
Semantic Classification in Uncolored 3D Point
Clouds using Multiscale Features

Michael Neumann, Dorit Borrmann, and Andreas Nüchter∗

Informatics VII – Robotics and Telematics, Julius Maximilian University of
Würzburg, Germany

{andreas.nuechter}@uni-wuerzburg.de

Abstract While the semantic segmentation of 2D images is already a
well-researched field, the assignment of semantic labels to 3D data is
lagging behind. This is partly due to the fact that prelabeled training
data is only rarely available since not only the training and application
of classification methods but also the manual labeling process are much
more time-consuming in 3D. This paper focuses on the more classical
approach of first calculating features and subsequently applying a classi-
fication algorithm. Existing handcrafted feature definitions are enhanced
by using multiple selected reductions of the point cloud as approxima-
tions. This serves as input to train a well-studied random forest classifier.
A comparison to a recently presented deep learning approach, i.e., the
Kernel Point Convolution method, reveals that there are well-justified
applications for both modern and classical machine learning methods.
To enable the smooth conversion of existing 3D scenes to semantically
labeled 3D point clouds the tool Blender2Helios is presented. We show
that the therewith generated artificial data is a good choice for training
real-world classifiers.

1 Introduction

Semantic classification in 3D point clouds is the process of assigning semantic
labels to each 3D point in a cloud. Some major differences to the same task for 2D
images exist. Besides the considerably high volume of data, it lacks a fixed grid-
structure. This makes it challenging to apply common algorithms for 2D images
on point clouds. The variable density of the data is another difficulty. It highly
depends on the distance to the laser scanner and is influenced by occlusions.

A few years ago a typical approach for classification in point clouds was a
two-step procedure. First, hand-crafted local features of each point were calcu-
lated. For this, Principal Component Analysis (PCA) was applied on a number
of neighbors. Originally, the size of this neighborhood, respectively the number
of neighbors was fixed. In 2014 an improvement with varying neighborhood sizes,
called optimal neighborhood size selection was proposed [1]. Up until 2018 various

∗ The autors would like to acknowledge Prof. Bernhard Höfle and the 3DGeo Re-
search Group of Heidelberg University for the software HELIOS and Prof. Thomas
P. Kersten from Hafencity University of Hamburg for supporting our work.

other improvements were developed and published. For instance, [2,3] proposed
the calculation of features on many different scales but with an adapted neigh-
borhood definition. Second, common classification algorithms were applied on
the features. While basically any general classifier is applicable, random forests
showed high accuracies and became a de-facto standard.

With the availability of datasets with billions of labeled 3D points like Se-
mantic3D [4] and capable hardware, deep learning emerged in this field of re-
search. Thus, the manual definition of features became redundant. Some early
approaches projected 3D points on 2D planes to create artificial images on which
existing methods were applied. Meanwhile, a direct processing of 3D data is done
most often. The published solutions range from superpoint graphs [5] to RandLA-
Net [6] and KPConv [7]. The latter approach, which is very similar to well-known
convolutional neural networks, is used in this paper for comparisons. Publicly
available benchmark tests like the Semantic3D challenge [8] provide an overview
of the methods that currently achieve the highest accuracies.

The current development towards deep learning for semantic labeling of 3D
point cloud data raises the question, if and how much deep learning methods out-
perform classical approaches. Thus, this paper describes an improved approach
using classical hand-crafted features. We propose the calculation of features on
selected point cloud reductions as a high-performance approximation. A random
forest is afterwards used for the classification. Finally, the results are compared
to the output of KPConv, a proponent of the deep learning classifiers. For rep-
resentative results, all parameters of the learners are tuned on only one dataset,
a part of Semantic3D. Their performance is reviewed on a total of four different
datasets. This resembles typical applications and differentiates this work from
others. The used datasets consist of terrestrial (TLS) and mobile laser scans
(MLS) of outdoor scenes.

One set of scans, the Sim2Real dataset, allows the examination of classifi-
ers that were only trained with simulated data. For this purpose, we present
the open-source software Blender2Helios [9] that allows to create semantically
labeled training data of existing 3D scenes.

The paper is structured as follows. The next section summarizes random
forests as the technical basis for the feature learning approach used in this pa-
per. The following section introduces the tools and datasets used in the evalu-
ation. Section 4 details the training of the classifier proposed in this paper while
Section 4.3 introduces the related work used as comparison in the following
evaluation in Section 5.

2 Random Forest Classification

Random forests (RFs) are a special form of bagging of decisions trees. We will
use the definition of [10] for our work with RFs as it is very common. Bagging,
short for bootstrap aggregating, is used to improve accuracy and stability. Mul-
tiple training sets, or bags, are sampled from the whole set of training data.
They all have the size of the original training set. By sampling uniformly with

replacement, 1 − 1
e ≈ 63.2% of each subset are unique examples while the rest

are duplicates. In each training iteration one set is used to train a decision tree.
In the task of classification each tree then votes for its predicted class.

Compared to simply bagging of decision trees, only a subset of all attributes,
typically of size ⌈

√
d⌉ or ⌊log2 (d) + 1⌋ for d attributes, is taken into account for

every split decision when training a random forest. This allows the algorithm to
create more varying trees.

2.1 Parameters in our RF Implementation

The number of trees in a forest, is a main parameter when constructing a RF.
Probst and Boulesteix show in a benchmark study on over 300 datasets that
the first 100 trees in a forest achieve the highest performance improvement [11].
In [12] different random forest implementations are tested on five datasets. The
average classification accuracy in all their tests is within a one percent range
when changing the parameter for the number of trees from 100 to 2,000. Mean-
while, using 100 trees has become a default setting for many random forest
implementations that we also stick with.

