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Abstract— In this paper, we present an algorithm countering
the motion distortion observed in LiDAR point clouds due to
the inherent inertial rotations when recorded with a spheri-
cal mobile mapping system. State-of-the-art motion distortion
correction algorithms focus on more rotationally restricted
systems, such as UAV, rovers, or cars, where often a “dead-
reckoning” approach is utilized to account for the vehicles
linear velocity. Thus, the algorithm presented in this paper
is based on a motion model for spherical systems, taking only
the angular velocities into account. We show, despite explicitly
omitting a model for the linear velocity of the scanner, and
assuming constant angular velocity between two frames, that
our approach outperforms state-of-the-art algorithms which use
a false model for the linear velocities. To verify this, we test our
algorithm on 3D point clouds recorded with a Livox MID-100
mounted on a spherical mobile mapping system, and compare
the accuracy to an algorithm proposed in the Livox-SDK. To
do this, we have ground truth point clouds available from
a terrestrial laser scanner (TLS). Our algorithm consistently
reduces the motion distortion from low (5 Hz) to high (50 Hz)
LiDAR sampling frequencies, such that the point clouds are
well-suited for further processing steps such as odometry or
mapping. The code for our algorithm is open source [1].

I. INTRODUCTION

Exploration of extraterrestrial environments has gained

traction in the last century: The first humans explored space

and the moon in the late 1960s. The only other body in space

humankind has visited up until now. Robotics in space has

become a necessity, as humans are not fit to explore the vast

expanses of our universe, themselves. Today, there are several

missions aimed at exploring the surfaces of our moon [2],

[3], other planets and their moons [4]–[6], and asteroids [7].

Robots need to perceive their environment with sensors and

perform autonomous tasks with the gathered information.

This requires sophisticated techniques to make the data as

reliable as possible. For many applications in space and also

here on Earth, it is mandatory for a robot to locate itself

in the environment without the help of global positioning

systems such as a navigation satellite system (GNSS). Thus,

a robot needs to be able to compute its trajectory on-board

in real-time only by using the data it has available. Building

reliable representations of the environment makes it finally

possible for the robot to navigate unknown terrain [8]–[10].
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(a) Distorted 3D point cloud due to fast inherent rolling motion.

(b) Distortion corrected 3D point cloud.

Fig. 1: Illustration of AMDC working principle on a spher-

ical robot. Only one principal axis is vizualized, which is a

sliced view from the side.

Spherical robots are a recently developed type of robot

which is still niche [11]–[14]. In recent years, the European

Space Agency (ESA) has evaluated spherical robots to be

feasable to be used for the exploration of lunar caves [2].

The spherical shape has many advantages, e.g., protection

of the inner system, power efficiency steerability, or sensor

coverage by locomotion. In recent work, there have been

advances in the locomotion of spherical robots including

jumping [12] and pushing itself using rods [15]. However,

also many challenges regarding sensor data processing need

to be overcome. In this work particularly, we focus on

the motion distortion due to the higher than usual angular

velocities compared to other types of systems, such as UAV,

rovers, or cars. We show that a spherical robot must not

use the same correction algorithms than many other systems

experiencing high linear velocities [16]. To compensate for

the motion distortion induced into the LiDAR point cloud,

we rely solely on the angular velocity of the system and

ignore its linear velocity. The intuition behind that is, that the

motion profile of the LiDAR inside a ball is mostly governed

by rotation, leading to much higher distortion as illustrated

in Figure 2.

LiDAR systems have been a common tool for perceiving



Fig. 2: Motion Distortion due to movement during the

recording of a point cloud. The spherical robot (red) with a

radius of 20 cm, using rotation as its means of locomotion,

has a steep curve for the maximum distortion for objects

situated at a distance of ten meters compared to its speed

over ground. The distortion of the point clouds for car-like

robots (blue) increases much more slowly.

and mapping the environment [17]–[19]. In many appli-

cations, especially in space, wheeled robots move at low

velocities, or take measurements in a stop-and-go fashion,

making the motion distortion of LiDAR point cloud record-

ings negligable. However, in mobile robots using other means

of locomotion this may not hold.

