
6D SLAM with Approximate Data Association

Andreas Nüchter, Kai Lingemann, Joachim Hertzberg

University of Osnabrück, Institute for Computer Science

Knowledge-Based Systems Research Group

Albrechtstraße 28

D-49069 Osnabrück, Germany

{nuechter|lingemann|hertzberg}@informatik.uni-osnabrueck.de

Hartmut Surmann

Fraunhofer Institute for

Autonomous Intelligent Systems (AIS)

Schloss Birlinghoven

D-53754 Sankt Augustin, Germany

hartmut.surmann@ais.fraunhofer.de

Abstract— This paper provides a new solution to the simul-
taneous localization and mapping (SLAM) problem with six
degrees of freedom. A fast variant of the Iterative Closest Points
(ICP) algorithm registers 3D scans taken by a mobile robot into
a common coordinate system and thus provides relocalization.
Hereby, data association is reduced to the problem of searching
for closest points. Approximation algorithms for this searching,
namely, approximate kd-trees and box decomposition trees, are
presented and evaluated in this paper. A solution to 6D SLAM
that considers all free parameters in the robot pose is built based
on 3D scan matching.

I. INTRODUCTION

Digital 3D models of the environment are needed in rescue

and inspection robotics, facility management and architecture.

The problem of automatic environment sensing and model-

ing is complex, because a number of fundamental scientific

issues are involved. This paper focusses on how to create a

consistent 3D scene into a common coordinate system from

multiple scans. The proposed algorithms allow to digitize large

environments fast and reliably without any intervention and

to solve the simultaneous localization and mapping (SLAM)

problem. Finally, robot motion on natural outdoor surfaces has

to cope with changes in yaw, pitch and roll angles, turning

pose estimation as well as scan matching or registration into a

problem in six mathematical dimensions. This paper presents

a new solution to the SLAM problem with six degrees of

freedom (6D SLAM). A fast variant of the iterative closest

points (ICP) algorithm registers the 3D scans into a common

coordinate system and relocalizes the robot. Computation time

is reduced by two new methods: First, we reduce the 3D data,

i.e., we compute point clouds that approximate the scanned

3D surface and contain only a small fraction of that original

3D point cloud. Second, we present a fast approximation

of the corresponding point for the ICP algorithm. Several

approximation methods are evaluated in this paper. These

extensions of ICP result in a fast and robust algorithm for

generating overall consistent 3D maps, using global error

minimization.

In previous work we developed the 6D SLAM algorithm

[20], [27]. This paper’s main contribution is to evaluate the

approximate data association to speed up the algorithm. The

rest of the paper is organized as follows: Section II discusses

the state of the art in 3D mapping. Then we present the

used 3D laser scanner and the mobile robot. Section IV

describes scan matching and pose estimation, followed by

the application of closest point approximation in the data

association phase. Section VI discusses the results. Section

VII concludes.

II. 3D MAPPING – STATE OF THE ART

Instead of using 3D scanners, which yield consistent 3D

scans in the first place, some groups have attempted to build

3D volumetric representations of environments with 2D laser

range finders. Thrun et al. [15], [28], Früh et al. [12] and Zhao

et al. [30] use two 2D laser range finders for acquiring 3D data.

One laser scanner is mounted horizontally, the other vertically.

The latter one grabs a vertical scan line, which is transformed

into 3D points based on the current robot pose. Since the

vertical scanner is not able to scan sides of objects, Zhao et al.

use two additional, vertically mounted 2D scanners, shifted by

45◦ to reduce occlusions [30]. The horizontal scanner is used

to compute the robot pose. The precision of 3D data points

depends on that pose and on the precision of the scanner.

A few other groups use highly accurate, expensive 3D

laser scanners [23], [1], [13]. The RESOLV project aimed at

modeling interiors for virtual reality and tele-presence [23].

They used a RIEGL laser range finder on robots and the ICP

algorithm for scan matching [7], [9]. The AVENUE project

develops a robot for modeling urban environments [1], using

a CYRAX laser scanner and a feature-based scan matching

approach for registering of the 3D scans in a common coordi-

nate system [25]. Nevertheless, in their recent work they do not

use data of the laser scanner in the robot control architecture

for localization [13]. The research group of M. Hebert has

reconstructed environments using the Zoller+Fröhlich laser

scanner and aims at building 3D models without initial po-

sition estimates, i.e., without odometry information [16].

Recently, different groups employ rotating SICK scanners

for acquiring 3D data. Wulf et al. let the scanner rotate around

the vertical axis. They acquire 3D data while moving, thus

the quality of the resulting map cruicially depends on the

pose estimate that is given by inertial sensors, i.e., gyros [29].

In addition, their SLAM algorithms do not consider all six

degrees of freedom. Nevado et al. present novel algorithms for

post processing 3D scans/scenes and extracting planar models

[18].

Other approaches use information of CCD-cameras that

provide a view of the robot’s environment [22], [8]. Yet,

cameras are difficult to use in natural environments with

changing light conditions. Camera-based approaches to 3D

robot vision, e.g., stereo cameras and structure from motion,

Fig. 1. Left: The 3D laser range finder. Its technical basis is a SICK 2D
laser range finder (LMS-200). Right: The autonomous mobile robot Kurt3D.

have difficulties providing reliable navigation and mapping

information for a mobile robot in real-time. Thus some groups

try to solve 3D modeling by using a planar SLAM methods

and cameras, e.g., in [8].