Another important parameter is the tree depth dt. It limits the length of a
path from the root to all leaf nodes. While a high depth may result in overfitting,
a too small depth leads to underfitting. Generally each tree should be able to
predict all classes of a data set which gives a constraint of dt ≥ ⌈log2 |C|⌉ − 1
for a number of |C| classes. Often this parameter is optimized together with the
number of trees in a grid search.

2.2 Performance Evaluation Strategy

In our approach we calculate features for optimal local neighborhoods. In the
preferred case one neighborhood will contain roughly the same points for many
neighboring 3D points representing the same object. This results in nearly the
same feature values for all of these points whereas other instances of similar
objects will result in diverse values. For instance, the features of two different
cars, both in one scan of a parking lot, might be very different due to various
factors. They are influenced by occlusions and by the distance and angle between
the laser scanner and the car.

For these reasons and because other strategies result in higher computation
time, we use the classical hold-out strategy where the dataset is split into train-
ing, validation, and test data. Between these sets all scans shall be taken at
different scenes. Where this is not feasible, at least very differing scanner posi-
tions are preferred.

2.3 Handling of Highly Imbalanced Data

The data that is used to train the random forests later is highly imbalanced.
There are factors of 100 and 1,000 respectively between occurances of different

classes – even after deletion of very small classes. This is caused by the natural
structure of the scenes. While ground and facades are very dominant in urban
scenes, motorcycles, bushes, or trash cans are seen less often. Even if many
instances of these infrequent objects are scanned, their small footprint results in
a discrimination of their share in the 3D point cloud.

Learning a RF directly on this imbalanced data results in a classifier that has
a bias towards these predominant classes. We choose to perform down-sampling,
so each class in the training set is sampled only nmin times with nmin being the
size of the smallest class. We prefer this over up-sampling as many data points
of the dominant classes are already redundant and up-sampling of small classes
is prone to over-fitting on the specific object instances in the data.

3 Tools and Datasets

The presented approach is evaluated using existing and newly created datasets
that are introduced in this section. To help with the difficulty of recording and
labeling real world data sets, we propose to enhance the training data by use
of simulated scenes. Thus, the tools and methods used to generate this kind of
data are first described here.

3DTK — The 3D Toolkit [13] is a toolkit for 3D point cloud processing.
This paper is implemented as an extension of the open-source part of 3DTK and
contributes the scan2features tool. Weka (Waikato Environment for Knowledge
Analysis) is an open source machine learning software. We use its Attribute-
Relation File Format for storing attributes and training of the random forests.
Helios, the Heidelberg LiDAR Operations Simulator, is a software package for
interactive real-time simulation and visualization of laser scanning surveys. Ter-
restrial, mobile and airborne laser scans are supported. Finally, we use Blender
2.81, an open-source 3D graphics software toolset.

Blender2Helios is a Blender 2.8 add-on that was developed for this work.
It builds an interface between Blender and Helios. The add-on is released un-
der GNU GPLv3. Code and documentation are available at [9]. Blender2Helios
provides the possibility to build various scenes without much effort or even use
existing ones. These scenes are then converted to Helios compatible XML files
to be able to perform laser scan surveys subsequently. Also, semantic labels can
be assigned easily by the collections feature in Blender.

Many benchmark datasets are available for 2D image classification. Often,
modern machine learning classifiers achieve accuracies far over 95%. For 3D
point clouds, however, less training data is available. Even well-known datasets
often consist of only a few million points whereas a typical terrestrial laser scan
already contains over ten million points. Most datasets like the Oakland [14] and
the IQmulus & TerraMobilita Contest [15] datasets were created with mobile
laser scanners. By design these are sparse compared to terrestrial laser scans.
The datasets used in this paper are the following.

Oakland. The class distribution is given in Table 1. As the classifiers are tuned
using another – the Semantic3D – dataset, we choose not to use the given val-

Table 1. Class distribution in the Oakland dataset.

ID
Subset Scatter/Misc Wire Pole Load/Bearing Facade Total
Training 14,441 2,571 1,086 14,121 4,713 36,932
Validation 8,485 899 1,441 67,419 13,271 91,515
Testing 267,325 3,794 7,933 934,146 111,112 1,324,310

Table 2. Class distribution in the Se-
mantic3D dataset (reduced-8).

Number of Points
ID Class Name Training Testing
- Unlabeled 156,046,453 11,607,777
1 Man-made Terrain 796,491,240 14,317,509
2 Natural Terrain 480,979,227 10,694,746
3 High Vegetation 135,634,808 4,675,871
4 Low Vegetation 99,971,504 3,021,894
5 Buildings 285,746,986 30,911,206
6 Hard scape 83,466,776 2,384,545
7 Artefacts 51,979,924 233,839
8 Cars 15,609,275 851,942

Total 2,105,926,193 78,699,329

Figure 1. Real parking lot scene in
Würzburg.

idation data. We just use the training data to train the classifiers and the much
bigger testing portion to test them.

Paris-rue-Madame. The dataset fully called Paris-rue-Madame database:
MINES ParisTech 3D mobile laser scanner dataset from Madame street in Paris
consists of two laser scans containing exactly 10 million points each. 624 objects
are annotated and categorized in 26 classes. Scan 1 2 are used for training while
the other one (scan 1 3) is kept for testing. As many classes occur not at all or
only rarely in both scans, we additionally eliminate very small classes.

Semantic3D. The highest quantity of training instances used in this research
is provided by the Semantic3D.net [4] dataset. A static terrestrial laser scan-
ner was used to create dense point clouds of outdoor scenes consisting of over
four billion points. The scanned environments include churches, streets, railroad
tracks, squares, villages, soccer fields, and castles in Central Europe.

Eight semantic classes were assigned by manual labeling. Table 2 pictures
the distribution of class labels for the reduced-8 data.

