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Abstract

This paper surveys state of the art image features and descriptors for the

task of 3D scan registration based on panoramic reflectance images. As mod-

ern terrestrial laser scanners digitize their environment in a spherical way,

the sphere has to be projected to a two-dimensional image. To this end, we

evaluate the equirectangular, the cylindrical, the Mercator, the rectilinear,

the Pannini, the stereographic, and the z-axis projection. We show that

the Mercator and the Pannini projection outperform the other projection

methods.

1 Introduction

Laser scanners are state of the art in modelling architectural structures, historical

sites and even entire cities or landscapes. Digitizing environments without occlu-

sions requires multiple 3D scans, i.e., 3D point clouds. To create a correct and

consistent model, the scans have to be merged into one coordinate system. This

process is called registration. A popular algorithm to automatically merge two

independently acquired 3D point clouds was already presented in 1991. This al-

gorithm is called the iterative closest point algorithm (ICP) [8]. ICP does not rely

on features, instead it correlates points with the closest Euclidean distance. To
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be successful, it needs a good starting estimate. Feature based methods establish

correspondences by comparing descriptions of points of interest, i.e., features.

Fully automatic feature based registration procedures require neither manual

feature selection, manual establishing of correspondences, nor the placement of

artificial landmarks.

Existing automatic methods use either structural 3D features or image fea-

tures. The latter are obtained from images generated from 3D scans. In addition

to measuring distances, current laser scanners are able to determine the amount

of light returning to the scanner. This reflectance information of the scanned

surface is used to create a gray scale image.

2D laser scanners use a rotating mirror to deflect the emitted laser beam

and measure the distance r to an object under a certain angle ϕ. Based on

the orientation of the mirror a polar representation (ϕ, r) of a surface profile

is determined which can be transformed into Cartesian coordinates. 3D laser

scanners either use a second mirror or rotate a 2D laser scanner to generate 3D

point clouds of the scanned environment. The resulting 3D data in spherical

coordinates (θ, ϕ, r), with θ as the angle of the second rotation, can again be

transformed into Cartesian coordinates (x, y, z). Figure 1 shows an illustration

of a scanning process.

This paper studies feature based registration methods. We evaluate various

feature detectors and feature description methods that were previously used for

camera images with respect to their applicability for registering scans. While the

SIFT features have previously been used for scan matching [9], we also employ

other descriptors and detectors and do an experimental evaluation using several

data sets obtained by a terrestrial 3D laser scanner. We focus on panoramic scans,

i.e., full 360◦ scans. Additionally, we put emphasis on the projection methods for

the 3D scans. Up to our knowledge, the issue of projecting the spherical scanner

data to a 2D image and the related effects on scan registration have not been

researched yet.
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Figure 1: A Riegl VZ-400 3D laser scanner with a field of view of 100◦ × 360◦

mounted on the mobile robot Irma3D is used to scan the city center of Bremen.

2 State of the art

2.1 Automatic pairwise scan-to-scan and photo-to-scan registra-

tion

Many state of the art registration methods rely on initial pose (position and

orientation) estimates, acquired by global positioning systems (GPS) or local

positioning using artificial landmarks or markers as reference [48]. Pose informa-

tion is hard to acquire and in many scenarios prone to errors or not available at

all. Thus, registration without initial pose estimates and place recognition are

highly active fields of research. Hansen et al. consider an application of scale-

invariant feature detection using scale-space analysis suitable for use with wide

field of view cameras. They map the image to the sphere and obtain scale-pace

images as the solution to the heat (diffusion) equation on the sphere [23, 24].

Lee et al. presents a matching method in order to find the correspondences of
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features in two omnidirectional images. Dominant corresponding feature pairs

are found using a proximity matrix and a sum of squared differences (SSD) based

similarity matrix, and then the remaining feature matching is accomplished by

dynamic time warping (DTW) [30]. Parida et al. present a unified approach to

detect, classify, and reconstruct junctions in images. Their approach is a com-

bination of the two paradigms: edge detection followed by grouping of edges to

form junctions (via Dynamic Programming) and treating a junction as a tem-

plate matching process. They use a template deformation framework using the

minimum description length (MDL) principle[37]. By extending this approach,

Försnter et al. proposed a novel method for detecting scale invariant keypoints. a

scale space mechanism for junction type features[22]. Common appearance based

place recognition approaches often rely only on camera data and are not suitable

for laser scans [10, 15, 16, 28, 47].

Aside from range values laser scanners record the intensity of the reflected

light. These intensities provide additional information for the registration pro-

cess. Böhm and Becker suggest to use SIFT features for automatic registration

and present an example of a successful registration on a 3D scan with a small field

of view [9]. Wang and Brenner extended this work by using additional geometry

features to reduce the number of matching outliers in panoramic outdoor laser

scans [49]. Kang et al. propose a similar technique for indoor and outdoor envi-

ronments [27]. Weinmann et al. use a method that is based on both reflectance

images and range information. After extraction of characteristic 2D points based

on SIFT features, theses points are projected into 3D space by using interpolated

range information. For a new scan combining the 3D points with 2D observa-

tions on a virtual plane yields 3D-to-2D correspondences from which the coarse

transformation parameters can be estimated via a RANSAC based registration

scheme including a single step outlier removal for checking consistency [51]. They

expend their method in [50] to calculate the order of the scans in unorganized

terrestrial laser scan data by checking the similarity of the respective reflectance

images via the total number of SIFT correspondences between them. Bendels et

al. exploit intensity images often recorded with the range data and propose a fully

automatic registration technique using 2D-image features. The fine registration
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of two range images is performed by first aligning the feature points themselves,

followed by a so-called constrained-domain alignment step. In the latter, rather

than feature points, they consider feature surface elements. Instead of using a

single 3D-pooint as feature, they use the set of all points corresponding to the

image area determined by the position and scale of the feature [7].

Other approaches rely only on the 3D structure. Brenner et al. use 3D planar

patches and the normal distribution transform (NDT) on several 2D scan slices

for a coarse registration [12]. Similarly, Pathak et al. evaluate the use of planar

patches and found that it is mostly usable [38]. A solution using the NDT in

3D is given in [33]. While this approach computes global features of the scan,

several researchers use features that describe small regions of the scan for place

recognition and registration [26, 46, 3]. Flint et al. use a key point detector called

THRIFT, to detect repeated 3D structures in range data of building facades [20].