III. AUTOMATIC 3D SENSING

A. The 3D laser range finder

The AIS 3D laser range finder (Fig. 1) [26] is built on the

basis of a 2D range finder by extension with a mount and

a small servomotor. The 2D laser range finder is attached in

the center of rotation to the mount for achieving a controlled

pitch motion. A standard servo is connected on the left side

(Fig. 1) and is controlled by a computer running Linux. The

3D laser scanner operates up to 5h (Scanner: 17 W, 20 NiMH

cells with a capacity of 4500 mAh, Servo: 0.85 W, 6 V with

batteries of 4500 mAh) per battery pack.

The area of 180◦(h) × 120◦(v) is scanned with different

horizontal (181, 361, 721) and vertical (128, 256, 400, 500)

resolutions. A plane with 181 data points is scanned in 13 ms

by the 2D laser range finder (rotating mirror device). Planes

with more data points, e.g., 361, 721, duplicate or quadru-

plicate this time. Thus a scan with 181 × 256 data points

needs 3.4 seconds. In addition to the distance measurement

the 3D laser range finder is capable of quantifying the amount

of light returning to the scanner. Scanning the environment

with a mobile robot is done in a stop-scan-go fashion.

B. The mobile robot

Kurt3D (Fig. 1) is based on a mobile robot platform with

a size of 45 cm (length) × 33 cm (width) × 26 cm (hight)

and a weight of 15.6 kg. Equipped with the 3D laser range

finder the height increases to 47 cm and weight increases to

22.6 kg. Kurt3D’s maximum velocity is 5.2 m/s (autonomously

controlled 4.0 m/s). Two 90W motors are used to power

the 6 wheels, whereas the front and rear wheels have no

tread pattern to enhance rotating. Kurt3D operates for about

4 hours with one battery (28 NiMH cells, capacity: 4500 mAh)

charge. The core of the robot is a Pentium-III-600 MHz with

384 MB RAM and real-time Linux. An embedded 16-Bit

CMOS microcontroller is used to control the motor.1

1Videos of an exploration with the autonomous mobile robot can be found
at: http://www.ais.fraunhofer.de/ARC/kurt3D/index.html

IV. RANGE IMAGE REGISTRATION AND ROBOT

RELOCALIZATION

Multiple 3D scans are necessary to digitalize environments

without occlusions. To create a correct and consistent model,

the scans have to be merged into one coordinate system.

This process is called registration. If robot carrying the 3D

scanner were precisely localized, the registration could be done

directly based on the robot pose. However, due to the unprecise

robot sensors, self localization is erroneous, so the geometric

structure of overlapping 3D scans has to be considered for

registration.

The following method for registration of point sets is part of

many publications, so only a short summary is given here. The

complete algorithm was invented in 1992 and can be found,

e.g., in [7]. The method is called Iterative Closest Points (ICP)

algorithm.

Given two independently acquired sets of 3D points, M
(model set, |M | = Nm) and D (data set, |D| = Nd) which

correspond to a single shape, we aim to find the transformation

consisting of a rotation R and a translation t which minimizes

the following cost function:

E(R, t) =

Nm∑

i=1

Nd∑

j=1

wi,j ||mi − (Rdj + t)||
2
. (1)

wi,j is assigned 1 if the i-th point of M describes the same

point in space as the j-th point of D. Otherwise wi,j is 0. Two

things have to be calculated: First, the corresponding points,

and second, the transformation (R, t) that minimize E(R, t)
on the base of the corresponding points.

The ICP algorithm calculates iteratively the point correspon-

dences. In each iteration step, the algorithm selects the closest

points as correspondences and calculates the transformation

(R, t) for minimizing equation (1). The assumption is that in

the last iteration step the point correspondences are correct.

Besl et al. prove that the method terminates in a minimum

[7]. However, this theorem does not hold in our case, since

we use a maximum tolerable distance dmax for associating the

scan data. Such a threshold is required, given that the 3D scans

overlap only partially. Fig. 2 (top) shows three frames, i.e.,

iteration steps, of the ICP algorithm. The bottom part shows

the start poses (x, z, θy) from which a correct matching is

possible, here with only three degrees of freedom.

A. Calculation of the rotation and translation

In every iteration the optimal tranformation (R, t) has to

be computed. Eq. (1) can be reduced to

E(R, t) ∝
1

N

N∑

i=1

||mi − (Rdi + t)||2 , (2)

with N =
∑Nm

i=1

∑Nd

j=1
wi,j , since the correspondence matix

can be represented by a vector containing the point pairs.

