25, pp. 1–18, 2021.

[28] N. Abdelkrim, N. Aouf, A. Tsourdos, and B. White, “Robust nonlinear
filtering for ins/gps uav localization,” in 2008 16th Mediterranean

Conference on Control and Automation, pp. 695–702, 2008.

[29] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
2002.

[30] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson,
R. Karlsson, and P.-J. Nordlund, “Particle filters for positioning,
navigation, and tracking,” IEEE Transactions on Signal Processing,
vol. 50, no. 2, pp. 425–437, 2002.

[31] A. J. Haug, Bayesian estimation and tracking: a practical guide. John
Wiley & Sons, 2012.

[32] R. Mascaro, L. Teixeira, T. Hinzmann, R. Siegwart, and M. Chli,
“Gomsf: Graph-optimization based multi-sensor fusion for robust uav
pose estimation,” in 2018 IEEE International Conference on Robotics

and Automation (ICRA), pp. 1421–1428, 2018.

[33] Nguyen, Thien-Minh and Cao, Muqing and Yuan, Shenghai and Lyu,
Yang and Nguyen, Thien Hoang and Xie, Lihua, “Viral-fusion: A
visual-inertial-ranging-lidar sensor fusion approach,” IEEE Transac-

tions on Robotics, vol. 38, no. 2, pp. 958–977, 2022.

[34] Kim, Kihun and Choi, Hyun-Taek and Lee, Chong-Moo, “Underwater
precise navigation using multiple sensor fusion,” in 2013 IEEE Inter-

national Underwater Technology Symposium (UT), pp. 1–4, 2013.

[35] Wei Fang and Lianyu Zheng and Xiangyong Wu, “Multi-sensor
based real-time 6-dof pose tracking for wearable augmented reality,”
Computers in Industry, vol. 92-93, pp. 91–103, 2017.

[36] J. Zevering, A. Bredenbeck, F. Arzberger, D. Borrmann, and
A. Nüchter, “Imu-based pose-estimation for spherical robots with lim-
ited resources,” in 2021 IEEE International Conference on Multisensor

Fusion and Integration for Intelligent Systems (MFI), pp. 1–8, IEEE,
2021.

[37] S. Madgwick et al., “An efficient orientation filter for inertial and
inertial/magnetic sensor arrays,” Report x-io and University of Bristol

(UK), vol. 25, pp. 113–118, 2010.

[38] Min, Hyung Gi and Jeung, Eun Tae, “Complementary filter design for
angle estimation using mems accelerometer and gyroscope,” Depart-

ment of Control and Instrumentation, Changwon National University,

Changwon, Korea, pp. 641–773, 2015.

[39] J. Borenstein and L. Feng, “Gyrodometry: a new method for combin-
ing data from gyros and odometry in mobile robots,” in Proceedings

of IEEE International Conference on Robotics and Automation, vol. 1,
pp. 423–428 vol.1, 1996.

[40] F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman, “Averaging
quaternions,” Journal of Guidance, Control, and Dynamics, vol. 30,
no. 4, pp. 1193–1197, 2007.

[41] J. Zevering, A. Bredenbeck, F. Arzberger, D. Borrmann, and
A. Nuechter, “Imu-based pose-estimation for spherical robots with
limited resources,” in 2021 IEEE International Conference on Multi-

sensor Fusion and Integration for Intelligent Systems (MFI), pp. 1–8,
2021.

[42] S. Umeyama, “Least-squares estimation of transformation parameters
between two point patterns,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 13, no. 4, pp. 376–380, 1991.

[43] M. Grupp, “evo: Python package for the evaluation of odometry and
SLAM..” https://github.com/MichaelGrupp/evo, 2017.

[44] A. Nüchter and K. Lingemann, “3DTK—The 3D Toolkit. 2011.”
https://slam6d.sourceforge.io/index.html, 2011.

[45] A. Savitzky and M. J. Golay, “Smoothing and differentiation of data
by simplified least squares procedures.,” Analytical chemistry, vol. 36,
no. 8, pp. 1627–1639, 1964.

https://github.com/MichaelGrupp/evo
https://slam6d.sourceforge.io/index.html

	Introduction
	State-of-the-art
	Sensor fusion with 6-DoF Delta-filter
	Proposed filter design
	Measurement, interpolation, and model
	Probabilistic weighted geometric mean

	Implementation on a spherical system

	Experiments and Evaluation
	Error metrics
	Absolute position error
	Relative pose error
	Point cloud error

	Experiments
	Fast motion
	Slow motion
	Curves

	Discussion

	Conclusions
	References

