
Accurate Object Localization in 3D Laser Range Scans

Andreas Nüchter, Kai Lingemann, Joachim Hertzberg

University of Osnabrück, Institute for Computer Science

Knowledge-Based Systems Research Group

Albrechtstraße 28

D-49069 Osnabrück, Germany

{nuechter|lingemann|hertzberg}@informatik.uni-osnabrueck.de

Hartmut Surmann

Fraunhofer Institute for

Autonomous Intelligent Systems (AIS)

Schloss Birlinghoven

D-53754 Sankt Augustin, Germany

hartmut.surmann@ais.fraunhofer.de

Abstract— This paper presents a novel method for object
detection and classification in 3D laser range data that is
acquired by an autonomous mobile robot. Unrestricted objects
are learned using classification and regression trees (CARTs) and
using an Ada Boost learning procedure. Off-screen rendered
depth and reflectance images serve as an input for learning.
The performance of the classification is improved by combining
both sensor modalities, which are independent from external
light. This enables highly accurate, fast and reliable 3D object
localization with point matching. Competitive learning is used
for evaluating the accuracy of the object localization.

I. INTRODUCTION

Environment perception is a basic problem in the design

of autonomous mobile cognitive systems, i.e., of a mobile

robot. A crucial part of the perception is to learn, detect,

localize and recognize objects, which has to be done with

limited resources. The performance of such a robot highly

depends on the accuracy and reliability of its percepts and on

the computational effort of the involved interpretation process.

Precise localization of objects is the all-dominant step in any

navigation or manipulation task.

This paper proposes a new method for the learning, fast de-

tection and localization of instances of 3D object classes. The

approach uses 3D laser range and reflectance data acquired by

an autonomous mobile robot to perceive the 3D objects. The

3D range and reflectance data are transformed into images

by off-screen rendering. Based on the ideas of Viola and

Jones [25], we built a cascade of classifiers, i.e., a linear

decision tree. The classifiers are composed of classification

and regression trees (CARTs) and model the objects with

their view dependencies. Each CART makes its decisions

based on feature classifiers and learned return values. The

� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �
� �� �� �
� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �
� �� �� �
� ������������� �� �� �� �� �� �� ��������� �� �� �� �� �� �	 		 		 		 		 		 	

��� ����� �� �� �� �� �� �� �� �� �� �� �� ���� �� �� ���� ���� ����� �� �� �� �� �� � ! ""## $%& && &''(())* *+ +, , -/////0 00 00 00 00 00 00 011111112 22 22 22 22 22 22 22 2333333334 44 44 45 55 55 5

6 6 67 7 50

 40

 30

 20

 10

 0
 0 0.1 0.2 0.3 0.4 3 1 2 0.5

distances [cm]

Point Distribution

number of points

subsampled
comparing

3D models

depth depth

refl. refl.

database

3D Scan Classification Model MatchingRay Tracing Evaluation Result
Visualization

Off−Screen
rendering

Fig. 1. System Overview. After acquiring 3D scans, depth and reflection images are generated. In these images, objects are detected using a learned
representation from a database. Ray tracing selects the points corresponding to the 2D projection of the object. A 3D model is matched into these points,
followed by an evaluation step.

features are edge, line, center surround, or rotated features.

Lienhart et. al and Viola and Jones have implemented a method

for computing effectivly these features using an intermediate

representation, namely, integral image [12], [25]. For learning

object classes, a boosting technique, particularly, Ada Boost,

is used [6]. After detection, the object is localized using a

matching technique. Hereby the pose is determined with six

degrees of freedom, i.e., with respect to the x, y, and z
positions and the roll, yaw and pitch angles. Finally the quality

of the object localization is evaluated by fast subsampling

of the scanned 3D data. The resulting approach for object

detection is reliable and real-time capable and combines recent

results in computer vision with the emerging technology of 3D

laser scanners. Fig. 1 gives an overview of the implemented

system.

II. STATE OF THE ART

Common approaches of object detection use information of

CCD-cameras that provide a view of the robot’s environment.

Nevertheless, cameras are difficult to use in natural environ-

ments with changing light conditions. Robot control architec-

tures that include robot vision mainly rely on tracking, e.g.,

distinctive, local, scale invariant features [18], light sources

[11] or the ceilings [5]. Other camera-based approaches to

robot vision, e.g., stereo cameras and structure from motion,

have difficulties providing navigation information for a mo-

bile robot in real-time. Camera-based systems have problems

localizing objects precisely, i.e., single cameras estimate the

object distance only roughly using the known object size due

to the resolution. Estimating depth with stereo is imprecise

either: For robots, the width of the stereo base line is limited

to small values (e.g., < 20 cm), resulting in a typical z-axis

error of about 78 cm for objects at the scanner’s maximum

ranging distance of about 8 m.