Four methods are known to minimize eq. (2) [17]. In earlier

work [20], [27] we used a quaternion based method [7], but the

following one, based on singular value decomposition (SVD),

is robust and easy to implement, thus we give a brief overview

angle [°]

translation Z [cm]

−80

−40

 0

 40

 80

 200 100 0−100−200

matchable poses

translation X [cm]
tr

an
sl

at
io

n
Z

 [c
m

]

−200

−100

 0

 100

 200

 100 0−100−200 200

matchable poses

Fig. 2. Top row: Left: Initial odometry based pose of two 3D scans. Middle: Pose after five ICP iterations. Right: final alignment, pairwise matching. Bottom
row: The poses are marked in (x, z, θy) from which a correct alignment of two 3D scans is possible.

of the SVD-based algorithms. It was first published by Arun,

Huang and Blostein [2]. The difficulty of this minimization

problem is to enforce the orthonormality of matrix R. The

first step of the computation is to decouple the calculation of

the rotation R from the translation t using the centroids of

the points belonging to the matching, i.e.,

cm =
1

N

N∑

i=1

mi, cd =
1

N

N∑

i=1

dj (3)

and

M ′ = {m′

i = mi − cm}1,...,N , (4)

D′ = {d′

i = di − cd}1,...,N . (5)

After replacing (3), (4) and (5) in the error function, E(R, t)
eq. (2) becomes:

E(R, t)∝
1

N

N∑

i=1

||m′

i −Rd′

i − (t − cm + Rcd)
︸ ︷︷ ︸

=t̃

||
2

=
1

N

N∑

i=1

||m′

i −Rd′

i||
2

(6a)

−
2

N
t̃ ·

N∑

i=1

(m′

i −Rd′

i) (6b)

+
1

N

N∑

i=1

∣
∣
∣
∣t̃
∣
∣
∣
∣
2

. (6c)

In order to minimize the sum above, all terms have to be

minimized. The second sum (6b) is zero, since all values refer

to centroid. The third part (6c) has its minimum for t̃ = 0 or

t = cm −Rcd. (7)

Therefore the algorithm has to minimize only the first term,

and the error function is expressed in terms of the rotation

only:

E(R, t) ∝
N∑

i=1

||m′

i −Rd′

i||
2
. (8)

Theorem: The optimal rotation is calculated by R = VUT .

Herby the matrices V and U are derived by the singular value

decomposition H = UΛVT of a correlation matrix H. This

3 × 3 matrix H is given by

H =

N∑

i=1

m′T
i d′

i =

Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

 , (9)

with Sxx =
∑N

i=1
m′

ixd′ix, Sxy =
∑N

i=1
m′

ixd′iy , The

analogous algorithm is derived directly from this theorem.

Proof: Since rotation is length preserving, i.e., ||Rd′

i||
2=

||d′

i||
2 the error function (8) is expanded

E(R, t) ∝
N∑

i=1

||m′

i||
2
− 2

N∑

i=1

m′

i ·Rd′

i +
N∑

i=1

||d′

i||
2
.

The rotation affects only the middle term, thus it is sufficient

to maximize

N∑

i=1

m′

i · Rd′

i =

N∑

i=1

m′

i

T
Rd′

i. (10)

Using the trace of a matrix, (10) can be rewritten to obtain

trace

(
N∑

i=1

Rd′

im
′

i

T

)

= trace (RH) ,

With H defined as in (9). Now we have to find the matrix R

that maximizes trace (RH).
Assume that the singular value decomposition of H is

H = UΛVT ,

with U and V orthonormal 3 × 3 matrices and Λ a 3 × 3
diagonal matrix without negative elements. Suppose

R = VUT .

R is orthonormal and

RH = VUT UΛVT

= VΛVT

is a symmetric, positive definite matrix. Arun, Huang and

Blostein provide a lemma to show that

trace (RH) ≥ trace (BRH)

for any orthonormal matrix B. Therefore the matrix R is opti-

mal. Prooving the lemma is straightforward using the Cauchy-

Schwarz [2]. Finally, the optimal translation is calculated as

(cf. eq. (6c) and (7))

t = cm −Rcd.

B. ICP-based 6D SLAM

To digitalize environments, multiple 3D scans have to be

registered. After registration, the scene has to be globally

consistent. A straightforward method for aligning several 3D

scans is pairwise matching, i.e., the new scan is registered

against the scan with the largest overlapping areas. The latter

one is determined in a preprocessing step. Alternatively, in

[9] an incremental matching method is introduced, i.e., the

new scan is registered against a so-called metascan, which

is the union of the previously acquired and registered scans.

Each scan matching is limited in precision. Both methods

accumulate the registration errors such that the registration of

a large number of 3D scans leads to inconsistent scenes and

to problems with the robot localization.

1) Closing the loop: After matching multiple 3D scans,

errors have accumulated and a closed loop will be inconsistent.

Our algorithm detects a closing loop by registering the last

acquired 3D scan with earlier acquired scans, e.g., the first

scan. If a registration is possible, the computed error is

distributed over all 3D scans. A second step minimizes the

global error with the following algorithm.

2) Diffusing the Error.: Pulli presents a registration method

that minimizes the global error and avoids inconsistent scenes

[21]. The registration of one scan is followed by registration of

all neighboring scans, such that the global error is distributed.

Other matching approaches with global error minimization

have been published, e.g., [5] and [10]. Benjemaa et al.

establish point-to-point correspondences first and than use ran-

domized iterative registration on a set of surfaces [5]. Eggert

et al. compute motion updates, i.e., a transformation (R, t),
using force-based optimization, with data sets considered as

connected by groups of springs [10].

