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Abstract: To create 3D volumetric maps of scenes with autonomous mobile robots
it is necessary to gage several 3D scans and to merge them into one consistent 3D
model. This paper provides a new solution to the simultaneous localization and
mapping (SLAM) problem with six degrees of freedom. Robot motion on natural
surfaces has to cope with yaw, pitch and roll angles, turning pose estimation into
a problem in six mathematical dimensions. A fast variant of the Iterative Closest
Points (ICP) algorithm registers the 3D scans in a common coordinate system and
relocalizes the robot. Finally, consistent 3D maps are generated using closing loop
detection and a global relaxation.
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1. INTRODUCTION

The problem of automatic environment sensing
and modeling in 3D is complex, because a number
of fundamental scientific issues are involved. One
is the control of an autonomous mobile robot
and scanning the environment with a 3D sensor.
Another question is how to create a volumetric
consistent scene in a common coordinate system
from multiple views. This problem is addressed
here: The proposed algorithms allows to digitize
large environments fast and reliably without any
intervention and solve the simultaneous localiza-
tion and mapping (SLAM) problem. Finally, robot
motion on natural outdoor surfaces has to cope
with yaw, pitch and roll angles, turning pose es-
timation as well as scan matching or registration
into a problem in six mathematical dimensions.
This paper presents a new solution to the SLAM
problem with six degrees of freedom and focuses
on closing the loops in 6D. A fast variant of the
iterative closest points algorithm registers the 3D

scans in a common coordinate system and relocal-
izes the robot. The computational requirements
are reduced by two new methods: First we reduce
the 3D data and second we approximate the clos-
est point search. Overall consistent 3D maps are
generated using a global relaxation after a closed
loop has been detected.

The paper is organized as follows: The next sec-
tion describes the state of the art. Section 3
presents the autonomous mobile robot and the
3D laser range finder. Section 4 presents the reg-
istration algorithms, a ground truth experiments
and solution to the SLAM problem. Furthermore
we show how data reduction and access meth-
ods speed up computation and the methods be-
come feasible. The next section presents the re-
sults. Finally section 7 concludes the paper. The
paper is accompanied by a video including the
3D map. The video is available for download at
www.ais.fraunhofer.de/ARC/3D/6D/.



2. RELATED WORK

Some groups have attempted to build 3D volu-
metric representations of environments with 2D
laser range finders. In (Thrun et al., 2000) two
2D laser range finders are used for acquiring 3D
data. One laser scanner is mounted horizontally
and one is mounted vertically. The latter one
grabs a vertical scan line which is transformed
into 3D points using the current robot pose. This
approach has difficulties to navigate around 3D
obstacles with jutting out edges. They are only
detected while passing them. The published 2D
probabilistic localization approaches, e.g., Markov
models or Monte Carlo methods work well in flat
and structured 2D environments but an extension
in the third dimension is still missing since the
algorithm do not scale with additional dimensions.

A few other groups use 3D laser scanners (Sequeira
et al., 1999; Allen et al., 2001). A 3D laser scan-
ner generates consistent 3D data points within a
single 3D scan. The RESOLV project aimed to
model interiors for virtual reality and telepresence
(Sequeira et al., 1999). They used a RIEGL laser
range finder on a robot, and the ICP algorithm for
scan matching. The AVENUE project develops a
robot for modeling urban environments using a
CYRAX laser scanner and a feature-based scan
matching approach for registration of the 3D scans
in a common coordinate system (Allen et al.,
2001). The research group of M. Hebert has recon-
structed environments using the Zoller+Fröhlich
laser scanner and aims to build 3D models without
initial position estimates, like without odometry
information (Hebert et al., 2001).

3. AUTOMATIC 3D SCANNING

3.1 The AIS 3D Laser Range Finder

The AIS 3D laser range finder (Surmann et al.,
2001) is built on the basis of a 2D range finder by
extension with a mount and a servomotor. The
2D laser range finder is attached to the mount for
being rotated. The rotation axis is horizontal. A
standard servo is connected on the left side (Fig.
1) (Surmann et al., 2001).

The area of 180◦(h) × 120◦(v) is scanned with
different horizontal (181, 361, 721) and vertical
(128, 256, 512) resolutions. A plane with 181
data points is scanned in 13 ms by the 2D laser
range finder (rotating mirror device). Planes with
more data points, e.g., 361, 721, duplicate or
quadruplicate this time. Thus a scan with 181 ×
256 data points needs 3.4 seconds. In addition to
the distance measurement the AIS 3D laser range
finder is capable of quantifying the amount of light
returning to the scanner.

Fig. 1. The robot platform Kurt3D with the 3D scanner.