Many current successful robots are equipped with distance

sensors, mainly 2D laser range finders [24]. 2D scanners

cannot detect 3D obstacles outside their scan plane. Currently

a general trend exists to use 3D laser range finders and build

3D maps [2], [19], [22], [23]. Nevertheless, only little work

has been done in interpreting the obtained 3D models. In [14]

we show how complete scenes, made of several automatically

registered 3D scans, are labeled using relations given in a

semantic net. Object detection in 3D laser scans from mobile

robots was presented in [13]. This approach is extended

here: First, CARTs are used for a more sophisticated object

detection, second, objects are localized in 3D space using point

based matching, and third, the accuracy of the matching is

evaluated.

In the area of object recognition and classification in 3D

range data, Johnson and Hebert use the well-known ICP algo-

rithm [4] for registering 3D shapes into a common coordinate

system [10]. The necessary initial guess of the ICP algorithm

is done by detecting the object with spin images [10]. This

approach was extended by Shapiro et al. [16]. In contrast

to our proposed method, both approaches use local, memory

consuming surface signatures based on prior created mesh

representations of the objects. Furthermore, spin images are

not able to model complicated objects, i.e., objects with non-

smooth, or non-producible mesh representation. One of the

objects used in this paper, the volksbot [1], is of such a

structure (Fig. 9).

Besides spin images, several surface representation schemes

are in use for computing an initial alignment. Stein and

Medioni presented the notion of “splash” to represent the

normals along a geodesic circle of a center point, which is the

local Gauss map for 3D object recognition with a database

[20]. Ashrock et al. proposed a pairwise geometric histogram

to find corresponding facets between two surfaces that are

represented by triangle meshes [3]. Harmonic maps and their

use in surface matching have been used by Zhang and Hebert

[26]. Recently, Sun and colleagues have suggested so-called

“point fingerprints”: They compute a set of 2D contours that

are projections of geodesic circles onto the tangent plane and

compute similarities between them [21]. All these approaches

take the local geometry of the surfaces into account, i.e.,

meshes. They have problems coping with unstructured point

clouds.

III. THE AUTONOMOUS MOBILE ROBOT KURT3D

A. The Kurt Robot Platform

Kurt3D (Fig. 2) is a mobile robot platform with a size of

45 cm (length) × 33 cm (width) × 26 cm (height) and a

weight of 15.6 kg, both indoor as well as outdoor models

exist. Equipped with the 3D laser range finder, the height

increases to 47 cm and the weight increases to 22.6 kg.1

1Videos of the exploration with the autonomous mobile robot can be found
at: http://www.ais.fraunhofer.de/ARC/kurt3D/index.html

Fig. 2. The autonomous mobile robot Kurt3D equipped with the 3D laser
range finder as presented at RoboCup 2004. The scanners technical basis is
a SICK 2D laser range finder (LMS-200).

Kurt3D’s maximum velocity is 5.2 m/s (autonomously con-

trolled: 4.0 m/s). Two 90W motors are used to power the 6

wheels. Compared to the original Kurt3D robot platform, this

current version has larger wheels, where the middle wheels are

shifted outwards. Front and real wheels have no tread pattern

to enhance rotating. Kurt3D operates for about 4 hours with

one battery (28 NiMH cells, capacity: 4500 mAh) charge. The

core of the robot is an Intel-Centrino-1400 MHz with 768 MB

RAM and a Linux operating system. An embedded 16-Bit

CMOS microcontroller is used to control the motor.

B. The 3D Laser Scanner

The 3D laser range finder (Fig. 2) is built on the basis of

a 2D range finder by extension with a mount and a standard

servo motor [23]. The 2D laser range finder is attached to the

mount in the center of rotation for achieving a controlled pitch

motion. The servo is connected on the left side (Fig. 2). The

3D laser scanner operates up to 5h (Scanner: 17 W, 20 NiMH

cells with a capacity of 4500 mAh, Servo: 0.85 W, 4.5 V with

batteries of 4500 mAh) on one battery pack.

IV. DETECTING OBJECTS IN 3D LASER DATA

A. Rendering Images from Scan Data

After scanning, the 3D data points are projected by an off-

screen OpenGL-based rendering module onto an image plane

to create 2D images. The camera for this projection is located

in the laser source, thus all points are uniformly distributed and

enlarged to remove gaps between them on the image plane.

Fig. 9 shows reflectance images and rendered depth images

(distances encoded by grey-values) as well as point clouds.

B. Feature Detection using Integral Images

There are many motivations for using features rather than

pixels directly. For mobile robots, a critical motivation is that

feature-based systems operate much faster than pixel-based

systems [25]. The features used here have the same structure

as the Haar basis functions, i.e., step functions introduced by

Alfred Haar to define wavelets [8]. They are also used in [12],

[15], [25]. Fig. 3 (left) shows the eleven basis features, i.e.,

edge, line, diagonal and center surround features. The base

resolution of the object detector is for instance 30×30 pixels,

thus, the set of possible features in this area is very large

(642592 features, see [12] for calculation details). In contrast

to the Haar basis functions, the set of rectangle features is not

minimal. A single feature is effectively computed on input

images using integral images [25], also known as summed

area tables [12]. An integral image I is an intermediate

representation for the image and contains the sum of gray

scale pixel values of image N with height y and width x, i.e.,

I(x, y) =
x

∑

x′=0

y
∑

y′=0

N(x′, y′).