Based on the idea of Pulli we designed a relaxation method

called simultaneous matching. Thereby, the first scan is the

masterscan and determines the coordinate system. This scan is

fixed. The following three steps register all scans and minimize

the global error, after a queue is initialized with the first scan

of the closed loop:

1) The current scan is the first scan of the queue. This 3D

scan is removed from the queue.

2) If the current scan is not the master scan, then a set of

neighbors (set of all scans that overlap with the current

scan) is calculated. This set of neighbors forms one point

set M . The current scan forms the data point set D and

is aligned with the ICP algorithms. One scan overlaps

with another iff more than 250 corresponding point pairs

exist.

3) If the current scan changes its location by applying the

transformation (translation or rotation), then each single

scan of the set of neighbors that is not in the queue is

added to the end of the queue. If the queue is empty,

terminate; else continue at (1).

In contrast to Pulli’s approach, our method is totally automatic

and no interactive pairwise alignment has to be done. Fur-

thermore the point pairs are not fixed [21]. The accumulated

alignment error is spread over the whole set of acquired 3D

scans. This diffuses the alignment error equally over the set

of 3D scans [27].

C. Computing point correspondences

The time complexity of the algorithm described above is

dominated by the time for determining the closest points

(brute force search O(n2) for 3D scans of n points). Several

enhancements have been proposed [6], [7], [24]. We have

implemented kd-trees as proposed by Simon et al. Fig. 3 shows

two slices taken from a kd-tree.

1) kd-trees: kD-trees are a generalization of binary search

trees. Every node represents a partition of a point set to the

two successor nodes. The root represents the whole point

cloud and the leafs are a disjunct partition of the set. These

leafs are called buckets (cf. Fig. 4). Furthermore, every node

contains the limits of the represented point set. An efficient

implementation of a kd-tree is given in [19].

Searching in kd-trees is done recursively. A given 3D point

pq needs to be compared with the separating plane in order to

decide on which side the search must continue. This procedure

is executed until the leafs are reached. There, the algorithm

has to evaluate all bucket points. However, the closest point

may be in a different bucket, iff the distance to the limits

is smaller than the one to the closest point in the bucket. In

this case backtracking has to be performed. Fig. 4 shows a

backtracking case, where the algorithms has to go back to the

root. The test is known as Ball-Within-Bounds test [6], [11],

[14].

(a)

(b)

Fig. 3. A kd-tree of scanned 3D data (k = 3) of Fig. 2 (top) first/black
3D scan. Two (x, y)-projections of slices at depths z = 100 cm (a) and
z = 550 cm (b) are given.

��

first partition

second partition

b

d

third partition

Ball−Within−Bounds
fourth partition

(b)

(a)

Fig. 4. Left: Construction of a kd tree. Right: The optimized kd-tree uses
splits along the longest axis to ensure compact volumes.

2) The optimized kd-tree: The objective of optimizing kd-

trees is to reduce the expected number of visited leafs. Three

parameters are adjustable, namely, the direction and place of

the split axis as well as the number of points in the buckets.

Splitting the point set at the median ensures that every kd-

tree entry has the same probability [11]. The median can be

found in linear time, thus the time complexity for constructing

the tree is not affected. Furthermore, the split axis should be

oriented perpendicular to the longest axis to minimize the

amount of backtracking (see Fig. 4). Friedman and collegues

prove that a bucket size of 1 is optimal [11]. Nevertheless, in

practice it turned out that a slightly larger bucket size is faster

as given in Fig. 5.

3) Point reduction: To gain an additional speedup, we have

proposed a point reduction. During scanning surfaces close to

the scanner are sampled with more data points. These areas are

subsampled using a median and reduction filter. Fig. 6 shows

the result, details of the algorithm can be found in [20].

V. APPROXIMATE DATA ASSOCIATION

A. Approximate kd-trees

Since the ICP algorithm, and therefore our 6D SLAM

method, extensively computes nearest neigbours, approximat-

ing the nearest neigbours will speed up the algorithm. S. Arya

and D. Mount introduce the following notion for approximat-

ing the nearest neighbor [3]: Given an ε > 0, then the point

k

k

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
�

��
��
��
��
��
�

��
��
��
��
��
�

		
		
		
		
		
	

�

�

�

�

�

�

�

�

�

�

��
��
��
��
��

��
��
��
��
�

��
��
��
��
�

������
������
������
������
���

������
������
������
������
���

������
������
������
������
���

��
��
��
��
�

��
��
��
��
�

��
��
��
��
�

������
������
������
������
���

������
������
������
������
���

��
��
��
��
�

��
��
��
��
�

��
��
��
��
�

��
��
��
��
�

��
��
��
��
��

��
��
��
��
��

������
������
������
������
���

������
������
������
������
���

������
������
������
������
���

!�!!�!
!�!!�!
!�!!�!
!�!!�!
!�!

""
""
""
""
"

#�##�#
#�##�#
#�##�#
#�##�#
#�##�#

$$
$$
$$
$$
$$

%�%%�%
%�%%�%
%�%%�%
%�%%�%
%�%

&&
&&
&&
&&
&

''
''
''
''
'

((
((
((
((
(

))
))
))
))
))

**
**
**
**
**

++
++
++
++
+

,,
,,
,,
,,
,

--
--
--
--
-

..
..
..
..
.