Sim2Real. We test the performance on our own data as well. In this paper
we present one scene of a parking lot near the Department of Computer Sci-
ence at the University of Würzburg. To determine the applicability of training
classifiers on easy to generate, artificial scenes and using them for real world ap-
plications, we use two scenes. The first one was created in Blender using freely

Figure 2. Left: Blender scene created with freely available 3D models similar to
Figure 1. Right: Corresponding 3D point cloud generated with a simulated Riegl
VZ-400 in Helios. Colors respresent class labels.

Table 3. Semantic classes in our Sim2Real dataset. The dataset is split into
training data created with Helios and real testing data.

Number of Points
ID Class Name Examples Training Testing
1 Man-made ground Paved ground, Asphalt 1,120,044 6,381,848
2 Natural ground Grass, Grassland 128,813 209,347
3 Vegetation Bushes, Trees 204,011 1,823,701
4 Object Lamps, Poles, Railings, Stairs 16,900 64,575
5 Facade Walls, Buildings 280,063 754,867
6 Car All vehicles 161,480 1,478,190

Total 1,911,311 10,712,528

available object models. It was then sampled with a simulated laser scanner
using Blender2Helios and Helios. Accuracy of the classifier is tested with the
manually labeled point cloud of the real parking lot. Figure 1 illustrates the
on-site scenery. We use a division into six classes as shown in Table 3.

In Figure 2 one can see the coarsely remodelled scene in Blender and its point
cloud representation. For instance, paved/asphaltic ground is modeled by just a
flat plane while a Blender Displacement Modifier in z direction combined with
a Voronoi texture is used to generate small spikes that represent grass. As the
classifiers show that they have learned the different ground types, no more effort
was put into a finer remodeling. One should be able to reproduce our results with
his or her own 3D scenes without trying to build an exact copy of the testing
data.

4 Semantic Classification

In constrast to [1], we perform feature calculation on multiple differently reduced
scans. The process of parameter selection is performed on the Semantic3D data-
set. For this, the prelabeled training part is split into two parts. One part,
containing twelve of the fifteen scans, is used for training while the remaining
three scans (untermaederbrunnen1, untermaederbrunnen3, and sg28 4) are used
for validation. The resulting parameters are then used to train and test the

classifiers on all the introduced datasets including the Semantic3D reduced-8
challenge.

We first optimize the feature calculation on the basis of a standard random
forest setup with 100 trees and a small tree depth of four. Similar configurations
have already been used in literature [1,3] and proven to be sufficient to detect
changes generated by different parameters in the feature calculation. Tuning of
the RF is done afterwards.

To allow the testing of many configurations, features are calculated on only a
reduced number of points. An octree-based reduction with a voxel size of 10 cm
is done and features are only calculated for the resulting points. Afterwards, the
data is subsampled to bring the classes to a uniform distribution with approx-
imately 63,000 points per class. However, for the calculation of feature values all
points are used.

4.1 Finding the Optimal Neighborhood Size

To calculate local features, a number of neighbors must be taken into account.
For this set of points the principal components are distinguished using PCA.
Typical approaches use a fixed number of k nearest neighbors [16], a sphere with
a fixed radius [17], or a cylindrical neighborhood definition [18].

In [1] a state-of-the-art approach which is based on dimensionality features [19]
is presented. Instead of defining a fixed neighborhood size, different ways to find
an optimal neighborhood size kOpt per point are compared. The best results are
achieved by choosing a neighborhood size that minimizes the eigenentropy. Com-
pared to the common default of using the nearest k = 100 neighbors for feature
calculation, this method yields 2% to 14% higher overall accuracy scores.

The eigenentropy Eλ is given by the Shannon entropy of eigenvalues λi. Its
calculation for the three-dimensional case is:

Eλ = −Λ1 ln(Λ1)− Λ2 ln(Λ2)− Λ3 ln(Λ3). (1)

using normalized eigenvalues to reduce the impact of the local point density:

Λi =
λi∑3
j=1 λj

. (2)

When searching for the optimal neighborhood size, one minimizes the eigen-
entropy. Analyzing Equation (1) reveals that one-dimensional structures are
favored, i.e., when one normalized eigenvalue is close to one and the others
are close to zero. The maximum entropy of − ln(1/3) ≈ 1.0986 is reached by
neighborhoods with equally distributed points along all three axes, resulting in
λ1 = λ2 = λ3 and, accordingly, Λ1 = Λ2 = Λ3 = 1/3.

The optimal number of neighbors kOpt is found by repeatedly calculating
the eigenentropy of neighborhoods with a varying number of neighbors k ∈
{kMin, kMin + k∆, . . . , kMax}. kMin, kMax, and k∆ are parameters that need to
be set by the user. Common values are kMin = 10, kMax = 100, and k∆ = 1.

0.5mins100

4.3mins500

14.6mins1000

1.9mins10-100

23.5mins100-500

73.5mins500-1000

0mins 100mins

Figure 3. Times for calculating features with different neighborhood sizes using
one million 3D points in a typical outdoor scan. The first three measurements
use a fixed neighborhood size (100, 500, 1000) whereas for the last three ones
our optimal neighborhood definition is used.

Table 4. Impact of varying ranges for finding the optimal neighborhood size. The
F1 scores of our random forest classifier are shown.

Terrain Vegetation Build- Hard Arte- Accu-
N. size Man-m. Nat. High Low ings Scape facts Cars racy
10-100 0.916 0.359 0.749 0.307 0.583 0.157 0.227 0.123 64.26%
10-500 0.913 0.368 0.749 0.300 0.608 0.153 0.225 0.126 64.49%
100-500 0.822 0.298 0.789 0.177 0.729 0.139 0.119 0.123 64.58%
500-1000 0.904 0.249 0.783 0.229 0.715 0.213 0.355 0.122 68.36%
1000-5000 0.880 0.107 0.752 0.289 0.688 0.024 0.410 0.168 66.46%
10-5000 0.893 0.278 0.749 0.300 0.621 0.144 0.243 0.157 64.16%

This includes the often fixed value k = 100 and limits the number of times the
eigenvalues have to be calculated per point.