The integral image is computed recursively, by the formulas:

I(x, y) = I(x, y − 1) + I(x − 1, y) + N(x, y) − I(x − 1, y −
1) with I(−1, y) = I(x,−1) = I(−1,−1) = 0, therefore

requiring only one scan over the input data. This intermediate

representation I(x, y) allows the computation of a rectangle

feature value at (x, y) with height and width (h, w) using four

references (see Fig. 3 (right)):

F (x, y, h, w) = I(x, y) + I(x + w, y + h) −

I(x, y + h) − I(x + w, y).

For computing the rotated features, Lienhart et. al. introduced

rotated summed area tables that contain the sum of the pixels

of the rectangle rotated by 45◦ with the bottom-most corner

at (x, y) and extending till the boundaries of the image (see

Fig. 3 (bottom left)) [12]:

Ir(x, y) =

x
∑

x′=0

x−|x′−y|
∑

y′=0

N(x′, y′).

The rotated integral image Ir is computed recursively, i.e.,

Ir(x, y) = Ir(x − 1, y − 1) + Ir(x + 1, y − 1) + −Ir(x, y −
1)+N(x, y)+N(x, y−1) using the start values Ir(−1, y) =
Ir(x,−1) = Ir(x,−2) = Ir(−1,−1) = Ir(−1,−2) = 0.

Four table lookups are required to compute the pixel sum of

any rotated rectangle with the formula:

Fr(x, y, h, w) = Ir(x + w − h, y + w + h − 1) +

Ir(x, y − 1) − Ir(x − h, y + h − 1) −

Ir(x + w, y + w − 1).

Since the features are compositions of rectangles, they are

computed with several lookups and subtractions weighted with

the area of the black and white rectangles.

To detect a feature, a threshold is required. This threshold is

automatically determined during a fitting process, such that a

minimal number of examples are misclassified. Furthermore,

the return values (α, β) of the feature are determined, such

that the error on the examples is minimized. The examples

are given in a set of images that are classified as positive or

negative samples. The set is also used in the learning phase

that is briefly described next.

8 8 88 8 88 8 88 8 88 8 88 8 88 8 88 8 88 8 88 8 88 8 88 8 8
8 8 8
9 9 99 9 99 9 99 9 99 9 99 9 99 9 99 9 99 9 99 9 99 9 99 9 9
9 9 9 : : : : : :: : : : : :: : : : : :: : : : : :: : : : : :: : : : : :: : : : : :; ; ; ; ; ;; ; ; ; ; ;; ; ; ; ; ;; ; ; ; ; ;; ; ; ; ; ;; ; ; ; ; ;; ; ; ; ; ; < < << < << < << < << < << < << < << < << < << < << < << < <

< < <
= == == == == == == == == == == == =
= = > > > > > > >> > > > > > >> > > > > > >> > > > > > >? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ? @ @ @ @@ @ @ @@ @ @ @@ @ @ @@ @ @ @@ @ @ @A A AA A AA A AA A AA A AA A AB B B BB B B BB B B BB B B BB B B BB B B B

B B B BC C CC C CC C CC C CC C CC C CC C C D DD DD DD DE EE EE EE E FGFGFGFGFGFFGFGFGFGFGFFGFGFGFGFGFFGFGFGFGFGFFGFGFGFGFGFFGFGFGFGFGFFGFGFGFGFGFFGFGFGFGFGFFGFGFGFGFGFFGFGFGFGFGFFGFGFGFGFGF

HGHGHGHGHGHHGHGHGHGHGHHGHGHGHGHGHHGHGHGHGHGHHGHGHGHGHGHHGHGHGHGHGHHGHGHGHGHGHHGHGHGHGHGHHGHGHGHGHGHHGHGHGHGHGHHGHGHGHGHGH
IJIIJIIJI
KJKKJKKJK
LGLGLGLGLGLLGLGLGLGLGLLGLGLGLGLGL
MGMGMGMGMGMMGMGMGMGMGMMGMGMGMGMGM

y
y+

h

x+wx

r

r

I (x,y)

I (x,y−2)

NONONONONONONONNONONONONONONONNONONONONONONONNONONONONONONONNONONONONONONONNONONONONONONONNONONONONONONONNONONONONONONONNONONONONONONON

POPOPOPOPOPOPOPPOPOPOPOPOPOPOPPOPOPOPOPOPOPOPPOPOPOPOPOPOPOPPOPOPOPOPOPOPOPPOPOPOPOPOPOPOPPOPOPOPOPOPOPOPPOPOPOPOPOPOPOP

QJQJQJQJQJQJQJQJQJQJQJQJQJQQJQJQJQJQJQJQJQJQJQJQJQJQJQQJQJQJQJQJQJQJQJQJQJQJQJQJQQJQJQJQJQJQJQJQJQJQJQJQJQJQQJQJQJQJQJQJQJQJQJQJQJQJQJQ

