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Abstract:
The Hough Transform is a well-known method for detection of parametrized objects. It is the de
facto standard for detecting lines and circles in 2-dimensional data sets. For 3D it has attained
little attention so far. Apart from computation costs, the main problem lies in the representation
of the accumulator: Usual implementations favor geometrical objects with certain parameters
due to uneven sampling of the parameter space. In this paper we present a novel approach
to design the accumulator focusing on achieving the same size for each cell. The proposed
accumulator is compared to previously known designs.
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1. INTRODUCTION

One of the main research topics in mobile robotics attends
to creating maps of the robot’s surroundings. Mapping
is often achieved by matching separately collected partial
views, for example laser scans. A laser scan is a set of dis-
tance values. Each laser scan, taken by a robot at different
positions, represents a small part of the environment, the
part that is observable from the current pose. The process
of joining these partial views into one map is referred to
as scan matching. Scan matching is subject to matching
errors, sensor noise and systematic errors in the scans. The
structure of indoor environments, however, usually com-
prises a large amount of planar surfaces. This knowledge
can be used to help reconstruct the real structure of the
environment.

Plane extraction, or plane fitting, is the problem of mod-
eling a given 3D point cloud as a set of planes that ideally
explain every data point. The RANSAC algorithm is a
general, non-deterministic algorithm that iteratively finds
an accurate model for observed data that may contain a
large number of outliers (cf. Fischler and Bolles (1981)).
Schnabel et al. (2007) have adapted RANSAC for plane
extraction and found that the algorithm performs precise
and fast plane extraction, but only if the parameters have
been fine-tuned properly. Bauer and Polthier (2008) use
the radon transform to detect planes. The idea and the
speed of the algorithm are similar to that of the Hough
Transform, however the accuracy of the detected planes is
significantly worse. Other plane extraction algorithms are
highly specialized for a specific application and are not in
widespread use for miscellaneous reasons (cf. Borrmann
and Elseberg (2009)).

2. THE 3D HOUGH TRANSFORM

The Hough Transform (Hough (1962)) is a method for the
detection of parametrized objects. Typically used for lines
and circles, we will focus on the detection of planes in
3D point clouds here. Planes are commonly represented
by the signed distance ρ to the origin of the coordinate
system and the slope mx in direction of the x-axis and my

in the direction of the y-axis, respectively:

z = mxx + myy + ρ.

To avoid the arising problems due to infinite slopes when
trying to represent vertical planes, another usual definition
uses normal vectors. A plane is thereby given by a point
p on the plane, the normal vector n that is perpendicular
to the plane and the distance ρ to the origin

ρ = p · n = pxnx + pyny + pznz = ρ.

Taking the angles between the normal vector and the
coordinate system into consideration the coordinates of
n can be factorized to

px · cos θ · sin ϕ + py · sin ϕ · sin θ + pz · cos ϕ = ρ, (1)

with θ the angle of the normal vector on the xy-plane and
ϕ the angle between the xy-plane and the normal vector
in z direction. ϕ, θ and ρ define the 3-dimensional Hough
Space (θ, ϕ, ρ space) such that each point in the Hough
Space corresponds to one plane in R3.

To find planes in a set of points we need to calculate
the Hough Transform for each point. Given a point p in
Cartesian coordinates, we have to find all the planes the
point lies on, i. e., find all the θ, φ and ρ that satisfy
Eq. (1). Marking these points in Hough Space leads to a
sinusoid curve. The intersections of two curves in Hough
space denote the planes that are rotated around the line



built by the two points. Consequently, the intersection
of three curves in Hough space corresponds to the polar
coordinates defining the plane spanned by the three points.

Given a set P of points in Cartesian coordinates, we have
to transform all points pi ∈ P into Hough Space. The
more curves intersect in hj ∈ (θ, ϕ, ρ), the more points
lie on the plane represented by hj and the higher is the
probability that hj can actually be extracted from P .