/�//�/
/�//�/
/�//�/
/�//�/
/�/

00
00
00
00
0

1�11�1
1�11�1
1�11�1
1�11�1
1�11�1

2�22�2
2�22�2
2�22�2
2�22�2
2�22�2

3�33�3
3�33�3
3�33�3
3�33�3
3�33�3

44
44
44
44
44

55
55
55
55
5

66
66
66
66
6

77
77
77
77
77

88
88
88
88
88

9�99�9
9�99�9
9�99�9
9�99�9
9�99�9
9�9

::
::
::
::
::
:

;;
;;
;;
;;
;;
;

<<
<<
<<
<<
<<
<

==
==
==
==
==
==

>�>>�>?�??�?

@@
@@
@@
@@
@@
@@
@@
@@
@@

AA
AA
AA
AA
AA
AA
AA
AA
AA

6000

8000

10000

12000

5 10 15 20 25

bd−tree

30 50

[ms]

points per bucket

 d−tree

computing time d−tree and bd−tree

Fig. 5. Computing time in millseconds for a 3D scan matching dependend
on the bucket size of a kd- and bd-tree.

Fig. 6. Left: Two views of a 3D scene. Right: Subsampled version (points
have be enlarged). Two different views are presented (bottom view from top).

p ∈ D is the (1 + ε)-approximate nearest neighbour of the

point pq, iff

||p− q|| ≤ (1 + ε) ||p∗ − q|| ,

where p∗ denotes the true nearest neighbour, i.e., p has a

maximal distance of ε to the true nearest neighbour. Using this

notation in every step the algorithm records the closest point

p. The search terminates if the distance to the unanalyzed

leaves is larger than

||pq − p|| /(1 + ε).

Fig. 7 (left) shows an example where the gray cell needs not

to be analyzed, since the point p satisfies the approximation

criterion.

B. Approximate box decomposition trees

Arya et al. [4] have presented an optimal algorithm for

approximate nearest neighbor search. They use a balanced box

decomposition tree (bd-tree) as their primary data structure.

This tree combines two important properties of geometric data

structures: First, as in the kd-tree case, the set of points is

p

p

q

shrink

shrink

split

(a) (b) (c)

Fig. 7. Left: The (1 + ε)-approximate nearest neighbor. The solid circle
denotes the ε environment of pg . The search algorithm need not analyze the
gray cell, since p satisfies the approximation criterion. Middle and right: (a)
Given point set. (b) decomposition into buckets. (c) Tree layout. Fig. adapted
from [3], [4].

(a)

(b)

Fig. 8. A bd-tree of scanned 3D data (k = 3) of Fig. 2 (top) first/black
3D scan. Two (x, y)-projections of slices at depths z = 100 cm (a) and
z = 550 cm are given (b).

exponentially reduced. Second, the aspect ratio of the tree

edges are bounded by a constant. Not even the optimized kd-

tree is able to make this assurance, but quadtrees show this

characteristic [4]. The actual box decomposition search tree is

composed of splits and shrinks. Fig. 7 (c) shows the general

structure and Fig. 8 presents two slices within this search tree.

The search procedure of bd-trees is similar to the one of

kd-trees. The approximate search is discontinued (cf. Fig. 7)

if the distance to the unanalyzed leaves is larger than

||pq − p|| /(1 + ε).

VI. RESULTS

This section focuses on three aspects. Firstly, we evalu-

ate the quality of scan matching with approximate nearest

neigbour search. Secondly, we investigate the performance of

approximate kd-trees and approximate bd-trees. Finally, we

reproduce results from a robot run given in [27] to demonstrate

the general performance of the approach.

To evaluate the quality of the scan matching we restrict

the problem to three degrees of freedom. We acquired two

3D scans and measured the pose shift by a reference system,

i.e., a meter rule. Fig. 2 (bottom) shows the starting poses

from which a correct scan matching is possible. Fig. 10

indicates the initial positions that result in a correct scan

matching for different values of ε and the bucket size b.
Comparing the figures, we conclude that the approximation

TABLE I

COMPUTING TIME AND NUMBER OF ICP ITERATIONS TO ALIGN ALL 32

3D SCANS (PENTIUM-IV-2400). IN ADDITION THE COMPUTING TIME FOR

THE SLAM ALGORITHM (CLOSED LOOP DETECTION AND SIMULTANEOUS

MATCHING) IS GIVEN. ABOUT 1 MIN PER 3D SCAN IS NEEDED TO DO

ERROR DIFFUSION IN 6D [27].

points & search method time iter.

all pts. & brute force 144 h 5 min 2080
all pts. & kD–tree 12 min 23 s 2080
all pts. & Apx-kD–tree 10 min 1 s 2080
red. pts. & Apx-kD–tree 1 min 32 s 2176

6D SLAM with
reduced pts. & Apx-kD–tree 38 min 16000

does not significantly influence the scan matching, due to the

large numer of used points and to the iterative nature of the

algorithm.

The performance of the proposed tree search is given in

Fig. 5 and 9. In case of no approximation (Fig. 5) the kd-tree

outperforms the bd-tree. The optimal time is reached with 10

points per bucket. In case of approximation, only in a few

cases, i.e., 18 out of 124 experiments, the bd-tree is faster than

the kd-tree. Nevertheless, one notices that with increasing ε the

computation time for the scan matching is reduced drastically

(up to a factor of 2).