RJRJRJRJRJRJRJRJRJRJRJRJRRJRJRJRJRJRJRJRJRJRJRJRJRRJRJRJRJRJRJRJRJRJRJRJRJRRJRJRJRJRJRJRJRJRJRJRJRJRRJRJRJRJRJRJRJRJRJRJRJRJR

SOSOSOSOSOSSOSOSOSOSOSSOSOSOSOSOSSOSOSOSOSOS

TOTOTOTOTTOTOTOTOTTOTOTOTOTTOTOTOTOT

UUU
UUU
VOVOVOVOVOVOV

WWW
WWW
WWW
WWW
W

XXX
XXX
XXX
XYOY Z[O[O[wh

I (x−h+w,y+w+h−1)

I (
x+

w
,y

+w
−1

)

r r

r

I (
x−

h,
y+

h−
1)

Fig. 3. Top left: Edge, line, diagonal and center surround features are used
for classification. Top right: Computation of feature values F in the shaded
region is based on the four upper rectangles. Bottom left: Calculation of the
rotated integral image Ir. Bottom right: Four lookups in the rotated integral
image are required to compute the feature value of a rotated feature Fr .

thr. = 0.0008941

−0.5598 0.8981

(b)(a)

0.4825 −0.8826

0.898 −0.6285

−0.8388
thr. = 0.006154

thr. = −0.007196 thr. = −0.00319

thr. = 0.03673

Fig. 4. Left: A simple feature classifier with its threshold and return values
α and β. Right: A Classification and Regression Tree with 4 splits. According
to the specific filter applied to the image input section x, the output of the
tree, h(x) is calculated, depending on the threshold values.

C. Learning Classification Functions

1) Classification and Regression Trees: For all 642592

possible features a Classification and Regression Tree (CART)

is created. CART analysis is a form of binary recursive

partitioning. Each node is split into two child nodes, the

original node is called a parent node. The term “recursive”

refers to the fact that the binary partitioning process is applied

over and over to reach a given number of splits (i.e., 6 splits

in the case of the object volksbot). In order to find the best

possible split features, we compute all possible splits, as well

as all possible return values to be used in a split node. The

program seeks to maximize the average “purity” of the two

child nodes using the misclassification error measure [17]. Fig.

4 (left) shows a simple feature classifier and a simple CART

(right).

2) Gentle Ada Boost for CARTs: The Gentle Ada Boost

Algorithm is a variant of the powerful boosting learning

technique [6]. It is used to select a set of simple CARTs to

achieve a given detection and error rate. In the following,

a detection is referred to as a hit and an error as a false

alarm. The various Ada Boost algorithms differ in the update

scheme of the weights. According to Lienhart et al., the Gentle

Ada Boost Algorithm is currently the most successful learning

procedure tested for face detection applications [12].

The learning is based on N weighted training examples

(x1, y1), . . . , (xN , yN), where xi are the images and yi ∈
{−1, 1} the classified output i ∈ {1, . . . , N}. At the beginning

of the learning phase, the weights wi are initialized with

wi = 1/N . The following three steps are repeated to select

simple CARTs until a given detection rate d is reached:

1) Every simple classifier, i.e., a CART, is fit to the data.

Hereby the error e is calculated with respect to the

weights wi.

2) The best CART ht is chosen for the classification

function. The counter t is incremented.

3) The weights are updated with wi := wi · e
−yiht(xi) and

renormalized.

The final output of the classifier is sign(
∑T

t=1 ht(x)) > 0,

with h(x) the weighted return value of the CART. Next, a

cascade based on these classifiers is built.

D. The Cascade of Classifiers

The performance of a single classifier is not suitable for

object classification, since it produces a high hit rate, e.g.,

0.999, but also a high error rate, e.g., 0.5. Nevertheless, the

hit rate is significantly higher than the error rate. To construct

an overall good classifier, several classifiers are arranged in

a cascade, i.e., a degenerated decision tree. In every stage of

the cascade, a decision is made whether the image contains

the object or not. This computation reduces both rates. Since

the hit rate is close to one, their multiplication results also in

a value close to one, while the multiplication of the smaller

error rates approaches zero. Furthermore, this speeds up the

whole classification process, since large parts of the image do

not contain relevant data. These areas can be discarded quickly

in the first stages.

An overall effective cascade is learned by a simple iterative

method. For every stage, the classification function h(x) is

learned until the required hit rate is reached. The process

continues with the next stage using the correctly classified

positive and the currently misclassified negative examples.

These negative examples are random image parts generated

from the given negative examples that pass the previous stages

and thus are misclassified. This bootstrapping process is the

most time consuming of the training phase. The number of

CARTs used in each classifier may increase with additional

stages. Fig. 5 shows an example cascade of classifiers for

detecting a volksbot in 2D depth images, whose results are

given in Table I.