3. STANDARD HOUGH TRANSFORM

For practical applications Duda and Hart (1971) propose
to discretize the Hough Space with ρ′, ϕ′ and θ′ denoting
the extend of each cell in the according direction in
Hough Space. A data structure is needed to store all these
discretized cells and a score parameter for every single cell.
This data structure, called the accumulator, is described in
more detail in Section 5. For each point pi we accumulate
all the cells that are touched by its Hough Transform. The
incrementation process is often referred to as voting, i.e.,
each point votes for all sets of parameters (ρ, ϕ, θ) that
define a plane on which it may lie. The cells with the
highest values represent the most prominent planes, the
plane that covers the most points of the point cloud.

Once all points have voted, the winning planes have to
be determined. Due to the discretization of the Hough
Space and the noise in the input data it is expedient to
search not only for one cell with a maximal score but for
the maximum sum in a small region of the accumulator.
Kiryati et al. (1991) use the standard practice for peak
detection. In the sliding window procedure a small 3-
dimensional window is defined that is designed to cover the
full peak spread. The most prominent plane corresponds to
the center point of a cube in Hough Space with a maximum
sum of accumulation values. The steps of the algorithm are
outlined in Algorithm 1.

Algorithm 1 Standard Hough Transform (SHT)

1: for all points pi in point set P do
2: for all cells (ρ, ϕ, θ) in accumulator A do
3: if point pi lies on the plane defined by (ρ, ϕ, θ)

then
4: accumulate cell A(ρ, ϕ, θ)
5: end if
6: end for
7: end for
8: Search for the most prominent cells in the accumula-

tor, that define the detected planes in P

4. RANDOMIZED HOUGH TRANSFORM

Due to its high computation time, the SHT is rather
impractical, especially for real-time applications. Xu et al.
(1990) describe the Randomized Hough Transform (RHT)
that diminishes the number of cells touched by making use
of the fact that a curve with n parameters is defined by n
points.

Taking the example of planes, three points from the input
space can be mapped onto one point in the Hough Space.
This point is the one corresponding to the plane spanned
by the three points. In each step of the procedure three

points p1, p2 and p3 are randomly picked from the point
cloud. The plane spanned by the three points is calculated
as ρ = n · p1 = ((p3 − p2) × (p1 − p2)) · p1. ϕ and θ are
calculated as explained in Section 2 and the corresponding
cell A(ρ, ϕ, θ) is accumulated. If the point cloud consists
of a plane with ρ, ϕ, θ, after a certain number of iterations
there will be a high score at A(ρ, ϕ, θ).

When a plane is represented by a large number of points,
it is more likely that three points from this plane are
randomly selected. Eventually the cells corresponding to
actual planes receive more votes and are distinguishable
from the other cells. If points are very far apart, they
most likely do not belong to one plane. To take care of
this and to diminish errors from sensor noise a distance
criterion is introduced: distmax(p1,p2,p3) ≤ distmax, i.e.,
the minimum point-to-point distance between p1, p2 and
p3 is below a fixed threshold; for maximum distance,
analogous. The basic algorithm is structured as described
in Algorithm 2.

Algorithm 2 Randomized Hough Transform (RHT)

1: while still enough points in point set P do
2: Randomly pick three points p1, p2, p3 from the set

of points P
3: if p1, p2 and p3 fulfill the distance criterion then
4: Calculate plane (ρ, ϕ, θ) spanned by p1 . . .p3

5: Accumulate A(ρ, ϕ, θ) in the accumulator space.
6: if the cell |A(ρ, ϕ, θ)| equals threshold t then
7: (ρ, ϕ, θ) parameterize the detected plane
8: Delete all points close to (ρ, ϕ, θ) from P
9: Reset the accumulator

10: end if
11: else
12: continue
13: end if
14: end while

The Randomized Hough Transform has several main ad-
vantages. Not all points have to be processed, and for
those points considered no complete Hough Transform is
necessary. Instead, the intersection of three Hough Trans-
form curves is marked in the accumulator. It is possible
to detect the curves one by one. Once there are three
points whose plane leads to an accumulation value above
a certain threshold t, all points lying on that plane can be
removed from the input and hereby the detection efficiency
be increased.