In addition to coarse registration, many authors use the well-known iterative

closest point algorithm (ICP) for fine registration [8, 53, 14]. ICP requires no

computation of features. Instead, it matches raw point clouds by selecting point

correspondences on the basis of smallest distances and by minimizing the resulting

Euclidean error. This iterative algorithm converges to a local minimum. Good

starting estimates improve the matching results drastically, i.e., they ensure that

ICP converges to a correct minimum.

Another field of research is the co-registration of point clouds and camera

data. Stamos and Allen present a semi-automatic method for image to model

registration of urban scenes, where 3D lines are extracted from the point clouds

of buildings and matched against edges extracted from the images [45]. Aguilera

et al. use the Förstner operator [21] to exploit its high accuracy and reliability in

the localization of the interest points, and its robustness to noise [2]. Meierhold

et al. use SIFT features for the task [34]. Böhm et al. also present a successful

point cloud to camera matching algorithm [9]. Wu et al. use a novel viewpoint

independent patches (VIP) on image sequence of urban scenes. They use struc-

ture from motion to compute the depth map and camera positions. VIP’s are

features that can be extracted from textured 3D models which combine images

with corresponding depth maps. a single VIP correspondence uniquely defines
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the 3D similarity transformation between two scenes [52]. Köser and Koch ex-

tend the 2D feature concept into third dimension by producing a descriptor for

a constructed 3D surface region. They combine the concepts of stable texture

interest points and 3D geometry. Their feature represents texture and surface

information in a perspective invariant fashion by computing a normal view onto

the surface. Their approach can be exploited for structure from motion, for stereo

cameras or alignment of large scale reconstruction [29].

2.2 Image features and feature descriptors

In previous work, many algorithms for extracting image features, so-called key

points, have been proposed. Descriptors are used to encode the features and in

the automatic matching phase, these descriptors are compared. Next, we describe

the features and descriptors used in this study. There are two types of features

in this study. First group that contains SIFT and SURF is more robust and

more invariance to noise, rotation and camera position. The second group has

less resource consumption and has optimized for real-time performance which,

contains FAST, ORB and CenSurE.

2.2.1 Scale Invariant Feature Transform (SIFT)

The Scale Invariant Feature Transform is a popular algorithm in computer vision

to describe and determine distinctive invariant local features from images that

can be used to perform reliable matching between different views of an object or

scene. It is important that extracted features are invariant to scale, rotation and

provide robust matching across a substantial range of affine distortions, change

in 3D viewpoint, addition of noise and change in illumination. SIFT features

fulfil all these requirements. A high number of features are found using an ef-

ficient algorithm. As SIFT features are distinctive, a single feature is likely to

be correctly matched to a large database of features, providing a basis, e.g., for

object recognition. The major steps of the SIFT feature extraction process are

scale-space extrema detection, key point localization, orientation assignment, and

key point description.
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The first step of feature detection is to identify interest points repeatedly un-

der differing views and scales. Initially an image pyramid is built by applying

Gaussian filters of different sizes to the image. This allows for a search for the

features over all scales and image locations. Subsequently, differences between

consecutive levels of Gaussian convolved images are computed for efficient detec-

tion of stable feature location in scale space. This step is referred to as Difference

of Gaussians. Afterwards local maxima of the Difference of Gaussians are com-

puted by comparing each sample point to its eight neighbours in the current

image and nine neighbours in the scale above and below. All local maxima that

do not correspond to edges in the image and that have high contrast are selected

as features.

The process continues by determining the orientation of features based on

local image properties. Invariance to image rotation is achieved by representing

the feature descriptor relative to the orientation of the feature. This is fulfilled

by calculating magnitudes m (x, y) and orientations θ (x, y) of the local neigh-

bourhood around a feature in the image L of the scale where the feature was

detected.

m (x, y) =

√
(L (x+ 1, y)− L (x− 1, y))2 + (L (x, y + 1)− L (x, y + 1))2 (1a)

θ (x, y) = tan−1

(
L (x, y + 1)− L (x, y − 1)

L (x+ 1, y)− L (x− 1, y)

)
(1b)

Afterwards an orientation histogram is created. The magnitude of each neigh-

bourhood point, weighted by a Gaussian-weighted circular window is added to

the bin as determined by the angle θ (x, y). The largest peak is selected as the ori-

entation of the feature. The special case of multiple substantial peaks is treated

as separate features with same position and different orientation.

The next step computes the descriptor by considering the surrounding area

of the feature. In a window of size 16 × 16 pixels, oriented according to the

feature orientation, the orientation and magnitude for each pixel are computed.

The window is grouped into a 4 × 4 array. In each of the 4 pixel wide cells an

orientation histograms with 8 bins is computed in the same manner as in the

previous step. A feature descriptor of 4× 4× 8 = 128 dimensions is constructed

by concatenating the orientation histograms.
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The SIFT feature matching process utilizes a modified version of the k-d tree

search known as Best Bin First [6] due to inefficiency of the standard k-d tree for

high dimensional spaces. The ratio of the Euclidean distance between the feature

and the nearest neighbour to the feature and the second nearest neighbour is

proposed to determine a positive match in the matching process. This method is

utilized in favour of the simpler method of thresholding the distance, considering

that the determination of certain thresholds is a demanding task. [31, 32]

2.2.2 Speed-Up Robust Features (SURF)

The SURF algorithm is a relatively new scale- and rotation- invariant detec-

tor and descriptor[5, 4]. The SURF features encompass a satisfactory repeata-

bility, distinctiveness, and robustness, yet they can be computed and matched

fast. SURF relies on integral images for image convolution. It is based on exist-

ing methods which use a Hessian matrix-based measure for the detector and a

distribution-based descriptor. The search for distinctive image points is divided

into two steps: First, interest points are selected in distinguishable and repeat-

edly detectable locations in the image. Next, the descriptor of the detected point

describes the intensity of its neighbourhood. The descriptor of the interest point

is distinctive and robust to noise.

The SURF interest point detection is based on Hessian detectors. SURF em-

ploys image filters that are simple approximations of the second order derivative

of the Gaussian. The filters are so simple that the convolution can be computed

extremely fast by the help of integral images. The filters vary in size, starting

with 9× 9 pixels at the finest resolution. Using differently sized filters results in

a similar situation to the image pyramid in SIFT. Local maxima are detected in

the image pyramid by non-maximum suppression in a 3× 3× 3 neighbourhood.

Maxima below a threshold are eliminated. The remaining points are the detected

features. In this process scale invariance is achieved by up-scaling the filter rather

than reducing the image size.