The proposed algorithms have been applied to a data set

acquired on the Fraunhofer Campus Birlinghoven campus. 32

3D scans, each containing 302820 (721 × 420) range data

points, were taken by the mobile robot Kurt3D. The robot had

to cope with a height difference between the two buildings of

1.05 meter, covered, in the first case, by a sloped driveway

in open outdoor terrain, and, in the second case, by a ramp

of 12◦ inside the building. The 3D model was computed

after acquiring all 3D scans. Table I summarizes the com-

putation time of our 6D SLAM algorithms. Refer to the web-

site http://www.ais.fraunhofer.de/ARC/3D/6D/

for a computed animation and video through the scanned

3D scene. Furthermore, the algorithms have been evaluated

at the RoboCup Rescue 2004 competition in Lisbon and

precise, reliable, on time 3D maps have been generated (see

http://www.ais.fhg.de/ARC/kurt3D/rr.html).

VII. CONCLUSION

This paper has presented a new solution to the simultaneous

localization and mapping (SLAM) problem with six degrees

of freedom. The method is based on the ICP scan matching

algorithm. The paper investigates approximate data association

using kd-trees and bd-trees. kd-trees empirically outperfom

bd-trees with and without approximation. Approximation does

not significantly deteriorate the quality of scan registration.

From that we know of no other superior approach, scan

matching based on reduced point sets and approximate kd-

trees is currently the most performant method at hand for scan

matching in 6D SLAM.

ACKNOWLEDGEMENTS

The work was done during the authors’ time at the Fraun-

hofer Institute for Autonomous intelligent Systems. We would

like to thank Kai Pervölz and Matthias Hennig and the whole

Kurt3D RoboCup Rescue team of Fraunhofer AIS.

= 1ε k

k

BB
BB
BB
BB
BB
B

CC
CC
CC
CC
CC
C

DD
DD
DD
DD
D

EE
EE
EE
EE
E

FF
FF
FF
FF

GG
GG
GG
GG

HH
HH
HH
HH

II
II
II
II

JJ
JJ

KK
KK

LMLLML
LMLLML
LMLLML

NMNNMN
NMNNMN
NMNNMN

OMOOMO
OMOOMO
OMOOMO

PP
PP
PP

QMQQMQ
QMQQMQ
QMQQMQ

RMRRMR
RMRRMR
RMRRMR

SS
SS
S

TT
TT
T

UU
UU
UU
UU
U

VV
VV
VV
VV
V

WW
WW
WW
W

XX
XX
XX
X

YY
YY

ZZ
ZZ
[[
[[
[

\\
\\
\

]]
]]
]

^^
^^
^

_M__M_
_M__M_
M

``
``
`

aMaaMa
aMaaMa
aMa

bMbbMb
bMbbMb
bMb

cMccMc
cMccMc

dd
dd

ee
ee
e

ff
ff
f

gMggMg
gMggMg
gMg

hh
hh
h

ii
ii
i

jj
jj
j

kk
kk
kk
kk

ll
ll
ll
ll

mm
mm
mm
m

nn
nn
nn
n

oo
oo
oo
o

pp
pp
pp
p

qMqqMq
qMqqMq
qMqqMq
qMqqMq

rMrrMr
rMrrMr
rMrrMr
rMrrMr

sMssMs
sMssMs
sMssMs
sMssMs

tMttMt
tMttMt
tMttMt
tMttMt

uMuuMu
uMuuMu
uMuuMu
uMuuMu

vv
vv
vv
vv

ww
ww
ww
ww

xx
xx
xx
xx

yMyyMy
yMyyMy
yMyyMy
yMyyMy
yMy

zMzzMz
zMzzMz
zMzzMz
zMzzMz
zMz

{M{{M{
{M{{M{
{M{{M{
{M{{M{

||
||
||
||

}}
}}
}}
}}
}

~~
~~
~~
~~
~

��
��
��
��

�M�M��M�

6000

8000

10000

12000

5 10 15 20 25

bd−tree

30 50

[ms]

points per bucket

 d−tree

computing time d−tree and bd−tree

ε = 5 k

k

�M��M�
�M��M�
�M��M�
�M��M�
�M�

��
��
��
��
�

��
��
�

��
��
�

��
��
��

��
��
��

��
��

��
��

��
��
��
�

��
��
��
�

�M��M�
�M��M�
�M�

��
��
�

�M��M�
�M��M�
�M�

�M��M�
�M��M�
�M�

�M��M�
�M��M�
�M�

��
��
�

��
��
�

��
��
�

�M��M�
�M��M�

��
��

�M��M�
�M��M�

�M��M�
�M��M�

��
��

��
��
��
��

��
��

��
��
�

��
��
�

�M��M�
�M�
�M��M�
�M�
 M M
 M M

¡¡
¡¡

¢M¢¢M¢
¢M¢¢M¢

££
££

¤¤
¤¤

¥¥
¥¥

¦M¦¦M¦
¦M¦¦M¦
¦M¦¦M¦

§M§§M§
§M§§M§
§M§§M§

¨M¨¨M¨
¨M¨
©©
©
ªª
ªª
ª

««
««
«

¬¬
¬

®®
®®

¯¯
¯¯

°M°°M°
°M°°M°
°M°°M°
°M°°M°

±M±±M±
±M±±M±
±M±±M±
±M±±M±

²M²²M²
²M²
³³
³
´M´´M´
´M´´M´

µMµµMµ
µMµµMµ

¶¶
¶¶
¶

··
··
·

¸M¸¸M¸
¸M¸¸M¸
¸M¸¸M¸
¸M¸

¹¹
¹¹
¹¹
¹

ºMººMº
ºMººMº
ºMº

»M»»M»
»M»»M»
»M»