5. NEW ACCUMULATOR DESIGN

Without prior knowledge of the point cloud it is almost
impossible to define proper accumulator arrays. An inap-
propriate accumulator, however, will lead to failures to
detect some specific planes, difficulties in finding local
maxima, display low accuracy, large storage space, and
low speed. A trade-off has to be found between a coarse
discretization that accurately detects planes and a small
number of cells in the accumulator to decrease the time
needed for the Hough Transform. Choosing a cell size that
is too small might also lead to a harder detection of planes
in noisy laser data.



5.1 Accumulator Array

For the standard implementation of the 2-dimensional
Hough Transform (Duda and Hart (1971)) the Hough
Space is divided into Nρ×Nϕ rectangular cells. The size of
the cells is variable and can be chosen problem dependent.
Using the same subdivision for the 3-dimensional Hough
Space by dividing it into cuboid cells causes some major
drawbacks.

A look at the structure of the accumulator in Fig. 1(a)
when mapped to a ball explains the reason for this behav-
ior. The ball represents all possible normal vectors that
can define all different planes. Discretizing the surface of
the ball with respect to ϕ and θ leads to different sized
pieces. The blue colored latitude circles have the same
distance while the longitude circles intersect at the poles.
Therefore the cells closer to the poles are smaller and
comprise less normal vectors. This means voting favors
the larger equatorial cells. In plain terms this means that
the points lying on a plane parallel to the xy-plane will
vote for a larger number of small cells close to the poles,
while points lying on a plane parallel to the xz-plane vote
for a small number of larger cells. In the first case many
cells will have an intermediate high value and are not as
likely to be detected than a plane in the second case where
a few cells have very high values.

5.2 Accumulator Cube

Censi and Carpin (2009) propose a design for an accumu-
lator that is a trade-off between efficiency and ease of im-
plementation. Their intention is to define correspondences
between cells in the accumulator and small patches on the
unit sphere with the requirement that the difference of size
between the patches on the unit sphere is negligible. Their
solution is to project the unit sphere S2 onto the smallest
cube that contains the sphere using the diffeomorphism

ϕ : S2 → cube, s 7→ s/ ‖s‖
∞

.

Each face of the cube is divided into a regular grid.
Fig. 1(b) shows the resulting patches on the sphere. Given
the normal vector of a plane the cell to be accumulated is
calculated as follows. The side ai of the cube is determined
as the direction of the dominant coordinate nd of the face
normal. Scaling the normal vector with 1/nd results in a
projection onto the cube face, where the non-dominant
coordinates of the normal vector transform into the cube
coordinates cx = n1/nd and cy = n2/nd. n1 and n2 denote
the two non-dominant coordinates of the normal vector.
cx and cy range between −1 and 1. Given the cube
coordinates, the cell indices are then calculated as

ax/y =











1
cx/y + 1

2
= 1

1 + nr cells ·
cx/y + 1

2
else.

This short insight into the mathematics shows that the
transformation from S into accumulator indices and back
into S is quite simple. The question remains whether the
implementation is also efficient in terms of regularity of the
cell sizes. Fig. 1(b)(a) shows the patches on the sphere. The
regularity between all six cube faces is obvious. This means
that in an environment that is composed of rectangularly

arranged planes aligned with the coordinate system, all
planes will be detected with the same probability due to
the same sized accumulator cells. However, towards the
corners of the cube faces the cells in the projection become
smaller. The smaller the cells, the higher the number of
cells, onto which the votes will be divided, accordingly
less likelihood to be detected. This irregularity will always
come into effect if the environment is rotated compared
to the coordinate system of the accumulator. Due to the
uneven matching of 8 corners to 6 faces the irregularities
will always be of importance when considering rectan-
gularly arranged environments as well as less structured
environments.