Figure 3 illustrates the time needed to query the neighborhoods of 1 million
points. One can see that bigger neighborhoods with 500 or even 1,000 neighbors
take longer to find and to perform the PCA on. Especially trying to find optimal
neighborhood sizes within big ranges is very time consuming.

Table 4 shows the overall accuracy and class-wise F1 scores when comparing
different optimal neighborhood boundaries. Using between 500 and 1,000 neigh-
bors for a bigger area of influence shows the highest accuracy. However, using
that many neighbors for feature calculation is very time consuming as previously
presented in Figure 3.

We follow an approximation approach similar to [2]. Instead of calculating
features on a large number of neighbors, a smaller number of neighbors is used
within a reduced representation of the point cloud. This allows a fast calculation
while still taking a wide spatial area into account. Octree-based reductions are
used to create less dense point clouds.

features(pi, P) =

features3D
k (pi, P)

features2D
k (pi, P)

featuresCyl
r (pi, P)

 features2D
k (pi, P) =

Radius2Dk (pi, P)

LocalDensity2D
k (pi, P)

SumOfEigenvalues2Dk (pi, P)

Ratio2D
k (pi, P)

 =

∣∣∣∣q2D

k − p2D
i

∣∣∣∣
k

π·Radius2Dk (pi,P)2∑2
i=1 λ

2D
i

λ2D
1

λ2D
2

features3D
k (pi, P) =

Linearity3D
k (pi, P)

Planarity3D
k (pi, P)

Scattering3Dk (pi, P)

Omnivariance3Dk (pi, P)

Anisotropy3D
k (pi, P)

Eigenentropy3D
k (pi, P)

SumOfEigenvalues3Dk (pi, P)

ChangeOfCurvature3Dk (pi, P)

Verticality3D
k (pi, P)

LocalDensity3D
k (pi, P)

Radius3Dk (pi, P)

MaxHeightDifference3Dk (pi, P)

HeightVariance3Dk (pi, P)

=

Λ1−Λ2

Λ1
Λ2−Λ3

Λ1
Λ3

Λ1
3
√
Λ1 · Λ2 · Λ3

Λ1−Λ3

Λ1

−
∑3

i=1 Λi · ln(Λi)∑3
i=1 λi

Λ3

1− |(e3

||e3||)vert |
k

4/3·π·Radius3Dk (pi,P)3

||qk − pi||
max1≤i≤k(qi,vert)−min1≤i≤k(qi,vert)

1
k

∑k
i=1(qi,vert − µvert)

2

featuresCyl
r (pi, P) =

NrPointsCyl

r (pi, P)

MaxHeightDifferenceCyl
r (pi, P)

HeightVarianceCyl
r (pi, P)

HeightAboveMinCyl
r (pi, P)

 =

kCyl

max1≤i≤kCyl (qCyl
i,vert)−min1≤i≤kCyl (qCyl

i,vert)
1

kCyl

∑kCyl

i=1 (q
Cyl
i,vert − µCyl

vert)
2

pi,vert −min1≤i≤kCyl (qCyl
i,vert)

Figure 4. Features of point pi in a 3D point cloud P .

4.2 Definition of Multiscale Features

Weinmann et al. also introduce a set of 21 features for every 3D point [1].
The definitions of the special geometric properties that are exploited are based
on [20,21]. We slightly change the original feature definition of [1]. While the
original features, for instance, include the absolute height of a 3D point, we cal-
culate the height of a point with respect to the lowest point within a cylindrical
neighborhood with a fixed radius.

The 21-dimensional feature vector for each point pi in a point cloud P is given
by the equations in Figure 4. λi and λ2D

i denote the i-th eigenvalue of the 3D,
respectively 2D, covariance matrices of the k neighboring points {q1, q2, . . . , qk}
with mean µ = 1

k

∑
1≤j≤k qj around point pi. The neighbors are ordered by

their distance to pi so that (||qj − pi|| ≤ ||ql − pi|| for j ≤ l) holds true. Two-
dimensional data is created by projecting all the points pi to two-dimensional
points p2D

i on the ground plane by ignoring the vertical axis. The neighbors
{q2D

1 , q2D
2 , . . . , q2D

k } are again ordered by ascending distance to the reference
point. We further order the eigenvalues and the corresponding eigenvectors ei
in a way that λ1 ≥ λ2 ≥ λ3 ≥ 0 and λ2D

1 ≥ λ2D
2 ≥ 0 hold true. Λi denotes

the normalized equivalents of λi again. In all equations the subscript vert means
the vertical dimension. For the cylindrical features we further let qCyl

j with 1 ≤
j ≤ kCyl be points within a cylindrical neighborhood with radius r around point
pi. µ

Cyl = 1
kCyl

∑
1≤j≤kCyl q

Cyl
j denotes their mean. We also propose the feature

calculation with different neighborhood sizes on differently reduced scans.
A prototype of the feature calculation tool scan2features is contributed to

3DTK. The four parameters kReds, kMins, kMaxs, and kDeltas impact the cal-
culation of feature values. All four parameters hold lists of the same length,
here denoted as klen. For each i ∈ {1, . . . , klen} an octree-reduced scan with

a voxel size of kReds[i] cm is generated. Only one randomly chosen point is
kept per voxel. Within this cloud, denoted as PkReds[i], the 3D and 2D fea-

tures (features3D
k (pi, P) and features2D

k (pi, P)) of an optimal neighborhood
between kMins[i] and kMaxs[i] with a step size of kDeltas[i] are calculated. One
defines equivalent scan reductions (cylReds) and radii (cylRadii) of the same
length used for the calculation of the cylindrical portion of the feature vector
(featuresCyl

r (pi, P)). All the feature values calculated in different reductions
are concatenated to one feature vector at the end.