¼¼
¼¼
¼¼
¼

½½
½½
½½
½

¾¾
¾¾
¾¾
¾¾

¿¿
¿¿
¿¿
¿¿

ÀMÀMÀÁMÁ

6000

8000

10000

12000

5 10 15 20 25

bd−tree

30 50

[ms]

points per bucket

 d−tree

computing time d−tree and bd−tree

= 10ε k

k

ÂÂ
ÂÂ
ÂÂ
ÂÂ

ÃÃ
ÃÃ
ÃÃ
ÃÃ

ÄÄ
ÄÄ

ÅÅ
ÅÅ

ÆÆ
ÆÆ
Æ

ÇÇ
ÇÇ
Ç

ÈÈ
ÈÈ
ÈÈ

ÉÉ
ÉÉ
ÉÉ

ÊÊË
Ë
ÌMÌÌMÌ
ÌMÌÌMÌ

ÍMÍÍMÍ
ÍMÍÍMÍ

ÎMÎÎMÎ
ÎMÎÎMÎ
ÎMÎÎMÎ

ÏÏ
ÏÏ
ÏÏ

ÐMÐÐMÐ
ÐMÐÐMÐ

ÑMÑÑMÑ
ÑMÑÑMÑ

ÒÒ
ÒÒ

ÓÓ
ÓÓ

ÔÔ
ÔÔ

ÕÕ
ÕÕ

ÖÖ
ÖÖ

××
××

ØØ
ØØ
ØØ

ÙÙ
ÙÙ
ÙÙ

ÚÚ
ÚÚ
ÚÚ

ÛÛ
ÛÛ
ÛÛ

ÜÜ
ÜÜ
Ü

ÝÝ
ÝÝ
Ý

ÞMÞÞMÞ
ÞMÞÞMÞ
ÞMÞÞMÞ

ßß
ßß
ßß

àMààMà
àMààMà

áMááMá
áMááMá

âMââMâ
âMââMâ
âMâ

ãã
ãã
ã

ää
ää
ä

åå
åå
å

æMææMæç
ç
èè
èè
è

éé
éé
é

êê
ê
ëë
ë
ìì
ìì

íí
íí îîï
ï

ðMððMð
ðMððMð

ñMññMñ
ñMññMñ

òMòòMò
òMòòMò

óMóóMó
óMóóMó

ôMôôMô
ôMôôMô
ôMôôMô

õõ
õõ
õõ

öö
öö
öö
öö

÷÷
÷÷
÷÷
÷÷

øMøøMø
øMøøMø
øMøøMø

ùMùùMù
ùMùùMù
ùMùùMù

úMúúMú
úMúúMú
úMúúMú

ûû
ûû
ûû

üü
üü
ü

ýý
ýý
ý

þþ
þþ
þþ
þþ
þþ

ÿMÿMÿ���

6000

8000

10000

12000

5 10 15 20 25

bd−tree

30 50

[ms]

points per bucket

 d−tree

computing time d−tree and bd−tree

= 50ε k

k

������
������
������

��
��
��

��
��
�

��
��
�

��
�
��
�
��
��
��

		
		
		

�������
������

���������������
������
���

��
��

��
��
�

��
��
�

������
������
������

������
������
������

��
��

��
��
��
�
��
�
��
�
��
�
��
�
��
�

������
������
������

������
������
������

 � �
 �
!!
!

"�""�"
"�""�"
"�"

#�##�#
#�##�#
#�#

$�$$�$
$�$$�$

%�%%�%
%�%%�%

&&
&
''
'
(()
)
**
**

++
++

,,
,
--
-
..
..
..

//
//
//

0�00�0
0�00�0
0�0

11
11
1

2�22�2
2�22�2
2�2

3�33�3
3�33�3
3�3

4�44�4
4�44�4
4�4

5�55�5
5�55�5
5�5

6�66�6
6�66�6

7�77�7
7�77�7
88
8
99
9
::
:
;;
;
<<
<
==
=
>>
>>
>>
>

??
??
??
?

@�@�@@�@�@
A�A�AA�A�A

6000

8000

10000

12000

5 10 15 20 25

bd−tree

30 50

[ms]

points per bucket

 d−tree

computing time d−tree and bd−tree

Fig. 9. Computing time in milliseconds for a 3D scan matching depending on the bucket size of approximate kd- and approximate bd-tree. Values for
ε = 1, 5, 10, 50 are given. In the majority of cases, the approximate kd-tree outperforms the approximate bd-tree.