5.3 Polyhedral Accumulator

Zaharia and Preteux (2002) use the 3D Hough Transform
for shape-based similarity retrieval. In this application
geometric invariances play an important role as objects are
aligned with the local coordinate system according to their
principal axes. The same decomposition in the direction
of all coordinate axes is achieved when partitioning the
Hough Space by projecting the vertices of any regular
polyhedron onto the unit space. The level of granularity
can be varied by recursively subdividing each of the
polyhedral faces. An example is given in Fig. 1(c). Each
triangular face of the octahedron is divided into four
triangles each of which can again be divided. It becomes
obvious that each top of the octahedron has the same
partitioning, i.e., the structure is invariant against rotation
of 90 ◦ around any of the coordinate axes. This design
brings along many advantages for the task of comparing
objects that are aligned with respect to their principal
axes. For detection of planes however it shows the same
drawbacks as the cuboid design described in the previous
section. When mapping the partitions back onto the unit
sphere the patches will appear to be to be unequally sized.

5.4 Accumulator Ball

The three designs presented in the previous sections have
one drawback in common, the irregularity between the
patches on the unit sphere. While the simple array struc-
ture suffers from enormous differences between the patch
sizes, the cuboid and octahedral designs reduce these dif-
ferences drastically. A further benefit is their invariance
against rotation of 90 ◦ around any of the coordinate axes.
Problems remain with smaller rotations. If the planes to
be detected do not align with the coordinate system the
position of the plane decides about its likeliness to be de-
tected. Still, the calculation of the cells to be accumulated
is slightly more complicated.

We present a design for the accumulator with the intention
of having the same patch size for each cell. To achieve
this, the resolution in terms of polar coordinates has to be
varied dependent on the position on the sphere. For this
purpose the sphere is divided into slices. See Fig. 4 (left) for
an illustration of the idea. The resolution of the longitude
ϕ can be kept as for the accumulator array. ϕ′ determines
the distance between the latitude circles on the sphere,
e.g., the thickness of the slices. Depending on the longitude
of each of the latitude circles the discretization has to be
adapted. One way of discretization is to calculate the step
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Fig. 1. Mapping of the accumulator designs onto the unit sphere.

width θ′ based on the size of the latitude circle at ϕi. The
largest possible circle is the equator located at ϕ = 0. For
the unit sphere it has the length maxl = 2π. The length
of the latitude circle in the middle of the segment located
above ϕi is given by lengthi = 2π(ϕi +ϕ′). The step width
in θ direction for each slice is now computed as

θ′ϕi
=

360 ◦ · maxl

lengthi · Nθ
.

The resulting design is illustrated in Fig. 1(d). The image
clearly shows that all accumulator cells are of the same
size. Compared to the previously explained accumulator
designs, the accumulator cube and the polyhedral accumu-
lator, a possible drawback becomes obvious when looking
at the projections on the unit sphere. The proposed design
lacks invariance against rotations of multiples of 90 ◦. This
leads to a distribution of the votes to several cells. In
practice however this problem seems negligible since in
most cases the planes to be detected do not align perfectly
with the coordinate system. Experimental evaluation of
the different accumulator designs in the following section
support this claim.

6. EXPERIMENTAL EVALUATION

The different designs for storing the votes of the Hough
Transform, are compared in this section using simulated
as well as real laser scans. The simple array structure
where ϕ and θ are discretized uniformly is the simplest
way of discretizing the Hough Space. It is interesting
to investigate whether the obvious flaws of this design
come into effect in practical applications or if they are
negligible. Second, out of the two designs that focus on
symmetry with respect to the coordinate system we chose
the cuboid design over the polyhedral design, since both
designs seem to have similar characteristics and the cuboid
design appears to be easier to manage. Third, the design of
our accumulator ball with different discretization for each
latitude slice of the unit sphere is evaluated against those
other two designs.