Motion distortion of LiDAR point clouds is a phenomenon

happening, once the LiDAR sensor is in motion. Usually,

LiDAR systems record a point cloud using laser beams and

scan a certain field of view by redirecting the beam and

measuring the time of flight or phase shift [20]. This is

often done with moving parts in the sensor (for example

mirrors or prisms [21], [22]). However, recording one scan

while moving, containing multiple points, results in a time

interval in which each point has an increasing timestamp. If

the sensor is not at a standstill, the points in the final point

cloud will appear in false locations, because the sensor itself,

which records each point its inertial frame, has moved with

respect to the start of the measurement (Figure 1a). Finding

the time-dependent transformation between the inertial frame

and the global frame is then necessary to transform the points

to their true location, representing the actual environment.

We assume a dominating rolling motion for a spherical

robot, with the LiDAR sensor mounted rigidly inside the

robot, which results in the points being mostly angularly

displaced. Artifacts because of angular displacement of the

points already appear at very slow velocities. Compared

to vehicles dominated by translations (linear velocity), the

distortions are more severe, even at slow velocities (Fig-

ure 2). In this work, we developed an algorithm countering

the distortion by computing a transformation for each point,

based on the mean angular motion during the recording of

the point cloud (exemplary corrected point cloud with the

algorithm in Figure 1). We validate the algorithm on LiDAR

point clouds recorded with a Livox MID-100 mounted on a

spherical robot. The contributions of this work are as follows:

• A simple algorithm for angular motion distortion correc-

tion (AMDC), designed for spherical mobile mapping

systems.

• An evaluation of the performance compared to state-of-

the-art, based on the comparison of the point clouds

recorded with our spherical mobile mapping system

with ground truth point clouds.

The paper is structured as follows: In the following sec-

tion, we provide an overview of the most similar approaches

concerned with motion distortion of point clouds. Then, we

are going to introduce the angular motion distortion correc-

tion algorithm in a general fashion. Finally, we introduce

accuracy measurements and experiments and show that the

algorithm corrects the distortion induced by the motion of a

spherical robot.

II. RELATED WORK

Ego motion distortion is a well-researched field and is of-

ten considered preliminary for further processing of LiDAR

point clouds. However, most approaches considering motion

distortion are developed with a background in autonomous

driving with car-like vehicles. These vehicles are limited

in their locomotion and are usually dominated by transla-

tions [16], [23]. In [23] Merriaux et al. study the impact of

motion distortion concluding that either high linear motions

or slow angular velocities can result in large distortions in the

point cloud. For mapping, this is fatal as objects may appear

twice, distorted, or are missing. A correction method is given

considering 2.5D correction: Only taking into account linear

motion along X and Y and the yaw angle. In [16] Renzler et

al. implement distortion correction for race car applications.

The high linear velocity distorts the point clouds. The motion

distortion correction is also done in 2.5D, although the car’s

trajectory during the recording of one frame is considered

as well. The combination of 6DoF IMUs and 3D LiDAR

system is used by Le Gentil et al. [24] for a calibration

framework trying to eliminate motion distortion. It uses the

preintegration of upsampled IMU readings to model motion

distortion. In [25] Wu et al. use adaptive frame length to

reduce motion distortion. The frame length is reduced when

the vehicle is moving fast and motion distortion is affecting

the point cloud, while lower frame rates are used for slower

movements.

Point clouds acquired with a LiDAR are the preferred

data source for localization and mapping [26]. SLAM (si-

multaneous localization and mapping) is based on aligning

point clouds and finding transformations that describe the

motion of the robot. To use SLAM accurate point clouds are

necessary. In [27] Zhang et al. propose a method combining

motion distortion correction and mapping in real time. The

key idea is to divide the underlying complex problem: Where

one algorithm is performing odometry at a high frequency,

while a second algorithm runs at a lower frequency per-

forming fine matching and registration of the point cloud.