3.2 The Autonomous Mobile Robot Kurt3D

Kurt3D (figure 1) is a mobile robot platform with
a size of 45 cm (length) × 33 cm (width) × 26 cm
(height) and a weight of 15.6 kg. Equipped with
the 3D laser range finder the height increases to
47 cm and weight increases to 22.6 kg. Kurt3D’s
maximum velocity is 5.2 m/s (autonomously con-
trolled 4.0 m/s). Two 90W motors are used to
power the 6 wheels, whereas the front and rear
wheels have no tread pattern to enhance rotating.
Kurt3D operates for about 4 hours with one bat-
tery (28 NiMH cells, capacity: 4500 mAh) charge.
The core of the robot is a Pentium-III-600 MHz
with 384 MB RAM running Linux. An embedded
16-Bit CMOS microcontroller is used to control
the motor.

4. RANGE IMAGE REGISTRATION AND
ROBOT RELOCALIZATION

Multiple 3D scans are necessary to digitalize envi-
ronments without occlusions. To create a correct
and consistent model, the scans have to be merged
into one coordinate system. This process is called
registration. If the localization of the robot with
the 3D scanner were precise, the registration could
be done directly by the robot pose. However, due
to the unprecise robot sensors, the self localiza-
tion is erroneous, so the geometric structure of
overlapping 3D scans has to be considered for
registration.

The matching of 3D scans can either operate
on the whole three-dimensional scan point set or
can be reduced to the problem of scan matching
in 2D by extracting, e.g., a horizontal plane of
fixed height from both scans, merging these 2D
scans and applying the resulting translation and
rotation matrix to all points of the corresponding
3D scan.



Matching of complete 3D scans has the advantage
of having a larger set of attributes (either pure
data points or extracted features) to compare the
scans. This results in higher precision and lowers
the possibility of running into a local minimum
of the cost function. Furthermore, using three
dimensions enables the robot control software to
recognize and take into account changes of height
and roll, yaw and pitch angles of the robot. This
6D robot relocalization is essential for robots
driving cross country.

4.1 Matching as an Optimization Problem

The following method for registration of point
sets is part of many publications, so only a short
summary is given here. The complete algorithm
was invented in 1992 and can be found, e.g., in
(Besl and McKay, 1992). The method is called
Iterative Closest Points (ICP) algorithm.

Given two independently acquired sets of 3D
points, M (model set, |M | = Nm) and D (data
set, |D| = Nd) which correspond to a single shape,
we want to find the transformation consisting of
a rotation R and a translation t which minimizes
the following cost function:

E(R, t) =
Nm∑

i=1

Nd∑

j=1

wi,j ||mi − (Rdj + t)||2 . (1)

wi,j is assigned 1 if the i-th point of M describes
the same point in space as the j-th point of
D. Otherwise wi,j is 0. Two things have to be
calculated: First, the corresponding points, and
second, the transformation (R, t) that minimize
E(R, t) on the base of the corresponding points.

The ICP algorithm calculates iteratively a local
minimum of equation (1). In each iteration step,
the algorithm selects the closest points as corre-
spondences wi,j and calculates the transformation
(R, t) for minimizing equation (1). Fig. 2 shows
three steps of the ICP algorithm. Besl et al. proves
that the method terminates in a minimum (Besl
and McKay, 1992). The assumption is that in the
last iteration step the point correspondences are
correct.

In each ICP iteration, the transformation is cal-
culated by the quaternion based method of Horn
(Horn, 1987). A unit quaternion is a 4 vector
q̇ = (q0, qx, qy, qz)T , where q2

0 + q2
x + q2

y + q2
z =

1, q0 ≥ 0. It describes a rotation axis and an angle
to rotate around that axis. The rotation expressed
as quaternion that minimizes equation (1) is the
largest eigenvalue of the cross-covariance matrix
(Besl and McKay, 1992). This calculation is com-
putationally inexpensive. The transformation t is
computed using the rotation and the two centroids

of the 3D points sets (Horn, 1987). Fig. 2 shows
two 3D scans in their initial, i.e., odometry-based
pose, after 5 iterations, and the final pose. 55
iterations are needed to align these two 3D scans
correctly.

In order to use the ICP algorithm for mobile robot
applications an analysis of the registration process
has been made. To compare the registration with
the ground truth several experiments have to be
made. We have made an experiment in a flat, very
structured environment (Fig. 2) and measured the
ground truth with a meter rule (scan pose 1: (x, z,
θ) = (0 cm, 0 cm, 0◦), scan pose 2 (120 cm, 301 cm,
0◦). It turned out, that the automatic alignment of
the 3D scans (116 cm, 301 cm, 0◦) is close to that
ground truth pose. Fig. 3 shows the results of the
alignment of two 3D scans with different starting
guesses. It turned out that the angle of the robot
is more important than the position. Nevertheless,
the main parameter of 3D scan matching is the
form of the 3D surface.