The SURF descriptor represents the distribution of the intensity within the

neighbourhood of the interest point. The descriptor is a vector of dimension
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64 and is based on the distribution of the first order Haar wavelet responses

in the x and y direction. Again integral images are utilized for speed. The

SURF descriptor generation contains two steps: First, determine a reproducible

orientation based on information from a circular region around the interest point

to make the SURF descriptors invariant to rotation. Second, construct a square

region aligned to the assigned orientation and extract the descriptor.

The dominating orientation is estimated with a sliding orientation window.

The Haar wavelet responses of the points surrounding the feature are 2D orien-

tation vectors. For each orientation window the Haar wavelet responses falling

inside the window are summed up. The window with the largest orientation

vector is selected as the orientation of the interest point. Afterwards a square

region around the interest point is constructed and oriented along the determined

orientation. This region is divided into 4 × 4 square sub-regions. For each sub-

region the Haar wavelet responses at 5× 5 regularly arranged sample points are

computed. The wavelet responses are summed up in each sub-region. In or-

der to include the information about the polarity of the intensity changes, the

sum of absolute values of the response are calculated. Therefore, each sub-region

has a four-dimensional descriptor vector for its intensity structure. Concatenat-

ing these vectors for all 4 × 4 sub-regions results in a 64 dimensional descriptor

vector.

2.2.3 Features from Accelerated Segment Test (FAST)

The majority of feature detection algorithms compute corner response functions

across the image. An edge in an image is the boundary between two regions

of an image which defines a change in intensity. However, the direction of a

boundary changes rapidly at corners. The FAST feature detector determines its

features by examining a small circle with a boundary of sixteen pixels around

corner candidates [39, 40]. A candidate p is considered a feature if the intensity

of a set of n contiguous pixels in the circle are all brighter or darker then the

intensity of the candidate pixel by some threshold. n was chosen to be twelve

by [39]. The testing process is optimized by examining pixels at the four compass
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directions first to reject candidate pixels more rapidly. A pixel is a feature if

three of the corner points are darker or brighter than p by the threshold. The full

segment test is applied to the remaining candidates from the optimization process

by examining all sixteen pixels in the circle. This is a sufficiently fast detector

and shows high performance. However, the optimization does not generalize for

n < 12 and the knowledge from the first 4 steps is discarded and also multiple

features are detected adjacent to one another. Rosten and Drummond present

a machine learning algorithm to address the first two weaknesses of the original

FAST feature detector and a non-maximal suppression has been utilized for the

latter weakness.

2.2.4 Binary Robust Independent Elementary Features (BRIEF)

BRIEF is an efficient feature descriptor that utilizes binary strings [13]. Bi-

nary strings are highly distinguishable even with relatively few bits. Descriptors

are directly computed from image patches. The individual bits are acquired by

comparing intensities of pairs of pixels. Hamming distances are utilized for the

matching process to evaluate the similarity between descriptors. This is more ef-

ficient in comparison to the more common L2 norm. BRIEF shows that only 256

bits, or even 128 bits, often suffice to obtain superior matching results. Therefore,

BRIEF is very fast in both the process of constructing and matching.

BRIEF is based on the classification of image patches by the pairwise intensity

comparison of a relatively small number of pixel pairs. Each bit τ in the descriptor

corresponds to one pair of pixels X,Y in the smoothed image. The bits are set

as follows:

τ (X,Y ) :=

 1 if I(X) < I(Y )

0 otherwise.
, (2)

where I(X) is the intensity of the pixel X. The descriptor is defined by n pairs

(X,Y ), and the bit string presentation is given by:

fn :=
∑

1≤i≤n

2i−1τ(X,Y ). (3)
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The pairs of pixels to compare are randomly selected. Different types of prob-

ability distributions can be used for the selection [13]. Drawing pixel pairs from

a Gaussian distribution around the center presents the most promising results.

The BRIEF descriptor is a good compromise between speed, storage, efficiency,

and recognition rate. Since the process of generating the feature descriptor is

based on the information from only a few pixels, the descriptor is noise sensitive.

Thus, BRIEF utilizes pre-smoothed patches to reduce the noise sensitivity.

2.2.5 Oriented FAST and Rotated BRIEF (ORB)

ORB presents a combination of an oriented FAST detector with a very fast binary

descriptor based on BRIEF [41]. Given that these two techniques have shown

promising performances they are both utilized for ORB features. FAST features

are affected by the lack of orientation and BRIEF is limited as a consequence

of the absence of rotational invariance. ORB introduces a fast and accurate

orientation for FAST features and the efficient computation of rotated BRIEF.

The FAST detector utilizes an intensity threshold between a pixel and pixels

in a circular boundary around the center. FAST has a large response along the

edges. However, it lacks the measurement for cornerness of detected corners.

Thus, FAST features are filtered by using the Harris corner measure. First a low

threshold is utilized in order to generate a high number of features. Afterwards,

the N features with the highest Harris measure are selected. FAST features are

scale dependent. ORB employs a scale pyramid of images to obtain scale invari-

ance. The orientation measurement for FAST features is generated by calculating

the angle of the offset between the center of the patch and the intensity centroid.

This computation is simplified to:

θ = atan2(
∑
x,y

yI(x, y),
∑
x,y

xI(x, y)) (4)

This generates orientation aware FAST features. ORB also introduces the rBRIEF,

which is a rotation aware BRIEF descriptor. Rotation invariance is achieved by

rotating the patches in accordance to the determined orientation. To improve

the results of the descriptor the binary tests on pixel pairs are not randomly gen-
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erated. Instead, a greedy search algorithm was employed on the PASCAL 2006

data set [18] to determine a good set of binary tests.

2.2.6 Center Surround Extremas (CenSurE)

The CenSurE feature detector is a scale invariant center surround detector [1].

This detector computes features at all scales using pixels in the original image

to maintain accuracy. A Harris-Laplace and Hessian-Laplace detector compute

the Hessian or Harris measure at all locations and scales. For every detected

candidate the Laplacian is computed at all scales. This strategy is adapted by

using extrema of a center surround response as an approximation. The CenSurE

detector computes a simplified center surround filter at all locations and scales.

Afterwards, the local extrema in a neighbourhood are found. Finally, these ex-

trema are filtered by computing the Harris measure and eliminating those with

weak corner response.