In the abovementioned examples, the translation of the

LiDAR sensor during the measurement is either estimated

via the IMUs accelerometer, GNSS, or a comination of both.

However, on a spherical robot the accelerations experienced

by a sensor mounted rigidly inside are mostly governed



by centripetal forces, which makes these translation models

unreliable. Furthermore, GNSS is not always available for

exploration tasks, especially in space. Thus, the intuition

behind this work is to only compensate the motion distortion

caused by rotation. As for the translation, developing a

trochoidal motion model for the sensors placed inside the

spherical robot using gyroscope data is beyond the scope of

this work and part of future work.

III. MOTION DISTORTION CORRECTION

A. General Motion Distortion Correction

This work focuses on the ego-motion distortion correction

of point clouds recorded on a spherical mobile mapping

system. Thus we are primarily concerned with the angular

displacement of points in 3-dimensional space while record-

ing one frame. We assume a point pi to be recorded at

a time ti, which will have the wrong coordinates due to

the matching of the time-stamp tj of the frame and the

matched pose of the robot at time tj . The time ∆t that

passes, combined with the motion the robot performs during

that time interval until the point is recorded, displaces the

point in the final scan. To counter the displacement, we must

apply an inverse rigid transformation T−1

i which transforms

the point to its actual position. We model the transformation

of the sensor Ti that happened between the measurement

of two points as a 4 × 4 rigid transformation matrix in the

SE(3) group. Note that in our case - ignoring the translation -

a rotation matrix Ri ∈ SO(3) would be sufficient. However,

we will extend this work including a motion model for the

translation in the future.

B. Angular Motion Distortion Correction (AMDC)

For spherical robots, we assume the distortion of the

point cloud PCj to be entirely of rotational nature, as

linear motion has a far smaller impact on the distortion

and thus quality of the point cloud. We therefore define

the transformation of the distortion as a pure rotation and

acknowledge that the components of T−1 corresponding to

translation must be zero. Furthermore, we derive the part

of our transformation corresponding to rotation, by using

the available data of an IMU. Specifically, we approximate

the rotational motion during one frame using the angular

velocity ωj from the IMUs gyroscope. As a simplification,

the algorithm assumes the rotational velocity to be constant

during one frame. Thus, we compute the average angular

velocity ω̄j using N measurements between times tj and

tj−1, corresponding to the timestamps of two subsequent

LiDAR frames.

ω̄j =
1

N

N
∑

k=0

ωj−k (1)

A reference timestamp must be assigned for each point-

cloud frame, which corresponds either to the start or the end

of the measurement. For the above Equation 1 it is useful

to assign the time stamp for the frame at the end of the

measurement, thus the mean velocity is computed for the

current time interval ∆tj . We then find a transform T−1

i for

each point by combining the mean angular velocity and an

offset to the frame’s time stamp. Thus, we introduce a metric

ci measuring the normalized time of the recording of point

pi at time ti to the time stamp tj .

ci = −
ti − tj

tj − tj−1

(2)

Notice that ci is a positive number between 0 and 1 as the

fraction will always be negative and thus result in a positive

offset to the time stamp tj associated with the last recorded

point in the point cloud PCj .

Bringing all the information together, we compute the

transformation for each point by integrating the angular

velocity up to the point’s recording at ti. For this, we first

compute the overall rotation ∆Θ̄ in the x, y, and z axis

in the time interval ∆tj = tj − tj−1, and second compute

the fraction of this rotation corresponding to each individual

point pi.

∆Θ̄ = ∆tj · ω̄j (3)

∆Θ̄i = −ci ·∆Θ̄ (4)

Note that the negative sign in Equation 4 accounts for a

rotation opposing the direction of motion because the last

point in the point cloud is defined as the only one with the

correctly assigned pose and timestamp.