The best parameters for the approximate feature calculation are found as
follows: A number of different reduction parameters are tested with 10 ≤ kOpt ≤
100. Class-wise F1 scores and accuracies are printed in Table 5. One can see that
different reductions allow different classes to be recognized better. Voxel sizes
over 80 cm seem to impact the accuracy negatively.

Using three different reductions shows a reasonable tradeoff between classi-
fication accuracy and computation time. Calculating features on point clouds
reduced with voxel sizes of 2, 20, and 80 cm shows the best result with 72.42%
accuracy. More reductions are imaginable but show only small improvements
while leading to higher computation times.

Figure 5 illustrates the varying optimal neighborhood sizes in a whole laser
scan for different reduction parameters. While in a detailed scan (2 cm voxel
size) especially thin poles and sharp edges on cars show a high number of op-
timal neighbors, on coarser reduction scales other areas prefer big neighbor-
hoods. Interestingly mainly medium-sized objects like bushes and cars favor a
high number of neighbors in a scan reduced with a voxel size of 80 cm. Figure 6
(left and center) shows that the distribution of different neighborhood sizes is
similar across all three reductions with a small bias towards big neighborhoods
in highly reduced scans.

Table 5. Left: Impact of different and multiple reduction scales for feature cal-
culation. The F1 scores and accuracies of our random forest classifier are shown.
Right: Impact of multiple cylindrical features and more trees in the RF.

Reduct- Terrain Vegetation Build- Hard Arte- Accu-
ion(s), kReds Man-m. Nat. High Low ings Scape facts Cars racy
0 0.946 0.356 0.758 0.335 0.578 0.011 0.394 0.132 66.47%
1 0.947 0.349 0.739 0.337 0.547 0.046 0.385 0.129 65.24%
2 0.939 0.394 0.744 0.337 0.571 0.047 0.363 0.141 65.68%
5 0.932 0.390 0.743 0.330 0.580 0.052 0.265 0.134 65.21%
10 0.916 0.359 0.749 0.307 0.583 0.157 0.227 0.123 64.26%
20 0.873 0.374 0.755 0.260 0.708 0.139 0.189 0.176 66.41%
40 0.848 0.315 0.765 0.187 0.708 0.135 0.166 0.164 65.20%
80 0.895 0.277 0.741 0.224 0.679 0.071 0.177 0.191 66.32%
160 0.767 0.048 0.688 0.258 0.618 0.028 0.220 0.205 58.31%
2, 10 0.923 0.431 0.764 0.329 0.603 0.064 0.350 0.135 65.84%
2, 20 0.933 0.468 0.777 0.318 0.627 0.070 0.324 0.130 67.34%
2, 80 0.938 0.371 0.789 0.325 0.697 0.081 0.362 0.225 70.76%
2, 10, 80 0.926 0.377 0.805 0.343 0.735 0.152 0.382 0.212 71.99%
2, 20, 80 0.931 0.429 0.812 0.321 0.740 0.122 0.379 0.196 72.42%
2, 8, 32 0.920 0.411 0.774 0.385 0.729 0.158 0.359 0.186 69.51%
5, 20, 80 0.926 0.402 0.804 0.340 0.744 0.125 0.317 0.202 72.09%
10, 20, 40 0.917 0.424 0.791 0.306 0.733 0.154 0.247 0.197 70.46%

Cylindrical Features:
Trees cylReds (cylRadii) in cm

A 100 10 (25)
B 100 2, 20, 80 (25, 150, 500)
C 500 2, 20, 80 (25, 150, 500)

Weighted
Avg. F1 Accuracy

A 0.752 72.42%
B 0.786 76.81%
C 0.784 76.61%

Figure 5. Illustration of optimal neighborhood sizes kOpt on differently reduced
scans. The color gradient indicates the found optimal neighborhood size from
kMin = 10 (blue) to red kMax = 100 (red). From top left to bottom right: Refer-
ence image colored by point height. Reduction with 2 cm voxel size. Reduction
with 20 cm voxel size. Reduction with 80 cm voxel size.

For the previously shown results a standard RF setup with 100 trees and a
tree depth of four are used. After determining a good set of features, the classi-
fier itself needs to be tuned. The selected evaluations in Table 5 prove that our
expectations are correct and more than 100 trees do not significantly impact the
accuracy of the classifiers. The table also shows an example of the impact of cal-
cuting multiple cylindrical features on point cloud reductions. Calculating those
features on three different scan reductions (with voxel-sizes of 2, 20, and 80 cm
and cylinder radii of 25, 150, and 500 cm) increases the classification accuracy by
over 4% compared to only one cylindrical feature set. A more detailed analysis
can be found in [22]. Therefore, the only additionally tuned parameter is the
tree depth. Figure 6 (right) shows its influence. The overall accuracy increases
from 75.96% (depth of 3) to 81.95% (depth of 63). The maximum of 63 is given
by the number of 21 attributes we calculate on three different reductions. To
avoid overfitting we keep the trees small and pick a tree depth of 20 for the later
comparison. It corresponds to 81.59% overall accuracy on our validation data.

4.3 Related Work: Deep Learning for 3D Point Cloud Classification

There are different approaches of using deep learning algorithms for classifying
3D point clouds. Thomas et al. assign these into four different categories [7].