E. Application of the Cascades

Several experiments were made to evaluate the performance

of the proposed approach with two different kinds of images,

namely, reflectance and depth images. Both types are acquired

by the 3D laser range finder and are practically light invariant.

About 200 representation of the objects were taken in addition

to a wide variety of negative examples without any target

object. The detection starts with the smallest classifier size,

e.g., 16 × 40 pixel for the human classifier, 23 × 30 for

the volksbot classifier. The image is searched from top left

to bottom right by applications of the cascade. To detect

−0.9333thr. = 0.005112
−0.8418

thr. = 0.0001984

thr. = 0.004609

thr. = 0.02425

0.7674−0.9618

thr. = 0.07443

thr. = −0.003102
−0.7775

thr. = 0.001583

−0.5853

thr. = 0.001529

−0.475 0.4048
−0.9087

thr. = 0.0008175

thr. = 0.003583

thr. = 0.0008059

0.106

thr. = −0.0009365

−0.8292

−0.7034

thr. = 0.0007613

−0.9586 0.1188
thr. = 0.0815 thr. = −0.0006408

−0.04683

−0.6336 0.6733 −0.8661 0.873
thr. = 0.005157 thr. = 0.009565

thr. = 0.001876

thr. = 0.002204
thr. = −0.0001653

−0.8644 −0.6897
thr. = −0.0007157

−0.4859

thr. = 6.485e−06

−0.7255

−1 0.8453
thr. = −0.001167

thr. = 0.001461

−0.5938thr. = −0.007075

−0.9312 0.08552
thr. = −0.0009206

0.1369
thr. = −0.003502

thr. = 0.0007423
thr. = 0.000449

0.4517

−0.9504 0.0663
thr. = 0.000411

thr. = 0.001039

−0.9621
thr. = 0.0003634

0.7672 −0.16710.6207
thr. = −0.000281 thr. = −0.005518 thr. = 0.0004347

thr. = 0.004755

Σ h(x) < 0

Σ h(x) < 0

Σ
h(

x)
 >

=
0

Σ
h(

x)
 >

=
0

Σ
h(

x)
 >

=
0

−0.78310.8709

thr. = 0.01175

0.4469
thr. = 0.002424

thr. = 0.01117

−0.9337

0.9832

thr. = −0.002584

thr. = 0.00447

thr. = −0.00146
−1−1.0

−1.0

−0.8998

0.04225 −0.8349 −0.9293

−1.0

Fig. 5. The first three stages of a cascade of classifiers to detect the object
volksbot. Every stage contains several simple classifier trees that use Haar-like
features with a threshold thr. and return values of

P

h(x). h(x) is determined
by the path through the trees.

objects on larger scales, the detector is rescaled. An advantage

of the Haar-like features is that they are easily scalable.

Fig. 6. Object points estimation by ray tracing. Top left: All points inside a
detection area are extracted. Top Right and bottom: 3D view. 3D points inside
the detector area (viewing cone) are red colored.

Each feature requires only a fixed number of look-ups in

the integral image, independent of the scale. Time-consuming

picture scales are not necessary to achieve scale invariance.

Fig. 9 show examples of the detection.

To decrease the false detection rate, we combine the cas-

cades of the depth and reflectance images. There are two

possible ways for combining: Either the two cascades run

interleaved or serial and represent a logical “and” [13]. The

joint cascade decreases the false detection rate close to zero.

To avoid the reduction of the hit rate, several different off-

screen rendered images are used, where the virtual camera is

rotated and the apex angle is changed [13].

V. OBJECT LOCALIZATION

A. Object Points Estimation

After object detection in a 2D projection the algorithm finds

the corresponding 3D points using ray tracing. All 3D points

that have been projected into the classified area are retrieved

using a special OpenGL projection matrix. Fig. 6 (right) shows

a rendering of raytraced 3D points.

B. Model Matching

After the 3D data (set D) that contain the object is found,

a given 3D model from the object database is matched into

the point cloud. The model M is also saved as 3D point

cloud in the database. The well known iterative closest points

algorithm (ICP) is used to find a matching [4]. The ICP

algorithm calculates iteratively the point correspondences. In

each iteration step, the algorithm selects the closest points

as correspondences and calculates the transformation, i.e.,

rotation and translation (R, t) for minimizing the equation

E(R, t) =

Nm
∑

i=1

Nd
∑

j=1

wi,j ||di − (Rmj + t)||
2
,

∝
1

N

N
∑

i=1

||mi − (Rdi + t)||2 (1)

where Nm and Nd, are the number of points in the model set

M or data set D, respectively, and wji are the weights for a

point match. The weights are assigned as follows: wji = 1,

if mi is the closest point to dj within a close limit, wji = 0
otherwise.

It is shown that the iteration terminates in a minimum

[4]. In each iteration, the transformation is calculated by the

quaternion based method of Horn [9]. The assumption is that

the point correspondences are correct in the last iteration step.