The transformation for motion distortion for each point is

computed using a rotation matrix Rα,β,γ with the yaw, pitch,

and roll angles α, β, and γ respectively.

T−1

i =

(

Rα,β,γ 0

0τ 1

)

(5)

Rα,β,γ = Rz(α) ·Ry(β) ·Rx(γ)

= Rz(∆Θ̄i,z) ·Ry(∆Θ̄i,y) ·Rx(∆Θ̄i,x) (6)

The multiplication of the distorted point, given in homoge-

neous coordinates, with the transformation matrix will then

compute to the corrected coordinates of the point pi,corrected.

pi,corrected = T−1

i · pi,distorted (7)

Performing this transformation on all points in PCj will

result in an angular motion distortion corrected point cloud.

IV. EXPERIMENTS AND EVALUATION

We test our algorithm for motion distortion correction on a

spherical mobile mapping system, which was designed in the

context of the DEADALUS project [2]. The robot consists of

two translucent plastic shells that allow the laser beam to pass

through, forming a spherical hull when connected. Figure 3

shows the interior structure consisting of several levels. It

houses the power supply and sensors, which include three

PhidgetSpatial 3/3/3 1044 1b IMUs, an Intel RealSense T265

stereo visual-inertial tracking camera, and a Livox MID-100

LiDAR-scanner. The main computation unit is a Raspberry

Pi Model 3b.

The spherical system does not have any actuators, so for

our experiments, the robot is pushed along a path manually.

The algorithm is implemented with ROS1 [28]. The pose



Fig. 3: The spherical robot used for testing our algorithm

performing angular motion distortion correction.

of the robot and measurement of motion, especially angular

velocity, is of utmost importance for the algorithm and

postprocessing. We are using the inertial measurements of

the IMUs and a combination of the well known Madgwick

filter [29] and the complimentary filter [30] to compute a 6-

DoF pose estimate for the robot [31]. Moreover, we use the

Delta pose filter [32], to perform sensor fusion of the pose

computed from the IMU readings and the pose computed

by the Intel RealSense camera. The full 6-DoF pose is not

necessary for the distortion correction algorithm, as it relies

only on filtered gyroscope readings from the IMUs. However,

later processing and visualization of the point cloud requires

a corresponding pose for each recorded point cloud. Note

that as for the translation, the LiDAR sensor assumes to be

placed at the spheres center. Further extrinsic calibration with

respect to the spheres center and a corresponding motion

correction model for the translation is beyond the scope of

this paper and will be part of future work.

A. Error metrics

We compare the distorted and corrected point clouds with

a ground truth point cloud, that is recorded with a Riegl

VZ-400 terrestrial laser scanner (TLS). This TLS has an

accuracy of 5mm and an angular resolution of 0.04◦. We

merge the individual point cloud frames of our datasets into

to a single point cloud, and then align them with the ground

truth map. We use 3DTK for all the processing steps [9].

Then, we calculate the mean point-to-point error (ME) of N

corresponding points as

ME =
1

N

N
∑

i=1

|p̂i − pi| , (8)

where p̂i ⊂ ˆPC is the predicted point recorded by the

spherical robot and pi ⊂ PC is the corresponding point

in the ground truth.

B. Experiments

We test our angular distortion correction algorithm for

varying parameters while keeping the others fixed. First, we

vary the scanning frequency of the LiDAR while moving

with a fixed angular velocity of approximately 115 deg ·
s−1. Second, we vary the angular velocity and use a fixed

frequency of 10 Hz. In both scenarios, the distortion of the

point cloud is expected to increase due to the following

phenomena: A lower scanning frequency allows for more

time during which the LiDAR system records points and the

robot moves further during one frame. For the same reason,

increasing the angular velocity also distorts individual points

more dramatically. We test the algorithm on different paths:

First, we test it on a straight line to make the results for both

varying velocity and frequency comparable, and second test

it on arbitrary trajectories. Moreover, we compare the results

achieved with our algorithm with the results achieved by the

motion distortion compensation in the Livox SDK [33]. It is

based on the IMU readings, including the accelerometers,

such that it accounts not only for rotations, but also for

translations.