6.1 Evaluation using Simulated Data

For easier evaluation we reduce the experimental setup to
a simple test case. A cube with a side length of 400 cm is
placed around the origin. Each side consists of 10000 points
which are randomly distributed over the entire face of the
cube with a maximal noise of 10 cm. Different rotations
are applied to the cube to simulate different orientations

Accumulator Array Accumulator Cube

(a) (d)

(b) (e)

(c) (f)

Accumulator Ball

(g) (h)

Fig. 3. Planes detected (SHT) using accumulator array
(a)–(c), cube (d)–(f) and ball (g)–(h).
(a), (d), (g): 20 planes with the highest score.
(b), (e), (h): After peak search procedure, all planes
with more than 90% of the maximal score.
(c), (f) The six planes with the highest score.

of planes. The advantage of using this simple model is
the existence of ground truth data for the actual planes.
The cube possesses a perpendicular structure which is
characteristic for most man-made indoor environments. As
pointed out in Section 5 rotating the cube poses challenges
to the accumulators as the sides are not symmetrically
aligned with the coordinate axes anymore.

Quantitative Evaluation The first experiment presents
a graphical investigation of the ability of the accumulator
designs to correctly detect planes in the given point cloud.
For this purpose we apply the SHT to the cube. To
achieve comparable results the number of cells for each
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Fig. 2. Left to right: array, cube, ball design of the accumulator. The input data is the modeled cube rotated by (0, 0, 0)
(left) and (45, 45, 45) (right).

accumulator needs to be approximately the same. Nρ =
100 with a maximal distance of 600. For the accumulator
ball we use Nϕ = 45 and Nθ = 90. This means that
the slice around the equator consists of 90 patches. The
total number of cells is 257100. The accumulator cube has
a total number of 264600 cells when using 21 × 21 cells
on each face. The simple accumulator is discretized with
Nϕ = 38 and Nθ = 76 leading to 288800 cells.

In Fig. 2 the accumulators are plotted after applying
100000 iterations of the RHT. For better visibility only the
slice with 198 < ρ < 204 is shown, i.e., the distance that
the planes have. The votes are drawn in blue, the darker a
cell, the more votes it has received. The first three images
show the results for the perfectly aligned cube and the cube
rotated by 45 ◦ around each axis. The images show that
for the accumulator array the two planes corresponding to
the highest and lowest ϕ values do not show up. For the
ball design the peaks show up, but are not as high as the
peaks around the equator. In practice this means that the
several cells along the equator have higher votes as the
cells around the poles and are therefore earlier detected
as planes. The images (d)–(f) show the same experiments
with the rotated cube. The six peaks that show up in the
accumulator array vary in color. The same holds true for
the cube. The peaks close to the corners of the cube (the
faces of the accumulator are marked in different colors)
show a lighter blue. These are the regions where the
patches have the smallest size. The result is, that planes
corresponding to those cells are less likely to be detected.
For the ball design the peaks are most evenly colored
in this scenario. This supports the previously mentioned
assumption that the ball design is the best for detecting
arbitrary planes due to its characteristic of having evenly
sized patches in the Hough space.

For the next test case we use the laser scan model of
the cube rotated by (10, 10, 10) and apply the SHT to
it using all three different accumulators. After the voting
phase in the SHT, the peaks in the accumulator have to
be found and a decision has to be made which of those
peaks correspond to actual planes in the input data. As
seen in Fig. 2 the votes for one plane spread over a small
region in the Hough Space. To pick the best representation
out of one of these regions we implemented a simple peak

search strategy that is applied after voting. Starting in one
corner of the accumulator, we run over the complete space
with a small window, in this experiment 8 × 8 × 8 cells.
Within this window all values but the highest one are set
to zero. This simple strategy might favor certain maxima
but in our experiments this fact showed little influence on
the results. For the accumulator cube we ran over each
face separately. In the accumulator ball each slice consists
of a different number of cells. This might cause problems
when applying this windowed peak search. However, due
to the small difference in size of two neighboring slices the
covered region is not regularly shaped but still connected.