The CenSurE uses bi-level center surround filters, which is a simple approxi-

mation of the Laplacian with the Difference of Gaussians. It multiples the image

value by either 1 or −1. A filter that is both faithful to the Laplacian and is

fast to compute with integral images needs to be designed. A circular filter is

the most faithful to the Laplacian, however, hard to compute. Agrawal et al.

proposed the use of an octagon filter for good performance and a box filter for

good computation time [1]. We use the STAR detector which is an OpenCV

modified version of the CenSurE detector in our experiments [11]. [1] proposed

a non maximal suppression in a 3× 3× 3 neighbourhood in the image pyramid.

The magnitude of the responses is taken as an indication of the strength of the

feature for being stable. The greater the strength, the more likely it is to be

repeated. Weak responses are likely to be unstable. Furthermore, weak features

are discarded using a threshold tr for the response. To filter out the features that

lie along an edge or line, the second moment matrix of the response function at

the particular scale is used:

12



H =

 ∑
L2
x

∑
LxLy∑

LxLy
∑
L2
y

 (5)

Lx and Ly are the derivatives of the response function L along x and y within

a window that is linearly dependent on the scale of the particular feature point.

This is the scale adapted Harris measure and is different from the Hessian ma-

trix used by SIFT [32] to filter out line responses. Once the Harris measure is

computed, its trace and determinant is used to compute the ratio of principal

curvatures.

3 Panorama generation

We compare various feature detectors and description methods on panoramic

scans, i.e., full 360◦ scans for 3D scan registration. Since we utilize 2D feature

detectors and description methods, panoramic image generation is a necessity.

To this end, data sets with reflectance information obtained with a terrestrial 3D

laser scanner have been used for the generation of panoramic intensity images.

In this paper we emphasize on projecting the spherical scanner data to a 2D

panoramic image and the related effects on scan registration. Therefore we have

implemented seven different projections.

The scanned environment can be considered as projected to a sphere with the

scanner positioned in the center of the sphere. The scanner used in this study

is capable of scanning its surrounding with a vertical field of view from −40◦ to

60◦ with the horizon as latitude = 0◦. Therefore we have data from a vertical

field of view of 100◦ and a horizontal field of view of 360◦. Figure 2 illustrates

the portion of the artificial sphere as the scanned environment.

Panorama generation is the process of mapping the points in the spherical

coordinates θ, ϕ, r to the image coordinates x and y. Next, we describe the

panoramic projections used in this study.
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Figure 2: A scanned environment as an artificial sphere with respect to the field

of view of the scanner with the scanner positioned at the center of the sphere.

3.1 Equirectangular

This is the simplest projection which is used in many applications to map a por-

tion of a surface of a sphere to a flat image. With this projection the longitude

and latitude are mapped to horizontal and vertical coordinates of a grid with no

transformation or scaling applied. In an equirectangular projected image all ver-

tical straight lines remain vertical and straight, however horizontal straight lines

will become curves except for the horizon. This projection supports 360◦ in the

horizontal field of view and 180◦ in the vertical field of view. Coordinates relate

linearly to θ and ϕ. Poles are stretched to the entire width of the image at the

top and bottom edges. The equirectangular projection is a cylindrical equidis-

tance projection which is also called rectangular projection. The transformation

equations of this projection is:

x = θ (6a)

y = ϕ (6b)

where the longitude θ and the latitude ϕ are the spherical coordinates.
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(a) Latitude and longitude map with equirectangular projection

(b) Reflectance map with equirectangular projection

Figure 3: Equirectangular projection

3.2 Cylindrical

This projection is similar to the equirectangular projection and can be envisioned

by wrapping a flat piece of paper around the circumference of a sphere, such that

it is tangent to the sphere at its equator to form a cylinder around it. Emitting

light from the center of the sphere will project the sphere onto the cylinder as

shown in Figure 4. In this projection straight vertical lines remain straight, and

horizontal lines become curves. It stretches objects vertically, especially the closer

they are to the north and south poles of the sphere. In fact this is the reason why

the vertical field of view for this projection is restricted to 120◦ or less. However

it has the same recommended horizontal field of view as the equirectangular

projection which is a field of view between 120◦ to 360◦.

The vertical and horizontal field of view of our scanner is equal to the recom-

mended range of this projection. The projection process is as simple as for the

equirectangular projection. With a vertical field of view from −40◦ to 60◦ the no-
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Figure 4: Cylindrical projection diagram.

ticeable distortions of the projection is mostly on top of the mapped image. For

outdoor scenarios this is mostly sky. Therefore the distortions have little effect

on the feature detection process. To map the panorama data onto the image, the

projection proceeds as:

x = θ (7a)

y = tanϕ (7b)

which is mapping the longitude θ to the horizontal coordinates and tanϕ to the

vertical coordinates where ϕ denotes the latitude. Therefore by utilizing the

aforementioned equations and the horizontal and vertical range of the 2D image,

the complete scanned 3D data will be mapped onto the image.

3.3 Mercator

The Mercator projection is a conformal projection which is related to the equirect-

angular projection and the cylindrical projection. It shows less pronounced distor-
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(a) Latitude and longitude map with cylindrical projection

(b) Reflectance map with cylindrical projection

Figure 5: Cylindrical projection

tions compared to the aforementioned projections. It has less vertical stretching

and a greater vertical field of view. There is a variation of this projection called

transverse Mercator which is used for very tall vertical panoramas. However for

the purpose of this paper and due to the fact that our scanner has 100◦ vertical

field of view, we focus on the simple Mercator projection and none of its vari-

ations. The Mercator projection is recommended for a horizontal field of view

between 120◦ and 360◦ and a vertical field of view less than 150◦. It is isogonic,

i.e., angles are preserved. The projection process proceeds as:

x = θ (8a)

y = ln

(
tanϕ+

1

cosϕ

)
, (8b)

mapping the longitude θ to horizontal coordinates and calculating the vertical

coordinates of the image.
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(a) Latitude and longitude map with Mercator projection

(b) Reflectance map with Mercator projection

Figure 6: Mercator projection

3.4 Rectilinear

Rectilinear is a type of projection for mapping only a portion of the surface

of a sphere onto a flat image. It is also called “gnomonic” or “tangent-plane”

projection. This projection can be imagined by placing a flat piece of paper

tangent to a sphere at a single point and illuminating the surface from the center

of the sphere. The image projected onto the paper is the rectilinear projection of

the portion of the sphere onto the flat image as shown in Figure 7.