Finally, the pose of the model corresponds to the one in the

data set.

C. Evaluating the Match

Generally, one is interested in the quality of the matching,

i.e., the accuracy of the model pose inside the 3D data.

Many application specific tasks require this estimation, e.g.,

complicated robot navigation tasks. However, the value of

the error function (1) does not give this information, since

point densities influence this value. Different point densities

are the result of the scanning process, i.e., the spherical and

continuous measurement of the laser. The scanner emits the

laser beams in a spherical way such that the data points close

to the source are more dense. A competitive learning technique

is used to subsample the model and data set.

1) Competitive Object Learning: In addition to subsam-

pling, goals of competitive object learning are the minimiza-

tion of the expected quantization error and entropy maximiza-

tion. A finite set of 3D scan points D is subsambled to the

set A = {w1, w2, . . . , wN}. Error minimization is done with

respect to the following function:

E(D,A) =
1

|D|

∑

wi∈A

∑

ξ∈Rc

||ξ − wi|| ,

with the set A of samples and the Voronoi set Rc of unit c, i.e.,
Rc = {ξ ∈ D|s(ξ) = c} and s(ξ) = argminc∈A ||ξ − wc||.
Entropy maximization guarantees inherent robustness. The

failure of reference vectors, i.e., missing 3D points, affects

only a limited fraction of the data. Interpreting the generation

of an input signal and the subsequent mapping onto the nearest

sample in A as a random experiment which assigns a value

x ∈ A to the random variable X , then maximizing the entropy

H(X) = −
∑

x∈A

P (x) log(P (x))

is equivalent to equiprobable samples. The following neural

gas algorithm learns and subsamples 3D points clouds [7]:

i.) Initialize the set A to contain N vectors, randomly from

the input set. Set t = 0.

Fig. 7. Top: 3D models (point clouds) of the database. Bottom: sumbsampled
models with 250 points.

ii.) Generate at random an input element ξ, i.e., select a

point from D.

iii.) Order all elements of A according to their distance to

ξ, i.e., find the sequence of indices (i0, i1, . . . , iN−1)
such that wi0 is the reference vector closest to ξ, wi1

is the reference vector second closest to ξ, etc., wik
,

k = 0, . . . , N − 1 is the reference vector such that k
vectors wj exists that are closer to ξ than wik

. ki(ξ,A)
denotes the number k associated with wi.

iv.) Adapt the reference vectors according to

∆wi = ε(t)hλ(ki(ξ,A)) · (ξ − wi),

with the following time dependencies:

λ(t) = λi(λf /λi)
t/tmax ,

ε(t) = εi(εf/εi)
t/tmax ,

hλ(k) = exp(−k/λ(t)).

v.) Increase the time parameter t.

The neural gas algorithms is used with the following pa-

rameters: λf = 0.01, λi = 10.0, εi = 0.5, εf = 0.005,

tmax = 10000. Note that tmax controls the run time. Fig. 7

shows 3D models of the database (top row) and subsampled

versions (bottom) with 250 points.

2) Estimating Matching Quality: Given two registered

point sets that contain an equal number of points, e.g., 250

points derived under the premise of minimization of the

expected quantization error and entropy maximization, the

quality of a matching can be evaluated using the following

method: The distribution of shortest distances dij between the

\\\
\\\
\\\
\\\
\\\
\\\

]]]
]]]
]]]
]]]
]]]
]]]

^^^
^^^
^^^
^^

__

`a``a``a`
`a``a``a`
`a``a``a`
`a``a``a`

bbb
bbb
bbb
bbb

caccaccac
caccaccac
cac

daddaddad
daddaddad
dad

eaeeaeeae
eaeeaeeae
faffaffaf
faffaffaf

ggg
g
hhh
h
iiij
jj
kkk
k
lll
l
mmnnoaooaoppqaqqaqrarrar st uv wx yyz

z
{a{{a{||}a}}a}~~ �� ���� �

�
���a�� ���
�
�a��a����a�� �� ���

��
���
��
���
���
�

���
���
�

���
���
��

���
���
��

�a��a��a��a��a��a�

�a��a� 50

 40

 30

 20

 10

 0
 0 0.1 0.2 0.3 0.4 3 1 2 0.5

distances [cm]

Point Distribution

number of points

Fig. 8. A typical distribution of distances between closest points after
registering two models with a fixed (here: 250) number of points.

ith and the jth point (closest points) after registering two

models with a fixed (here: 250) number of points show a

typical structure (Fig. 8). Many distances are very small, i.e.,

less than 0.3 cm, and there are also many larger distances,

e.g., greater than 1 cm. To our experience it is always easy

to find a good threshold to separate the two maximas. After

dividing the set of distances di, the algorithm computes the

mean and the standard deviation of the matching, i.e.,

µ =
1

N ′

N ′

∑

i=1

di σ =

√

√

√

√

1

N ′

N ′

∑

i=1

(di − µ)2

Based on these values one estimates the matching quality by

computing a measure D as a function of µ and σ (we have

been using D = µ + 3σ). Small values of D correspond to

a high quality matching whereas increasing values represent

lower qualities.