The results show a decrease of the motion distortion in all

scenarios (see Table I and II and Figure 5). For increasing

frequency, we see a decreasing ME except for the 50 Hz
frequency, showing the principle influencing the distortion.

Our correction algorithm (AMDC), as well as the Livox

SDK motion distortion correction algorithm, compute a point

cloud which appears less distorted. For 5 Hz, 20 Hz, and

50 Hz our algorithm outperforms the Livox SDK algorithm,

while showing similar performance for 10 Hz. The mean

point-to-point errors are in the same order of magnitude, yet

showing a clear tendency that AMDC works better on our

spherical mobile mapping system. Both algorithms perform

better for a frequency of 10 Hz with a mean error (ME)

of below 13.0 cm. The mean error is highest for the lowest

frequency of 5 Hz, which is expected. We highlight that

our algorithm performs well on the lowest frequency and

outperforms the Livox SDK algorithm by the largest margin.

The Figures 6 and 7 show the point cloud recorded at 10 Hz
in its distorted state and after the correction with AMDC.

In the distorted point cloud, the fanning effect of motion

distortion around the major axis of rotation is apparent. This

effect does not appear in the corrected point cloud.

We also test our algorithm at increasing velocity. Figure 5

shows the results. We note that for increasing velocity, the

distortion increases linearly. The distortion-corrected point

clouds have a similar ME and seem to only slightly depend

on the velocity. We rationalize about this by considering the

larger noise present in the gyroscope readings.

Finally, we evaluate the algorithms on arbitrary paths.

Table II shows the ME of the distorted and the corrected

point clouds. Note that even after correction, the distortion

is higher than when compared with the controlled motion



Fig. 4: Ground truth of the site used for the experiments recorded with a Riegl VZ-400. The color of the points corresponds

to the reflectivity of the environment.

Fig. 5: Motion distortion with increasing velocity. The yellow

marks show the distorted point clouds and the blue marks

the corrected.

on the track. We explain this by considering the additional

larger motions present in the other principle axes.

C. Discussion

The experiments have shown that a motion compensation

algorithm for LiDAR point clouds on spherical platforms is

feasable, describing only the rotational motion. The model,

only considering the angular velocity and ommiting the linear

velocity of the system, especially shows its strengths with

lower frequencies. Lower frequencies correspond to more

points during a larger time window, and thus more distortion

in the point cloud.

Our algorithm, specifically suited for point clouds dis-

torted by angular motion, outperforms the Livox SDK al-

TABLE I: ME between point clouds recorded with the

spherical mobile platform and ground truth. The ME of the

uncorrected point cloud is compared to the ME of the Livox

distortion correction and the ME of the AMDC presented in

this work. For the experiments, we keep the velocity steady

at about 115 deg · s−1.

Frame Rate [Hz] mean error (ME) [cm]
Distorted AMDC Livox

5 31.842 15.274 21.483

10 24.030 12.880 12.435

20 15.714 13.423 14.957

50 28.358 15.009 19.482

gorithm in many instances and shows similar performance

otherwise. This is due to the Livox SDK algorithm utilizing

the accelerometer for the translation estimation of the system.

This makes sense considering that it is primarily concerned

with rotationally more restricted systems. However, inside

a primarily rotating system, the accelerometer readings are

governed by centripetal forces, making the translation model

unreliable.

Testing our algorithm for increasing velocity has shown,

that its performance is almost independent of the velocity. In

an ideal case the distortion compensated point cloud would

have no linearly increasing ME. In our case, however, the in-

crease of the distortion still follows a less steep linear curve.