The primary advantage of the rectilinear projection is that it maps straight

lines in 3D space to straight lines in the 2D image. Its disadvantage is the

smaller field of view as compared to the aforementioned projections. Another

disadvantage of this projection is that the image is stretched towards the corners
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and the distortion grow with larger fields of view. The projection proceeds as:

x =
cosϕ sin (θ − θ0)

sinϕ1 sinϕ+ cosϕ1 cosϕ cos (θ − θ0)
(9a)

y =
cosϕ1 sinϕ− sinϕ1 cosϕ cos (θ − θ0)
sinϕ1 sinϕ+ cosϕ1 cosϕ cos (θ − θ0)

. (9b)

It is recommended to use this projection for a horizontal and vertical field of

view less than 120◦. Since the vertical field of view of the scanner is less than the

recommended vertical field of view of the rectilinear projection, there is no need

for a special treatment in the vertical direction. However, the horizontal field of

view requires extra processing. We divide the 360◦ horizontal field of view of the

scan into 3 separate parts and pursue the projection with each subset with 120◦

horizontal field of view. Accordingly the projection of each subset is calculated

and mapped to one third of the image.

3.5 Pannini

The Pannini projection, also known as ”Recti-Perspective”, ”Panini” or ”Ve-

dutismo”, is a mathematical rule for constructing perspective images with a very

wide field of view. This projection can be imagined as the rectilinear projection

of a 3D cylindrical image. This image is itself a projection of the sphere onto a

tangent cylinder. The center of the rectilinear projection can be different and is

on the view axis at a distance of d from the cylinder axis (cf. Figure 9). This pa-

rameter d can be any non-negative number and determines the projection. When
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(a) Latitude and longitude map with rectilinear projection

(b) Reflectance map with rectilinear projection

Figure 8: Rectilinear projection

d = 0 the projection is rectilinear and when d→∞ it gives the cylindrical ortho-

graphic projection. Therefore, it generates different projections with different d

parameters. The projection with d = 1 has been defined as the Pannini projec-

tion. This projection produces images with a single central vanishing point. The

images appear to have correct perspective even when using a wide field of view.

The Pannini projection often resembles a normal rectilinear perspective. The

horizontal field of view can be very wide, without the distortions near the edges

which are noticeable when the rectilinear projection is pushed too far. This is

the advantage of the Pannini projection over the rectilinear projection. It keeps

straight vertical lines straight and vertical and keeps the radial lines through the

center of the image straight. However, it transforms horizontal lines into curves.

The recommended field of view for the Pannini projection is less than 150◦ in both

vertical and horizontal directions. Therefore, the projection demands dividing a
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Figure 9: Pannini projection diagram.

360◦ scan into several sub-sets. The projection proceeds as:

x =
(d+ 1) sin (θ − θ0)

d+ sinϕ1 tanϕ+ cosϕ1 cos (θ − θ0)
(10a)

y =
(d+ 1) tanϕ

(
cosϕ1 − sinϕ1

(
1

tanϕ

)
cos (θ − θ0)

)
d+ sinϕ1 tanϕ+ cosϕ1 cos (θ − θ0)

. (10b)

These are enhanced equations of the Pannini projection that were modified

in order to have projection center other than the south pole. This was an as-

sumption for the original Pannini projection equations [44]. Thus θ0 and ϕ1 are

the projection center in each subset of the data.

3.6 Stereographic

This projection is a further alternative method for mapping a portion of the

surface of a sphere onto a flat image. It can be imagined by placing a flat paper

tangent to a sphere and by illuminating it from the opposite pole. Therefore

each point on the sphere casts a shadow on the paper. One pole is the center
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(a) Latitude and longitude map with Pannini projection

(b) Reflectance map with Pannini projection

Figure 10: Pannini projection

of the projection, lines of the latitude appear as circles around the central point.

Mapped points gain more distortions further from the pole up to the equator

which is increased twice in size compared to the sphere. The north hemisphere

is stretched even more through the north pole where it is mapped to infinity.

However, the center of projection and the illuminating point are not bound to

the poles of the sphere. The center of the projection can be any point on the

sphere. The illuminating point can have any distance R from the central point.

Images over 330◦ are not very functional. We take this further and utilize a 120◦

horizontal field of view and a 100◦ vertical field of view. In order to satisfy the

essentials of this projection we divide the 3D data set into three sub sets, and

the projection proceeds as:

x =
2R cosϕ sin (θ − θ0)

1 + sinϕ1 sinϕ+ cosϕ1 cosϕ cos (θ − θ0)
(11a)

y =
2R (cosϕ1 sinϕ− sinϕ1 cosϕ cos (θ − θ0))
1 + sinϕ1 sinϕ+ cosϕ1 cosϕ cos (θ − θ0)

, (11b)
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(a) Latitude and longitude map with stereographic projection

(b) Reflectance map with stereographic projection

Figure 11: Stereographic projection

where θ0 and ϕ1 are the projection center in each subset of data. The R parameter

is any non negative value. R = 1 generates exactly the same equations as the

Pannini projection and high values for R introduce more distortion. We used the

value 2 for the parameter R in our experiments.

3.7 Z-axis

This projection is not a regular panoramic projection. However, since we have

the actual height of the objects in the real world through the sensing process it

is reasonable to use those values for the projection purpose as well. We utilize

an approximation of the minimum and maximum values of the points in z-axis

direction, i.e., in height direction, from the scanned data and the longitude for
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(a) Latitude and longitude map with z-axis projection

(b) Reflectance map with z-axis projection

Figure 12: z-axis projection

the mapping process which proceeds as:

x = θ (12a)

y = c z. (12b)

This projection maps the longitude θ to the horizontal coordinates and the

height of the points z to the vertical coordinates. c can be any scene dependent

constant. Consequently by utilizing the aforementioned equations the 3D data

will be mapped to the 2D image.

4 Automatic registration

Registration is the last stage of this process where a RANSAC-like [19] approach

is utilized in order to generate the transformation matrix in a pairwise registration

scenario. Registration proceeds by taking as input a set of matched features from
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two panorama maps. A panorama map stores for each pixel a point with x, y, z

and its reflectance. If more than one 3D point falls into one pixel, we save the

reflectance and (x, y, z)-coordinate of the 3D point with the largest range. This

way we favor points on buildings instead of vegetation [17]. The matching process

depends on the type of utilized feature descriptors which must be the same for

both scans. Matching means identifying a feature that is closest to a sampled

feature based on descriptor comparison. Algorithms such as k-nearest neighbour

(KNN), Radius-KNN and brute-force are possible solutions to this problem. The

ratio nearest neighbour search as presented by [32] which is a modified version of

nearest neighbour search has shown the most promising results. For ratio nearest

neighbour search the distances of the feature descriptors to the sampled feature

are used. The ratio of the distance of the first closest descriptor to the distance

of the second closest descriptor is calculated. A threshold on the ratio determines

whether a sample feature has a valid match. These distances are defined as the

Euclidean distance between descriptor vectors for the SIFT and the SURF and

the Hamming distance in case of the ORB and the BRIEF feature descriptors.