VI. RESULTS AND CONCLUSION

The process of generating the cascade of classifiers is rela-

tively time-consuming, but it produces quite promising results.

The first three stages of a learned cascade are shown in Fig. 5.

The time performance of the object detection crucially depends

on the bootstrapping, i.e., on the generation of false positive

examples during the stage learning. Nevertheless, learning has

to be executed only once, the application of the cascade if

very fast (300 ms). Thus the major time for the accurate object

localization is spent during the model alignment and evaluation

step (∼1.4 s).

The capabilities of the chosen approach have been evaluated

in various experiments. Fig. 9 shows four examples of success-

ful detections and Table I summarizes the object localization

results.

A. Future Work

Needless to say, much work remains to be done. Future

work will concentrate on four major aspects:

1) Improve the computational performance of the system

to improve robot/environment interaction.

2) Generate high level descriptions and semantic maps

including the 3D information, e.g., in XML format.

Fig. 9. Examples of object detection and localization. From Left to right: (1) Detection using single cascade of classifiers. Green: detection in reflection image,
yellow: detection in depth image. (2) Detection using the combined cascade. (3) Superimposed to the depth image is the matched 3D model. (4) Detected
object in the raw scanner data, i.e., point representation.

TABLE I

OBJECT NAME, NUMBER OF STAGES USED FOR CLASSIFICATION VERSUS HIT RATE AND THE TOTAL NUMBER OF FALSE ALARMS USING THE SINGLE AND

COMBINED CASCADES. THE TEST SETS CONSIST OF 89 IMAGES RENDERED FROM 20 3D SCANS. THE AVERAGE PROCESSING TIME IS ALSO GIVEN,

INCLUDING THE RENDERING, CLASSIFICATION, RAY TRACING, MATCHING AND EVALUATION TIME.

object # stages detection rate (reflect. img. / depth img.) false alarms (reflect. img. / depth img.) average proc. time

chair 15 0.767 (0.867 / 0.767) 12 (47 / 33) 1.9 sec
kurt robot 19 0.912 (0.912 / 0.947) 0 (5 / 7) 1.7 sec

volksbot robot 13 0.844 (0.844 / 0.851) 5 (42 / 23) 2.3 sec
human 8 0.961 (0.963 / 0.961) 1 (13 / 17) 1.6 sec

The semantic maps will contain spatial 3D data with

descriptions and labels.

3) Integrate a camera and enhance the semantic interpreta-

tion by fusing color images with range data. The aperture

angle of the camera will be enlarged using a pan and tilt

unit to acquire color information for all measured range

points.

4) Enlarge the database with more objects of an indoor and

outdoor environment and build an explicit knowledge

base, i.e., specifying a semantic net containing general

object relations as well as links to the object database

[14].

The final goal of object detection and localization is to develop

unrestricted, automatic and highly reliable algorithms that

could be used in scenarios like RoboCup Rescue.

B. Conclusions

This paper has presented a novel method for the learning,

fast detection and localization of instances of 3D object

classes. The 3D range and reflectance laser scanner data

are transformed into images by off-screen rendering. For

fast object detection, a cascade of classifiers is built, i.e.,

a linear decision tree [25]. The classifiers are composed of

classification and regression trees (CARTs) and model the

objects with their view dependencies. Each CART makes its

decisions based on feature classifiers. The features are edge,

line, center surround, or rotated features. After object detection

the object is localized using a point matching strategy. The

pose is determined with six degrees of freedom, i.e., with

respect to the x, y, and z positions and the roll, yaw and

pitch angles. A final computation returns a quality measure

for the object localization.

The presented combination of algorithms, i.e., the system

architecture enables high accurate, fast and reliable 3D object

localization for autonomous mobile robots.

REFERENCES

[1] The volksbot robot, http://www.ais.fraunhofer.de/BE/
volksbot/, 2004.

[2] P. Allen, I. Stamos, A. Gueorguiev, E. Gold, and P. Blaer. AVENUE:
Automated Site Modeling in Urban Environments. In Proceedings of

the third International Conference on 3D Digital Imaging and Modeling
(3DIM ’01), Quebec City, Canada, May 2001.

[3] A. P. Ashrock, R. B. Fisher, C. Robertson, and N. Werghi. Finding
surface correspondences for object recognition and registration using
pairwise historams. In Proceedings of the European Conference on

Computer Vision (ECCV ’98), pages 185 – 201, Freiburg, Germany,
June 1998.

[4] P. Besl and N. McKay. A method for Registration of 3–D Shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(2):239
– 256, February 1992.

[5] F. Dellaert, W. Burgard, D. Fox, and S. Thrun. Using the Condensation
Algorithm for Robust, Vision-based Mobile Robot Localization. In
Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR ’99), Ft. Collins, USA, June 1999.