This is due to our imperfectly chosen motion model which

averages the rotation between two LiDAR measurements,

and increased gyroscope noise.
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Fig. 6: Distorted point cloud. Side view of the informatics building at the University of Würzburg and the histogram showing

the number of points at a given distance from the ground truth. The point cloud was recorded with a frequency of 10 Hz
on the track at a speed of around 115 deg · s−1. Rotation along the rotational axis can be seen by the points marked in red.
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Fig. 7: Corrected point cloud. This is the same recording as in Figure 7 with the AMDC algorithm used for correction. The

fanning effect of motion distortion is reduced and most points coincide with the ground truth.

TABLE II: The results of the AMDC motion distorion

correction for different paths. The ME of the AMDC and

Livox correction are compared to the point cloud without

correction. The recording frequency is kept at 10Hz for the

experiments.

Path mean error (ME) [cm]
Distorted AMDC Livox

Circular 30.017 22.857 22.995

Arbitrary 29.093 21.803 21.196

V. CONCLUSIONS

In this work, we have presented an algorithm for motion

compensation in point clouds on spherical robots. Spherical

robots offer many benefits for the exploration of unknown

and harsh environments like the moon, with extrem tem-

peratures and radiation. They have a spherical shell that

contains all the instruments and are thus protected against

damage from the environment. Furthermore, locomotion of

the system directly leads to sensor coverage, removing the

need of actuators which might break. However, this configu-

ration introduces challenges for measuring the environment

with sensors. LiDAR data is recorded in individual frames -

smaller point clouds - that are later merged to create a map

of the environment or recognize objects in it. The rotating

system, however, distorts the data to a greater extent than a

system dominated by translations.

The proposed algorithm uses the angular velocity to

compute a transformation to correct the position of each

point. We have shown that our model for the exclusive

rotational motion of the spherical robot performs well and

compensates the motion distortion reliably in all tested

scenarios. Compared to the algorithm proposed in the Livox

SDK, which is not specifically suited for spherical robots,

our algorithm outperforms it or at least performs in the same

order of magnitude. For a low frequency of 5 Hz, AMDC

outperforms the Livox SDK by a large margin, highlighting

our tailored motion model. Moreover, we have shown that

even for increased velocity, the algorithm keeps performing



as expected.

We have shown that, even in its current state, AMDC is

a well suited angular motion distortion correction algorithm.

The AMDC algorithm offers a good performance for rolling

motion, which can be used in further processing for mapping

and other purposes. Having access to such data processing

algorithms is an important step towards space exploration

with spherical mobile mapping systems. However, the algo-

rithm is suitable for the use with any setup and is thus not

limited to only spherical systems.

Needlessly to say, a lot of work remains to be done.

In future work, we will explore more sophisticated motion

models, making it possible to account for trochoidal transla-

tional motion as well. This has to include the development

of a method for extrinsic calibration of the sensors placed

inside the shell with respect to the spheres center, in order

to correctly account for the linear motion of the LiDAR.

Additionally, we want to conduct further experiments with

the algorithm, using also other LiDAR sensors on spherical

systems.
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D. Borrmann, A. Nüchter, A. Bredenbeck, J. Zevering, F. Arzberger,
and C. A. R. Mantilla, “Daedalus - descent and exploration in deep
autonomy of lava underground structures,” Tech. Rep. 21, Institut für
Informatik, 2021.

[3] M. J. Schuster, S. G. Brunner, K. Bussmann, S. Büttner, A. Dömel,
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tenegro, and A. Nüchter, “Delta filter-robust visual-inertial pose es-
timation in real-time: A multi-trajectory filter on a spherical mobile
mapping system,” in 2023 European Conference on Mobile Robots

(ECMR), pp. 1–8, IEEE, 2023.

[33] Livox-SDK, “Livox cloud undistortion.”
github.com/Livox-SDK/livox_cloud_undistortion,
2022.