Afterwards a RANSAC-like approach is used to filter the outliers of the matching

process.

Registration proceeds by testing a subset of combinations of 3 point pair

matches and examining the two triangles that are generated by these point pairs.

The algorithm calculates the centroid of each triangle and translates the triangles

so that their centroids are at the center of the reference frame. The orientation

that minimizes the error between the points is computed by the closed form

solution proposed by [25]. The rotation is presented in the form of a quater-

nion which is the eigenvector corresponding to the maximum eigenvalue of the

following matrix:

N =


Sxx + Syy + Szz Syz − Szy Szx − Sxz Sxy − Syx

Syz − Szy Sxx − Syy − Szz Sxy + Syx Szx + Sxz

Szx − Sxz Sxy + Syx −Sxx + Syy − Szz Syz + Szy

Sxy − Syx Szx + Sxz Syz + Szy −Sxx − Syy + Szz

 ,

(13)
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with

Smn =
3∑

i=1

paim.p
b
in, (14)

where a and b correspond to the first and second triangles respectively, m and n

to one of three coordinates x, y or z. Afterwards the rotation matrix R is given

by:

R =


a2 + b2 − c2 − d2 2bc− 2ad 2bd+ 2ac

2bc+ 2ad a2 − b2 + c2 − d2 2cd− 2ab

2bd− 2ac 2cd+ 2ab a2 − b2 − c2 + d2

 , (15)

where a, b, c and d are the parameters of the eigenvector υ = (a, b, c, d)T which

corresponds to the maximum eigenvalue of N . Consequently the transformation

matrix for homogeneous coordinates is given by:

M =


R t

0 0 0 1

 , (16)

where t is the translation vector and is computed by:

t = R(−cb) + ca. (17)

Here, ca and cb are the centroids of the triangles a and b. The quality of the trans-

formation matrix M obtained for a pair of triangles is estimated by computing

the distances between pairs of matching points. The pairs of points with an error

lower than a threshold λd are considered as inliers. In all our experiments we

set λd = 0.5 m. For transformations with more then 10 inliers we compute the

following quality metric, that depends on both the number of inliers n as well as

the sum of distances between matching points E :

Q = E − In2. (18)

Here, I is a parameter that scales the dimensionless number of inliers. The

transformation matrix with the highest quality is selected as the output of our

algorithm.
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5 Experiments and results

All experiments and tests were carried out on a machine with a Quad-Core pro-

cessor AMD AthlonTMII X4 640 CPU and 8GB RAM. For the implementation of

feature detectors and descriptors and feature matching we utilized the OpenCV

library. The remainder of the process was implemented as part of 3DTK – The

3D Toolkit which provides methods to process 3D point clouds and algorithms

for high-accurate 6D SLAM [36, 35]. All scans were acquired with a terrestrial

laser scanner, the Riegl VZ-400. The scanner was mounted on the mobile robot

Irma3D for the acquisition of the outdoor scans in a stop-scan-go fashion. We

acquired 3 data sets, 1 small indoor data set and 2 large outdoor data sets. The

panorama projected reflectance images of each scan are generated with the pro-

posed panorama projections in section 3. Due to the restricted horizontal field

of view of the Pannini, rectilinear and stereographic projections, scans had to

be divided into three subsets for these projections. Afterwards, features are de-

tected in each image and the descriptors of features of scan pairs are compared

for pairwise matching. We utilized the ratio based matching with a RANSAC-

like filtering approach for our experiments with a threshold of 0.8 as a measure

for eliminating false matches. Scan registration proceeds on sequential pairwise

scans. The success of registration is determined via visual comparison of results

with the ground truth. Ground truth was acquired by marker-based manual

pre-registration and fine-registration using slam6D from the 3DTK.

We used SIFT, SURF, ORB, STAR, and FAST as feature detectors and SIFT,

SURF, and ORB as descriptors which results in 15 possible combinations of these

detectors and descriptors. Combining these 15 possibilities with the 7 projections

mentioned in section 3 and with two resolutions produces 210 configurations for

each scan pair of our data sets.

5.1 Interfaith house (indoor environment)

We acquired two scans from the inside of the Interfaith house located on the cam-

pus of the Jacobs University Bremen, Germany. We tested all of the panoramic

projections to generate panoramic reflectance images of the 3D point clouds re-
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Figure 13: Reflectance image of matched SURF features with the Mercator pro-

jection of the Interfaith House of the Jacobs University Campus.

ceived from the scanner. Two different resolutions were used for the panorama

image projections. The lower resolution is 3600× 1000 and the higher resolution

is 5040× 1400. Due to the fact that the environment is symmetrical the registra-

tion process is difficult. Correct registrations are only obtained with the Mercator

projection using the SURF feature detector and descriptor for both resolutions

and with the SIFT feature detector and descriptor with low resolution. A correct

registration was also generated with the Pannini projection with the SURF fea-

ture detector and descriptor for both resolutions. This shows that both the type

of projection and the type of feature have significant effect on the registration

process.

5.2 Bremen city (outdoor environment)

This data set contains 13 scans from the city center of Bremen, Germany. Scan

resolution was set to 0.04 degrees which defines the amount of rotation between

each measurement in both vertical and horizontal direction. The scans were

acquired with several meters distance between each pair. Figure 14 presents a

28



Figure 14: City center of Bremen.

view of the scans after registration.

Only 6 out of all possible configurations generate correct registrations at all.

Table 1 displays the percentage of successfully registered subsequent pairs of scans

for those configurations. It shows the results with all possible projections with

the image resolution 5040×1400 of the Bremen City data set. The FAST feature

detector generates a high number of features on each panoramic image. Therefore

the matching process, especially with SIFT and SURF descriptors, is extremely

slow and ineffective. However, not all of the demonstrated combinations in table 1

are practical since some have poor performance. The combinations with SIFT

as detector and descriptor and SURF as detector and descriptor are the most

promising.