20 40 60 80 100

0

1

2

·106

Neighborhood size

N
u
m
b
er

of
p
oi
n
ts

2 cm voxel size
20 cm voxel size
80 cm voxel size

50 100
0

0.2

0.4

0.6

0.8

1

Neighborhood size

R
el
at
iv
e
sh
ar
e

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
74

76

78

80

82

84

Tree depth

O
ve
ra
ll
ac
cu

ra
cy

[%
]

Figure 6. Distribution of optimal neighborhood sizes kOpt on different reduction
scales. Input was the outdoor scan already shown in Figure 5. Left: Absolute
distribution of kOpt on different reduction scales. Middle: Histogramm showing
the relative distribution of kOpt sizes in the scan reduced with voxel size 20 cm.
Right: Influence of the tree depth on the random forest’s accuracy.

For comparison we chose Kernel Point Convolution (KPConv) which belongs
to the category of point convolution networks. Other well-known representatives
are Pointwise CNN [23] and SpiderCNN [24].

KPConv operates directly on point clouds without any intermediate repres-
entation. Due to the lack of a fixed grid structure, the convolution weights of
KPConv are located in Euclidean space by so-called kernel points. These are
applied on the input points close to them.

The authors describe their KP-FCNN as the applicable method for our point-
wise classification task in 3D point clouds. It implements an encoder-decoder
CNN consisting of convolutional blocks. First, higher-order features are calcu-
lated step-by-step on reductions of the point cloud. Then, the original detailed-
ness is achieved by nearest upsampling in the decoder part. Skip links are used
to transfer information between layers, skipping the network parts in between.

5 Results and Comparison

In this section we show a comparison of the different classifiers applied on the
four datasets. The settings of the feature calculation procedure are as previously
shown: kReds = cylReds = (2, 20, 80) and cylRadii = (25, 150, 500) with between
10 and 100 optimal neighbors. Random forests with 100 trees and a tree depth
of 20 are trained.

5.1 Classification Results

Oakland. Applied on the Oakland dataset our RF classifier shows an accuracy
of 95.27% which is around 3% higher than the results using the original single-
scale approach described in [1]. Our approach also minimizes the assumptions
made, like a consistent height of the laser scanner. The detailed result of our
random forest as well as class-wise F1 scores and the overall accuracies of the

Table 6. Left: Performance of our RF on the Oakland dataset. Overall accuracy:
95.27%. Right: Comparison of F1 scores and accuracies of the classifiers on the
Oakland dataset.
Our Orig.
ID ID Class Name Prec. Recall F-Meas.
1 1004 Scatter/Misc 0.953 0.922 0.937
2 1100 Wire 0.101 0.894 0.181
3 1103 Pole 0.376 0.751 0.501
4 1200 Load/Bearing 0.999 0.994 0.996
5 1400 Facade 0.893 0.696 0.782

Weighted Avg. 0.974 0.953 0.961

Class F1 Score Over.
Classifier 1 2 3 4 5 Accur.

Original RF 0.878 0.165 0.364 0.978 0.749 92.2%
Our RF 0.937 0.181 0.501 0.996 0.782 95.3%
KPConv 0.966 0.186 0.429 0.992 0.813 95.7%

Table 7. Comparison of F1 scores and accuracies of the classifiers on the Paris-
rue-Madame dataset.

Class F1 Score Overall
Classifier 1 2 3 4 5 6 Accuracy

Original RF 0.960 0.932 0.672 0.036 0.206 0.105 90.1%
Our RF 0.983 0.965 0.897 0.000 0.202 0.304 96.4%
KPConv 0.989 0.988 0.972 0.000 0.733 0.767 98.6%

different classifiers are printed in Table 6. KPConv performs slightly better than
our RF approach. It has to be noted that this dataset only contains 1,086 points
belonging to class pole. Due to sub-sampling, our RF classifier is therefore only
trained on 5,430 equally distributed points.

Paris-rue-Madame. Due to the small number of pedestrians in the training
data, the data is subsampled to 3,656 examples per class for our RF classifier.
Compared to the original paper we achieve an over 6% higher accuracy of 96.44%
as presented in Table 7. Another 2% are achieved by KPConv.

Figure 7 shows the outputs of our random forest and KPConv after applying
them to the depicted test data. Region A in the figure shows an area where the
high recall value belonging to the class cars of our random forest classifier can
be seen. However, also the points belonging to the ground around the cars are
assigned the same label. In constrast, KPConv labels cars more conservatively
leading to a higher precision score but introducing some errors where facades are
predicted. The traffic sign in region B is detected with a high accuracy by both
methods. The motorcycle in area C is not detected by either classifier. KPConv,
however, detects other motorcycles that are not presented in the illustration.
The pedestrian in sector D is ignored by both approaches.

Especially the bad matching of pedestrians has to be noted. Precision and
recall values are zero for this class as shown in Table 8. We interpret this as an
over-fitting on the seen object instances due to the fact that only three pedes-
trians are part of the training data.

Sim2Real. The simulated laser scan created with Blender, Blender2Helios, and
Helios are subsampled to 16,900 examples per class for training our RF. Table 9

Figure 7. Paris-rue-Madame labeled test data for reference. Colors indicate class
affiliations. Blue: facade, yellow : ground, red : cars, dark green: pedestrians,
rose: motorcycles, light blue: traffic signs. Left: Ground truth. White circles in-
dicate regions that are later discussed in the text. Middle: Output of our random
forest classifier. Right: Output of KPConv.

Figure 8. Sim2Real labeled test data for reference. Colors indicate class affili-
ations. Yellow : man-made ground, orange: natural ground, green: vegetation,
light blue: object, dark blue: facade, red : car. Left: Semantic labels in the
Sim2Real test data. Annotation was done manualy. Middle: Output of our ran-
dom forest classifier. Right: Output of KPConv.

shows the detailed performance of our RF classifier. Evaluation is done with the
manually labeled real scan from the parking lot in Würzburg. Results of the
different classifiers are shown in Table 9. Our RF and KPConv reach the same
overall accuracy of 94.21%.