4.2 Matching Multiple 3D Scans

To digitalize environments, multiple 3D scans
have to be registered. After registration, the scene
has to be globally consistent. A straightforward
method for aligning several 3D scans is pairwise
matching, i.e., the new scan is registered against
the scan with the largest overlapping areas. The
latter one is determined in a preprocessing step.
Alternatively, in (Chen and Medoni, 1991) an
incremental matching method is introduced, i.e.,
the new scan is registered against a so-called
metascan, which is the union of the previously
acquired and registered scans. Each scan matching
has a limited precision. Both methods accumulate
the registration errors such that the registration
of many scans leads to inconsistent scenes and to
problems with the robot localization.

4.2.1. Closing the Loop. After matching mul-
tiple 3D scans, errors have accumulated and a
closed loop will be inconsistent (Fig. 4). Our al-
gorithm detects a closing loop by registering the
last acquired 3D scan with earlier acquired scans,
e.g., the first scan. If a registration is possible, the
computed error is in a first step divided by the
number of 3D scans in the loop and distributed
over all scans (Fig. 4). A second step minimizes
the global error with the following algorithm.

4.2.2. Diffusing the Error. Pulli presents a reg-
istration method that minimizes the global error
and avoids inconsistent scenes (Pulli, 1999). This
method distributes the global error while the reg-
istration of one scan is followed by registration of



Fig. 2. Left: Initial odometry based pose of two 3D scans. Middle: Pose after five ICP iterations. Right: final alignment.
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Fig. 3. Left and middle: Error measurements for 3D scan registration (Fig. 2) against the ground truth pose (120 cm, 301 cm,

-45◦). The Error function is e(x, z, θ) = ||(x, z)− (120, 301)|| + γ
∣∣∣∣θ − π

4

∣∣∣∣. Results with θ ∈ {−60,−20, 0, 20} are

given. Right: The poses are marked in (x, z, θ) from which a correct alignment of two 3D scans is possible.

all neighboring scans. Other matching approaches
with global error minimization have been pub-
lished, e.g., (Benjemaa and Schmitt, 1997) and
(Eggert et al., 1998).

Based on the idea of Pulli we designed a method
called simultaneous matching. Thereby, the first
scan is the masterscan and determines the coor-
dinate system. This scan is fixed. The following
three steps register all scans and minimize the
global error, after a queue is initialized with the
first scan of the closed loop:

(1) The current scan is the first scan of the
queue. This scan is removed from the queue.

(2) If the current scan is not the master scan,
then a set of neighbors (set of all scans that
overlap with the current scan) is calculated.
This set of neighbors forms one point set M .
The current scan forms the data point set D
and is aligned with the ICP algorithms. One
scan overlaps with another if more than 250
corresponding point pairs exist.

(3) If the current scan changes its location by
applying the transformation (translation or
rotation), then each single scan of the set of
neighbors that is not in the queue is added
to the end of the queue.

In contrast to Pulli’s approach, the proposed
method is totally automatic and no interactive
pairwise alignment has to be done. Furthermore
the point pairs are not fixed (Pulli, 1999). The
accumulated alignment error is spread over the
whole set of acquired 3D scans. This diffuses the
alignment error equally over the set of 3D scans
(Fig. 4).

4.3 Data Reduction and Access

The computational expense of the ICP algorithm
mainly depends on the number of points. In a
brute force implementation the point pairing is
in O(n2). Data reduction reduces the time re-
quired for matching. The reduction proposed here
considers the procedure of the scanning process,
i.e., the spherical and continuous measurement of
the laser. Scanning is noisy and small errors may
occur. Two kinds of errors mainly occur: Gaussian
noise and so called salt and pepper noise. The
latter one occurs for example at edges, where
the laser beam of the scanner hits two surfaces,
resulting in a mean and erroneous data value.
Furthermore reflections lead to suspicious data.
Without filtering, only a few outliers lead to mul-



Fig. 4. Left: Initial poses of 3D scans when closing the loop. Middle: Poses after detecting the loop and equally sharing
the resulting error. Right: Final alignment after error diffusion with correct alignment of the edge structure at the
ceiling.

tiple wrong point pairs during the matching phase
and results in an incorrect 3D scan alignment.