As seen in table 1, 92% of success could be achieved with SIFT as detector

and descriptor and Pannini as projection and additionally with SURF as detector
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Table 1: Comparison between the percentage of successful registrations of six

detector and descriptor combinations with presented projections. The image

resolution was 5040 × 1400. Please note, that 92% success indicates that the

entire Bremen City data set is successfully registered except for one pair of scans,

namely the loop closing pair.

Detector+Descriptor
Projections

EQ CY ME RE PA ST ZA

SIFT+SIFT 84% 69% 76% 30% 92% 76% 15%

SIFT+SURF 38% 38% 61% 30% 46% 46% 7%

SURF+SURF 76% 76% 92% 38% 76% 76% 23%

ORB+ORB 15% 15% 7% 0% 7% 0% 0%

STAR+ORB 15% 7% 7% 0% 7% 15% 0%

STAR+SURF 0% 7% 7% 0% 0% 0% 0%

and descriptor and Mercator as projection. This indicates that the entire Bremen

City data set is successfully registered except for one pair of scans, namely the

loop closing pair.

Successful registration depends on the feature detection process and the se-

lection of descriptor type together with promising projections. In addition, it

also relies strongly on the amount of overlap between scan pairs. The features

detected from these overlaps define the inliers in the matching process and a

certain amount of inliers are required for generating a correct registration. The

number of detected features in an overlap and the uniqueness of detected fea-

tures are also crucial to the registration results. Since the environment contains

symmetric objects, in some circumstances the generation of correct registration is

difficult even with a large overlap. Due to the aforementioned facts, scan pairs are

divided into three categories. Scan pairs with a large overlap area and a unique

set of features, scan pairs with a reasonable overlap yet not enough unique fea-

tures and scan pairs with tiny overlap and not enough unique features. The first
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Table 2: Comparison of the matched features with different projections and SIFT

as the feature detector and descriptor with 5040× 1400 resolution.

Information Scan Pair
Projection

EQ CY ME RE PA ST ZA

Matches

1 — 2 1413 1219 1388 1565 1566 1604 1802

5 — 6 1677 1464 1649 2289 1948 1983 1148

11 — 12 1600 1358 1624 1973 1973 2021 1838

Filtered
1 — 2 41 47 53 22 39 33 30

Matches
5 — 6 26 21 24 27 27 24 50

11 — 12 91 117 97 77 101 58 33

Inliers

1 — 2 22 27 6 0 15 11 0

5 — 6 0 0 0 0 7 0 0

11 — 12 57 94 70 49 87 48 0

category is the easiest and is matchable with most of the configurations. The

second category is difficult to match. The third category is the most challenging

which generally generates incorrect results even with promising combinations of

feature detector, descriptor and projection.
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Table 3: Comparison of the matched features with different projections and SURF

as the feature detector and descriptor with 5040× 1400 resolution.

Information Scan Pair
Projection

EQ CY ME RE PA ST ZA

Matches

1 — 2 3730 3197 3430 4577 4276 4686 8218

5 — 6 4426 4490 4332 6764 5160 5097 5026

11 — 12 3856 3125 3600 5108 4924 5277 8666

Filtered
1 — 2 82 78 94 45 90 69 63

Matches
5 — 6 40 43 36 59 44 43 51

11 — 12 162 130 139 135 153 127 68

Inliers

1 — 2 24 39 39 6 13 39 0

5 — 6 0 0 6 0 14 0 0

11 — 12 119 87 98 89 112 85 0

Tables 2 and 3 show the number of matches, filtered matches and inliers for

SIFT and SURF as the detector and descriptor for three scan pairs of the Bremen

City data set. These pairs are representative examples for each of the three classes

of difficulty for scan pairs. In these tables “matches” are the number of matched

features based on the ratio nearest neighbour search and “filtered matches” are

the number of matches after the RANSAC-like filtering process. The “inliers”

are the number of matches that corresponds to the correct registration. The

number of matches that the SURF detector generates is greater by roughly the

factor of 3 in comparison to the SIFT detector. The quantity of the filtered

matches and inliers are therefore higher for SIFT. Figures 15, 16 and 17 present

reflectance images of matched features with SURF as the detector and descriptor

and 5040× 1400 resolution for the demonstrated scan pairs.

As evidenced by both Figure 16 and the corresponding rows of tables 2 and 3

the overlap area in the scan pair 5 - 6 is small, containing a slightly tilted wall

and lots of windows. Therefore, registration of this type of scan pairs due to the
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Figure 15: Reflectance image of pair 1 - 2 using the Mercator projection at a

resolution of 5040 × 1400. Filtered SURF feature matches are indicated by the

lines.

lack of sufficient unique features is a demanding process. In view of the presented

facts in tables 2 and 3 the registration of scan pair 5 - 6 is feasible only with the

Mercator or Pannini projection.

The most time consuming part of the entire procedure is the registration step.

There is a correlation between the amount of filtered matches and the consumed

time. Due to the fact that registration time is higher than for the rest of the

process by one order of magnitude, the required time depends most strongly on

the number of filtered matches. However, the number of filtered matches is in

turn dependent on the amount of detected features; both of them rely on the

projection and the feature detector methods.

Furthermore, the resolution of the generated panoramic reflectance images

from the data set is essential for the feature detection process. It is clear that by

increasing the resolution the amount of detected features increases. A larger num-
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Figure 16: Reflectance image of pair 5 - 6 using the Mercator projection at a

resolution of 5040 × 1400. Filtered SURF feature matches are indicated by the

lines.

ber of features yields a significantly higher number of filtered matches, and thus

results in a more time consuming registration. Similarly lower resolution yields

lower number of features and therefore faster registration. Since the amount of

filtered matches is crucial to the registration process and a minimum number of

filtered matches is essential for successful registration, two resolutions have been

used in our experiments to determine a balance between success rate and speed

of registration. Table 4 demonstrates the percentage of correct registrations of

the Bremen City data set with SIFT and SURF as both detector and descriptor

for both resolutions. The success rate by using a larger resolution is higher.

5.3 Campus of Jacobs University (outdoor environment)

This data set contains 122 terrestrial 3D scans from the campus of the Jacobs

University Bremen. To acquire this data set the rotation between each mea-

surement was fixed to 0.04 degrees in both horizontal and vertical directions.

These scans have been acquired with several meters distance between each scan.
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Figure 17: Reflectance image of pair 11 - 12 using the Mercator projection at a

resolution of 5040 × 1400. Filtered SURF feature matches are indicated by the

lines.

Figure 18 depicts an orthoimage on a part of the scans after registration, while

Figure 19 presents a typical scan in the Pannini projection.