Figure 8 shows an excerpt of the test data. Region A in the figure shows a car
that is correctly classified by us, but is treated like vegetation by KPConv. The
recognition of area B, the upper part of a street light, is incorrectly classified by
both methods. We have no explanation why KPConv detects a facade in sector
C which is paved ground. However, in part D, KPConv detects the building
with a much higher accuracy. Area E is probably the most difficult section. The
grassland has an irregular incline and is peppered with smaller plants. Big parts
of it are correctly classified by the random forest. KPConv, in constrast, heavily
labels the points as cars or vegetation.

Semantic3D Challenge. Semantic3D is the dataset containing the most points
for training and testing.

To tune the parameters for our RF, an additional split of the supplied training
data is used. Now for testing all the prelabeled data is used to create an equally
distributed set of features to train a classifier with best performance.

KPConv is already provided with a training procedure for the Semantic3D
challenges. As the authors of [7] already put much effort into tuning, this is just

Table 8. Performance of our RF on the Paris-rue-Madame dataset. Overall ac-
curacy: 96.44%.

Our ID Orig. ID Class Name Precision Recall F-Measure
1 1 Facade 0.984 0.982 0.983
2 2 Ground 0.994 0.937 0.965
3 4 Cars 0.816 0.995 0.897
4 9 Pedestrians 0.000 0.000 0.000
5 10 Motorcycles 0.291 0.154 0.202
6 14 Traffic signs 0.200 0.635 0.304

Weighted Avg. 0.968 0.964 0.965

Table 9. Left: Performance of our RF classifier on the Sim2Real dataset. Overall
accuracy: 94.21%. Right: Comparison of F1 scores and accuracies of the classifiers
on Sim2Real.

ID Class Name Prec. Recall F-Meas.
1 Manmade Ground 1.000 0.973 0.986
2 Natural Ground 0.784 0.762 0.773
3 Vegetation 0.876 0.961 0.916
4 Lamps/Railings 0.893 0.304 0.454
5 Buildings/Walls 0.959 0.650 0.775
6 Cars 0.827 0.986 0.900
Weighted Avg. 0.947 0.942 0.940

Class F1 Score Over.
Classifier 1 2 3 4 5 6 Accur.

Our RF 0.986 0.773 0.916 0.454 0.775 0.900 94.2%
KPConv 0.990 0.364 0.888 0.373 0.946 0.876 94.2%

adapted to our needs. The only change is the removal of the color information
to allow a fair comparison of the classifiers.

The results of our submissions to the Semantic3D reduced-8 challenge are
given in Table 10. For comparison the original KPConv results that use color
information are also depicted. F1 scores and accuracies are shown in Table 11.
One can see that KPConv provides better results than our RF on this large
dataset.

5.2 Run Times

For the comparison of run times we use a Lenovo Yoga 720-15IKB that is
equipped with an Intel Core i5-7300HQ CPU (4x 2.50GHz) and 24GB of RAM.
For KPConv an Asus GeForce RTX 2080 Ti ROG STRIX with 11GB of video
memory is plugged into a Razer Core X external GPU graphics card enclosure.
The Thunderbolt connection is a small bottleneck and allows only for utilizing
the GPU up to approximately 70-80%. Of course, modern workstations will per-
form better than our hardware. However, the times shown in Table 12 already
provide a coarse reference.

The numbers indicate that calculating handcrafted features and training a
random forest is much faster than the neural network approach. It has to be men-
tioned that the parameters for KPConv are optimized for the huge Semantic3D

Table 10. Results of the Semantic3D reduced-8 submissions: IoU.
Colors Intersection over Union for Class Average

Classifier Used? 1 2 3 4 5 6 7 8 IoU
Our RF No 0.886 0.839 0.595 0.371 0.861 0.187 0.203 0.398 0.542
KPConv No 0.982 0.905 0.814 0.373 0.943 0.319 0.609 0.824 0.721
KPConv Yes 0.909 0.822 0.842 0.479 0.949 0.400 0.773 0.797 0.746

Table 11. Results of the Semantic3D reduced-8 submissions: F1 scores and ac-
curacies.

Colors Class F1 Score Overall
Classifier Used? 1 2 3 4 5 6 7 8 Accuracy

Our RF No 0.940 0.912 0.746 0.541 0.926 0.315 0.337 0.569 86.49%
KPConv No 0.991 0.950 0.897 0.543 0.971 0.484 0.757 0.903 93.51%
KPConv Yes 0.952 0.902 0.914 0.648 0.974 0.571 0.872 0.887 92.86%

dataset. By changing the learning rate and adapting the stop criterion a speedup
of the KPConv learning process seems likely. However, it can be seen that the RF
approach adapts better to varying dataset sizes. Application of our classifier on
a point cloud with 10 million points takes around 1 hour for feature calculation
and 9 minutes to apply the RF.

6 Conclusions and Future Work

The main objective of this research is the comparison of different approaches for
semantic classification in 3D point clouds. One can see that classical methods
with handcrafted features still have a right to exist. With our optimization of
using multiple reduced scans to approximate different neighborhood sizes they
show very similar results compared to the deep learning approach on small- to
medium-sized datasets. Their short runtime for training makes them an excellent
choice for creating a good baseline or for choosing a reasonable set of training
data. Due to their low hardware requirements, they can be used on cheap and
even mobile hardware.

On the big Semantic3D dataset the deep learning approach performs better.
We justify this by its capability of learning a more complex model. This comes
with the downside of long training times and increased hardware prerequisites.