The resulting planes are shown in Fig. 3. The first image
for each accumulator depicts the 20 planes with the
highest score using no peak search strategy. Secondly, after
applying the peak search strategy. For all accumulators
all planes with a count up to 90 % of the highest score
are considered to be actual planes. For the accumulator
ball these planes are very close to the six faces of the
cube model. For the accumulator cube only two planes are
above the threshold. For the accumulator array the back
and the bottom face are not among the top 90 % while the
front appears three times. For the cube the threshold to
correctly detect all six faces of the model is 88 %. For the
array all six faces of cube have a score above 80 %.

Quantitative Evaluation The demands towards the HT
are twofold. First, the planes need to be easily detected,
i.e., each plane is represented by exactly one dominant
maximum in the accumulator. In the example this means
that each of the six highest peaks corresponds to one face
of the cube. Second, the highest peak for each face is as
close as possible to the ground truth of the plane. Fig. 4
shows an evaluation of the three different accumulator
designs with respect to these aspects. On the left the
ability to correctly detect all six planes is depicted. Nine
different rotations are applied to the cube. The bars
indicate the number of incorrectly detected planes, i.e., if
the six highest peaks correspond to the six different faces
of the cube, the error is zero. Each time the next highest
peak corresponds to an already detected plane before every
single face of the cube is represented by one peak, the error
is incremented by one.
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Fig. 4. Left: Calculation of the length of a longitude circle at ϕi. The segment in question is the darker colored one.
Middle: Number of incorrectly detected planes on a logarithmic scale. Right: Angle error of the detected planes.
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Fig. 5. Scan of an empty office with planes detected (RHT).

The results show clearly that the simple array structure
has significant problems to correctly identify the six cube
faces. It totally fails when the cube is aligned with the
coordinate system, as motivated in Section 5. The uneven
sizes of the patches lead to an uneven distribution of peaks
against favor of the planes parallel to the xy-plane. This
comes mostly in effect when the cube is aligned with the
coordinate system, when rotated the effects diminish but
do not disappear.

In Fig. 2 it became obvious that the accumulator ball has
problems detecting planes that are parallel to the xy-plane.
If the cap of the ball is divided into several patches, more
cells intersect at the poles than at the other parts of the
accumulator. This leads to distribution of the votes over
all these patches, decreasing the count for each of these
cells. This problem is solved by creating a circular cell
around the pole that has the desired size of the patches and
proceed with the rest of the sphere in the same manner as
before. Using this design the ball and the cube show similar
performance. The ball performs better in some test cases,
the cube in others. On average the ball design slightly
outperforms the cube.

The chart on the right of Fig. 4 shows the sum of the
angle errors for the detected planes. For each side of the
cube the cell with the highest vote is used and the angle
between the normal vector and the ground truth normal
vector of the plane is calculated as error. The results show
only small, negligible differences between the different
accumulator designs. This indicates that once a plane is
detected correctly the parameters are calculated equally
well with each accumulator design.

6.2 Evaluation using Real Laser Data

To show the applicability of the Hough Transform to
real laser data, we apply the RHT to a laser scan of an
empty office. The result is shown in Fig. 5. All planes were
correctly detected within less than 600 ms on an Intel Core
2 Duo 2.0 GHz processor with 4 GB RAM. For further
evaluation on the applicability of the Hough Transform
see Borrmann and Elseberg (2009).

7. CONCLUSION

In this paper we proposed a novel accumulator design,
whose cells are of equal size. This property leads to an eas-
ier detection of planes when using the Hough Transform,
since maxima are pronounced equally independent of their
position in the accumulator. The applicability of the design
for the detection of planes in simulated as well as in real
laser scans was shown by the presented experiments. We
also compared our approach to previously used designs.
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