[6] Y. Freund and R. E. Schapire. Experiments with a new boosting
algorithm. In Machine Learning: Proceedings of the 13th International
Conference, pages 148 – 156, 1996.

[7] B. Fritzke. A growing neural gas network learns topologies. In Advances
in Neural Information Processing Systems 7 - Proceedings of the 7th

Advances in Neural Information Processing Systems (NIPS ’95), pages
625 – 632, Cambridge, MA, USA, 1995.

[8] A. Haar. Zur Theorie der orthogonalen Funktionensysteme. Mathema-
tische Annalen, (69):331 – 371, 1910.

[9] B. Horn. Closed–form solution of absolute orientation using unit
quaternions. Journal of the Optical Society of America A, 4(4):629
– 642, April 1987.

[10] A. Johnson and M. Hebert. Using spin images for efficient object
recognition in cluttered 3D scenes. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 21(5):433 – 449, May 1999.
[11] F. Launay, A. Ohya, and S. Yuta. Autonomous Indoor Mobile Robot

Navigation by detecting Fluorescent Tubes. In Proccedings of the 10th

International Conference on Advanced Robotics (ICAR ’01), Budapest,
Hungary, August 2001.

[12] R. Lienhart and J. Maydt. An Extended Set of Haar-like Features
for Rapid Object Detection. In Proceedings of the IEEE Conference

on Image Processing (ICIP ’02), pages 155 – 162, New York, USA,
Septmber 2002.

[13] A. Nüchter, H. Surmann, , and J. Hertzberg. Automatic Classification
of Objects in 3D Laser Range Scans. In Proceedings of the 8th

Conference on Intelligent Autonomous Systems (IAS ’04), pages 963
– 970, Amsterdam, The Netherlands, March 2004.

[14] A. Nüchter, H. Surmann, and J. Hertzberg. Automatic Model Refinement
for 3D Reconstruction with Mobile Robots. In Proceedings of the
4th IEEE International Conference on Recent Advances in 3D Digital

Imaging and Modeling (3DIM ’03), pages 394 – 401, Banff, Canada,
October 2003.

[15] C. Papageorgiou, M. Oren, and T. Poggio. A general framework for
object detection. In Proceedings of the 6th International Conference on

Computer Vision (ICCV ’98), Bombay, India, January 1998.
[16] S. Ruiz-Correa, L. G. Shapiro, and M. Meila. A New Paradigm for

Recognizing 3-D Object Shapes from Range Data. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR

’03), Madison, USA, June 2003.
[17] S. Russell and P. Norvig. Artificial Intelligence, A Modern Approach.

Prentice Hall, Inc., Upper Sanddle River, NJ, USA, 1995.
[18] S. Se, D. Lowe, and J. Little. Local and Global Localization for

Mobile Robots using Visual Landmarks. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS ’01),
Hawaii, USA, October 2001.

[19] V. Sequeira, K. Ng, E. Wolfart, J. Goncalves, and D. Hogg. Automated
3D reconstruction of interiors with multiple scan–views. In Proceedings
of SPIE, Electronic Imaging ’99, The Society for Imaging Science

and Technology /SPIE’s 11th Annual Symposium, San Jose, CA, USA,
January 1999.

[20] F. Stein and G. Medioni. Structural indexing: Efficient 3d object
recognition. Transaction on Pattern Analysis and machine Vision

(PAMI), 14:125 – 145, February 1992.
[21] Y. Sun, J. Paik, A. Koschan, D. Page, and M. Abidi. Point Fingerprint:

An New 3D Object Represention Scheme. IEEE transaction on Systems,

Man, and Cybernetics — Part B: Cybernetics, 33(4), 2003.
[22] H. Surmann, K. Lingemann, A. Nüchter, and J. Hertzberg. A 3D laser

range finder for autonomous mobile robots. In Proceedings of the of
the 32nd International Symposium on Robotics (ISR ’01), pages 153 –
158, Seoul, Korea, April 2001.

[23] H. Surmann, A. Nüchter, and J. Hertzberg. An autonomous mobile
robot with a 3D laser range finder for 3D exploration and digitalization
of indoor en vironments. Robotics and Autonomous Systems, 45(3 –
4):181 – 198, December 2003.

[24] S. Thrun, D. Fox, and W. Burgard. A real-time algorithm for mobile
robot mapping with application to multi robot and 3D mapping. In
Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA ’00), San Francisco, CA, USA, April 2000.
[25] Paul Viola and Michael J. Jones. Robust real-time face detection.

International Journal of Computer Vision, 57(2):137 – 154, May 2004.
[26] D. Zhang and M. Hebert. Harmonic maps and their application in surface

matching. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR ’99), pages 2524 – 2530, Ft. Collins,
CO, USA, June 1999.

ACKNOWLEDGMENTS

The work was done during the authors’ time at the Fraun-

hofer Institute for Autonomous intelligent Systems. We would

like to thank Sara Mitri, Simone Frintrop, Kai Pervölz and

Matthias Hennig.