We propose a fast filtering method to reduce
and smooth the data for the ICP algorithm. The
filter is applied to each 2D scan slice, containing
up to 721 data points. It is a combination of
a median and a reduction filter. The median
filter removes the outliers by replacing a data
point with the median value of the n surrounding
points (here: n = 7). The neighbor points are
determined according to their number within the
2D scan slice, since the laser scanner provides the
data sorted in a counter-clockwise direction. The
median value is calculated with regards to the
Euclidian distance of the data points to the point
of origin. The data reduction works as follows:
The scanner emits the laser beams in a spherical
way, such that the data points close to the source
are more dense. Multiple data points located close
together are joined into one point. This reduction
lowers the Gaussian noise. Finally, the data for the
scan matching is collected from every third scan
slice. This fast vertical reduction yields a good
surface description. The number of these so called
reduced points is one order of magnitude smaller
than the original one. Data reduction and filtering
are online algorithms and run in parallel to the 3D
scanning.

The ICP algorithms spends most of its time dur-
ing creating of the point pairs. kD-trees (here
k = 3) have been suggested for speed up the
data access (Simon et al., 1994; Zhang, 1992).
The kd-trees are a binary tree data structure with
terminal buckets. The data is stored in the buckets
and the keys are selected, such that a data space is
divided into two equal parts. This ensures that a
data point can be selected in O(log n). In addition
the time spent on creating the tree is important.

Recently Approximate kd-trees (Apr-kd-tree) have
been introduced (Greenspan and Yurick, 2003).
The idea behind this is to return as an approx-
imate nearest neighbor pa the closest point pb
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Fig. 5. Running time of scan registration using kd-tree
search and approximate kd-tree search.

in the bucket region of the kD-tree where p lies.
This value is determined from the depth-first
search, thus expensive Ball-Within-Bounds tests
and backtracking are not used (Greenspan and
Yurick, 2003). In addition to these ideas we avoid
the linear search within the bucket. During the
computation of the Apr-kd-tree the mean values
of the points within a bucket are computed and
stored. Then the mean value of the bucket is used
as approximate nearest neighbor, replacing the
linear search.

The search using the Apr-kd-tree is applied until
the error function (1) stops decreasing. To avoid
misalignments due to the approximation, the reg-
istration algorithm is restarted using the normal
kd-tree search. A few iterations (usually 1-3) are
needed for this final corrections. Figure 5 shows
the registration time of two 3D scans in depen-
dence to the bucket size using kd-tree or Apr-kd-
tree search. Both search methods have their best
performance with a bucket size of 10 points.

5. RESULTS

To visualize the scanned 3D data, a viewer pro-
gram based on OpenGL has been implemented.
The task of this program is to project a 3D scene
to the image plane, i.e., the monitor, such that
the data can be drawn and inspected from every
perspective. Fig. 2, 4 and 6 show rendered 3D
scans.



Table 1. Computing time and number of ICP iterations
to align all 32 3D scans (Pentium-IV-2400). In addition
the computing time for the SLAM algorithm (closed loop
detection and simultaneous matching) is given. About
1 min per 3D scan is needed to do error diffusion in 6D.

points & search method time iter.

all pts. & brute force 144 h 5 min 2080
all pts. & kD–tree 12 min 23 s 2080
all pts. & Apx-kD–tree 10 min 1 s 2080
red. pts. & Apx-kD–tree <1 min 32 s 2176

6D SLAM with
reduced pts. & Apx-kD–tree 38 min 16000

The proposed algorithms have been applied to
a data set acquired on Birlinghoven Castle’s in-
stitute campus. 32 3D scans, each containing
302820 range data points, were taken by the
mobile robot Kurt3D. The robot had to cope
with a height difference between the two build-
ings of 1.05 meter, covered, on the one hand,
by a sloped driveway in open outdoor terrain,
and, on the other hand, by a ramp of 12◦ in-
side the building. The 3D model was computed
after acquiring all 3D scans. Table 1 summarizes
the computational time of our 6D SLAM algo-
rithms. The final model with the closed loop is
presented in Fig. 6. Please refer to the website
http://www.ais.fraunhofer.de/ARC/3D/6D/ for
a computed animation and video through the
scanned 3D scene.

6. CONCLUSION
This paper has presented a new solution to the
simultaneous localization and mapping (SLAM)
problem with six degrees of freedom. Based on the
ICP algorithm the registration error is globally
spread over all 3D scans and thus minimized. The
presented algorithms are speeded up with data
reduction that maintains the surface structure and
with approximate kd-trees for closest point search.
The computational amount of about 1 min per
scan is acceptable, but further improvement is
needed.

Future work will concentrate on the integration of
two color cameras (Fig. 1) to acquire textured 3D
models. The aperture angle of the camera will be
enlarged using a pan and tilt unit to acquire color
information for all measured range points.
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