With the results of the Bremen City data set in mind, two combinations

of feature detectors and descriptors have been analyzed for the Campus data

set: the SIFT feature detector and descriptor and the SURF feature detector

and descriptor in combination with all of the presented projections in section 3

and the two proposed resolutions. Table 5 presents the percentage of accurate

registrations of the Campus data set for these configurations.

Similar to the results from the Bremen City data set we obtain a higher success

rate for the higher resolution. The best projections are Pannini and Mercator

which result in a higher success rate with SIFT and SURF respectively. Overall,

we obtained a lower success rate on the Campus data set. This is most likely due

to the fact that the buildings on the campus are quite symmetrical. Therefore the
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Table 4: Comparison of the success rate of the most promising combinations of

detector and descriptor for all projections and two different resolutions on the

Bremen City data set.

Detector+Descriptor Projection 3600x1000 5040x1400

Equirectangular 53% 84%

Cylindrical 69% 69%

Mercator 76% 76%

SIFT+SIFT Rectilinear 23% 30%

Pannini 69% 92%

Stereographic 76% 76%

Z-axis 15% 15%

Equirectangular 53% 76%

Cylindrical 30% 76%

Mercator 46% 92%

SURF+SURF Rectilinear 23% 38%

Pannini 61% 76%

Stereographic 61% 76%

Z-axis 15% 23%

registration process is more challenging. In addition, the environment contains

a high amount of vegetation. Trees produce a great quantity of features which

results in a significant amount of wrong matches.

6 Conclusions and outlook

This paper presents a survey and evaluation of modern image features and de-

scriptors with respect to the task of 3D scan registration based on the reflectance

image of the scans. To this end, we employed panoramic, i.e., 360◦ scans. We
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Figure 18: The campus of the Jacobs University.

investigate the performance of different projections. We present the effects of

utilizing different projections with both real-time features and more robust and

invariance features. The SURF detector in combination with the SURF descrip-

tor and the SIFT detector in combination with the SIFT descriptor are the best

choices as expected for the task of automatic registration, since they are more

robust and rotation invariance than real-time features. Furthermore, this paper

contributes a study of projection methods for creating a panoramic image of a

3D scan. A realistic, real world evaluation shows that the projection of a 3D scan

into a 360◦ panoramic image for automatic feature based registration is crucial.

We showed that the Mercator and the Pannini projection are most suitable: the

Mercator projection is an isogonic projection, i.e., angles are preserved; Pannini

is also designed to have as few distortions as possible.

Needless to say a lot of work remains to be done. As the experiments show,

none of the methods can reliably register all data sets, even though a human
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Figure 19: A typical scan from the Campus data set in the Pannini projection.

operator is able to identify the overlapping parts of the scans and can select cor-

responding features. In future work, we will redesign the matching process by

considering a set of similar features and eliminating wrong matches by using struc-

tural features, i.e., local 3D surface descriptions like Point Feature Histograms

(PFH) [43] or Fast Point Feature Histograms (FPFH) [42].

In future work, we will combine the feature-based registration solution pre-

sented here with our feature-less registration methods known as 6D SLAM [36,

35]. This will yield a bundle adjustment solution for 3D laser scans. In addition,

we will concentrate on estimating the graph, relating all scan poses.
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Table 5: Comparison of the success rate of the most promising combinations of

detector and descriptor with all projections and two different resolutions on the

Campus data set.

Detector+Descriptor Projection 3600x1000 5040x1400

Equirectangular 51% 55%

Cylindrical 46% 53%

Mercator 51% 55%

SIFT+SIFT Rectilinear 38% 29%

Pannini 55% 59%

Stereographic 55% 59%

Z-axis 34% 27%

Equirectangular 45% 57%

Cylindrical 38% 39%

Mercator 44% 61%

SURF+SURF Rectilinear 28% 29%

Pannini 41% 55%

Stereographic 37% 52%

Z-axis 34% 32%
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Scans for Vegetation Detection in Urban Environments. In Proceedings of

the XXIII International Symposium on Information, Communication and

Automation Technologies (ICAT ’11), Sarajevo, Bosnia, October 2011.

[18] M. Everingham, A. Zisserman, C. K. I. Williams, and L. Van Gool. The

PASCAL Visual Object Classes Challenge 2006 (VOC2006) Results, 2006.

[19] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a

paradigm for model fitting with applications to image analysis and auto-

mated cartography. Communications of the ACM, 24(6):381–395, June 1981.

[20] A. Flint, A. Dick, and A. J. van den Hengel. Thrift: Local 3d structure

recognition. In Proceedings of the 9th Biennial Conference of the Australian

Pattern Recognition Society on Digital Image Computing Techniques and

Applications (DICTA ’07), pages 182–188, 2007.

[21] W. Förstner and E. Gülch. A Fast Operator for Detection and Precise

Location of Distinct Points, Corners and Centers of Circular Features. In

Proceedings of the ISPRS Intercommission Workshop on Fast Processing of

Photogrammetric Data, pages 281–305, 1987.

[22] Wolfgang Förstner, Timo Dickscheid, and Falko Schindler. Detecting inter-

pretable and accurate scale-invariant keypoints. In 12th IEEE International

Conference on Computer Vision (ICCV’09), pages 2256–2263, Kyoto, Japan,

2009.

[23] Peter Hansen, Peter Corke, Wageeh W. Boles, and Kostas Daniilidis. Scale-

invariant features on the sphere. In ICCV, 2007.

42



[24] Peter Hansen, Peter Croke, Wageeh Boles, and Kostas Daniilidis. Scale

invariant feature matching with wide angle images. In In IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, October 2007.

[25] Berthold K. P. Horn. Closed–form Solution of Absolute Orientation using

Unit Quaternions. Journal of the Optical Society of America A, 4(4):629–

642, April 1987.

[26] D. Huber. Automatic Three-dimensional Modeling from Reality. PhD thesis,

Carnegie Mellon University, 2002.

[27] Zhizhong Kang, Jonathan Li, Liqiang Zhang, Qile Zhao, and Sisi Zlatanova.

Automatic Registration of Terrestrial Laser Scanning Point Clouds using

Panoramic Reflectance Images. Sensors, pages 2621–2646, 2009.

[28] K. Konolige, J. Bowman, J. D. Chen, P. Mihelich, M. Calonder, V. Lepetit,

and P. Fua. View-based maps. In Robotics: Science and Systems (RSS ’09),

pages 941–957, Seattle, USA, 2009.
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