With the development of Blender2Helios, an interface between an easily us-
able 3D suite and the LiDAR simulation software Helios is created. Due to the
good compatibility of Blender, many existing scenes can now be converted to 3D
point clouds. As labeling in Blender is much easier than in the point cloud, we
hope to promote the creation of highly detailed and labeled 3D point clouds. In
this paper we show with the Sim2Real dataset that artificial data can be used
to train classifiers that are later used in real-world applications. We will dive

Table 12. Training times of our RF and the KPConv classifier.
Time Taken (Approx.)

Number of Points Step Our RF1 KPConv

2 million
Feature calculation 40 seconds (100,000)

7 hours
Classifier training 40 seconds (100,000)

10 million
Feature calculation 3 minutes (400,000)

13.5 hours
Classifier training 4 minutes (400,000)

1 The numbers in brackets show the number of points that we are able to choose equally dis-
tributed from the whole scan for training of the RF. However, all points have impact on the
calculation of feature values.

deeper into this in future work and hope to see some applications of our tool in
future publications.

Needless to say, a lot of work remains to be done. Instead of down-sampling
the training data, other preprocessing strategies might positively impact the
accuracy of our approach. Also many different neighborhood definitions and sets
of handcrafted features exist. It is conceivable that other combinations achieve
higher accuracies than the ones we have tested.

References

1. M. Weinmann, B. Jutzi, and C. Mallet, “Semantic 3d scene interpretation: A frame-
work combining optimal neighborhood size selection with relevant features,” ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. 2, no. 3, p. 181, 2014.

2. T. Hackel, J. Wegner, and K. Schindler, “Fast semantic segmentation of 3d point
clouds with strongly varying density,” ISPRS Annals of the Photogrammetry, Re-
mote Sensing and Spatial Information Sciences, 2016.

3. H. Thomas, F. Goulette, J.-E. Deschaud, and B. Marcotegui, “Semantic classific-
ation of 3d point clouds with multiscale spherical neighborhoods,” in Proc. of the
IEEE Intl. Conference on 3D Vision (3DV ’18), 2018.

4. T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler, and M. Pollefeys,
“Semantic3d. net: A new large-scale point cloud classification benchmark,” arXiv
preprint arXiv:1704.03847, 2017.

5. L. Landrieu and M. Simonovsky, “Large-scale point cloud semantic segmentation
with superpoint graphs,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 4558–4567.

6. Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and A. Markham,
“RandLA-Net: Efficient semantic segmentation of large-scale point clouds,” arXiv
preprint:1911.11236, 2019.

7. H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and L. J. Guibas,
“KPConv: Flexible and deformable convolution for point clouds,” in Proc. of the
IEEE Intl. Conf. on Computer Vision (ICCV ’19), 2019.

8. T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler, and M. Pollefeys.
9. M. Neumann, “Blender2Helios - github repository,” https://github.com/

neumicha/Blender2Helios, 2020.

https://github.com/neumicha/Blender2Helios
https://github.com/neumicha/Blender2Helios

10. L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.
11. P. Probst and A.-L. Boulesteix, “To tune or not to tune the number of trees in

random forest,” The Journal of Machine Learning Research, vol. 18, no. 1, pp.
6673–6690, 2017.

12. M. Amrehn, F. Mualla, E. Angelopoulou, S. Steidl, and A. Maier, “The random
forest classifier in Weka: Discussion and new developments for imbalanced data,”
arXiv preprint arXiv:1812.08102, 2018.

13. A. Nüchter, D. Borrmann, and J. Schauer, “3DTK - the 3d toolkit,” http:
//threedtk.de, 2019, accessed: 2020-02-01.

14. D. Munoz, J. A. Bagnell, N. Vandapel, and M. Hebert, “Contextual classifica-
tion with functional max-margin markov networks,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, 2009, pp. 975–982.

15. B. Vallet, M. Brédif, A. Serna, B. Marcotegui, and N. Paparoditis, “Terramobil-
ita/iqmulus urban point cloud analysis benchmark,” Computers & Graphics,
vol. 49, pp. 126–133, 2015.

16. J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert, “Natural terrain classi-
fication using three-dimensional ladar data for ground robot mobility,” Journal of
field robotics, vol. 23, no. 10, pp. 839–861, 2006.

17. I. Lee and T. Schenk, “Perceptual organization of 3d surface points,” Interna-
tional Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, vol. 34, no. 3/A, pp. 193–198, 2002.

18. S. Filin and N. Pfeifer, “Neighborhood systems for airborne laser data,” Photo-
grammetric Engineering & Remote Sensing, vol. 71, no. 6, pp. 743–755, 2005.

19. J. Demantké, C. Mallet, N. David, and B. Vallet, “Dimensionality based scale
selection in 3d lidar point clouds,” The Intl. Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, 2011.

20. A. Toshev, P. Mordohai, and B. Taskar, “Detecting and parsing architecture at city
scale from range data,” in 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. IEEE, 2010, pp. 398–405.

21. C. Mallet, F. Bretar, M. Roux, U. Soergel, and C. Heipke, “Relevance assessment
of full-waveform lidar data for urban area classification,” ISPRS journal of photo-
grammetry and remote sensing, vol. 66, no. 6, pp. S71–S84, 2011.

22. M. Neumann, “Semantic classification in uncolored 3D point clouds using
multiscale features,” Master’s thesis, Julius Maximilian University of Würzburg,
2020.

23. Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3D ShapeN-
ets: A deep representation for volumetric shapes,” in Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR ’15), 2015.

24. Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao, “SpiderCNN: Deep learning on
point sets with parameterized convolutional filters,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 87–102.

http://threedtk.de
http://threedtk.de

	Semantic Classification in Uncolored 3D Point Clouds using Multiscale Features