REFERENCES

[1] P. Allen, I. Stamos, A. Gueorguiev, E. Gold, and P. Blaer. AVENUE:
Automated Site Modeling in Urban Environments. In Proceedings of

the third International Conference on 3D Digital Imaging and Modeling

(3DIM ’01), Quebec City, Canada, May 2001.
[2] K. S. Arun, T. S. Huang, and S. D. Blostein. Least square fitting of two

3-d point sets. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 9(5):698 – 700, 1987.
[3] S. Arya and D. M. Mount. Approximate nearest neigbor queries in

fixed dimensions. In Proceedings of the 4th ACM-SIAM Symposium on

Discrete Algorithms, pages 271 – 280, 1993.
[4] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu.

An Optimal Algorithms for Approximate Nearest Neighbor Searcching
in Fixed Dimensions. Journal of the ACM, (45):891 – 923, 1998.

[5] R. Benjemaa and F. Schmitt. Fast Global Registration of 3D Sampled
Surfaces Using a Multi-Z-Buffer Technique. In Proceedings IEEE

International Conference on Recent Advances in 3D Digital Imaging

and Modeling (3DIM ’97), Ottawa, Canada, May 1997.
[6] J. L. Bentley. Multidimensional binary search trees used for associative

searchin. Communications of the ACM, 18(9):509 – 517, September
1975.

[7] P. Besl and N. McKay. A method for Registration of 3–D Shapes. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 14(2):239
– 256, February 1992.

[8] P. Biber, H. Andreasson, T. Duckett, and A. Schilling. 3D Modeling
of Indoor Environments by a Mobile Robot with a Laser Scanner and
Panoramic Camera. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS’04), Sendai, Japan,
September 2004.

[9] Y. Chen and G. Medioni. Object Modelling by Registration of Multiple
Range Images. In Proceedings of the IEEE Conference on Robotics and

Automation (ICRA ’91), pages 2724 – 2729, Sacramento, CA, USA,
April 1991.

[10] D. Eggert, A. Fitzgibbon, and R. Fisher. Simultaneous Registration of
Multiple Range Views Satisfying Global Consistency Constraints for
Use In Reverse Engineering. Computer Vision and Image Understand-

ing, 69:253 – 272, March 1998.
[11] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for

finding best matches in logarithmic expected time. ACM Transaction on

Mathematical Software, 3(3):209 – 226, September 1977.
[12] C. Früh and A. Zakhor. 3D Model Generation for Cities Using Aerial

Photographs and Ground Level Laser Scans. In Proceedings of the

Computer Vision and Pattern Recognition Conference (CVPR ’01),
Kauai, Hawaii, USA, December 2001.

[13] A. Georgiev and P. K. Allen. Localization methods for a mobile robot
in urban environments. IEEE Transaction on Robotics and Automation

(TRO), 20(5):851 – 864, October 2004.

[14] M. Greenspan and M. Yurick. Approximate K-D Tree Search for
Efficient ICP. In Proceedings of the 4th IEEE International Conference

on Recent Advances in 3D Digital Imaging and Modeling (3DIM ’03),
pages 442 – 448, Banff, Canada, October 2003.

[15] D. Hähnel, W. Burgard, and S. Thrun. Learning Compact 3D Models of
Indoor and Outdoor Environments with a Mobile Robot. In Proceedings

of the fourth European workshop on advanced mobile robots (EUROBOT

’01), Lund, Sweden, September 2001.

[16] M. Hebert, M. Deans, D. Huber, B. Nabbe, and N. Vandapel. Progress in
3–D Mapping and Localization. In Proceedings of the 9th International

Symposium on Intelligent Robotic Systems, (SIRS ’01), Toulouse, France,
July 2001.

[17] A. Lorusso, D. Eggert, and R. Fisher. A Comparison of Four Algorithms
for Estimating 3-D Rigid Transformations. In Proceedings of the 5th

British Machine Vision Conference (BMVC ’95), pages 237 – 246,
Birmingham, England, September 1995.

[18] M. M. Nevado, J. G. Garcia-Bermejo, and E. Z. Casanova. Obtaining
3d models of indoor environments with a mobile robot by estimating
local surface directions. Robotics and Autonomous Systems, 48:131 –
143, August 2004.

[19] A. Nüchter. Autonome Exporation und Modellierung von 3D-

Umgebungen, GMD Report 157. GMD, Sankt Augustin, 2002.

[20] A. Nüchter, H. Surmann, K. Lingemann, J. Hertzberg, and S. Thrun.
6D SLAM with an Application in autonomous mine mapping. In
Proceedings of the IEEE International Conference on Robotics and

Automation, pages 1998 – 2003, New Orleans, USA, April 2004.

[21] K. Pulli. Multiview Registration for Large Data Sets. In Proceedings of

the 2nd International Conference on 3D Digital Imaging and Modeling

(3DIM ’99), pages 160 – 168, Ottawa, Canada, October 1999.

[22] S. Se, D. Lowe, and J. Little. Local and Global Localization for
Mobile Robots using Visual Landmarks. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS ’01),
Hawaii, USA, October 2001.

[23] V. Sequeira, K. Ng, E. Wolfart, J. Goncalves, and D. Hogg. Automated
3D reconstruction of interiors with multiple scan–views. In Proceedings

of SPIE, Electronic Imaging ’99, The Society for Imaging Science

and Technology /SPIE’s 11th Annual Symposium, San Jose, CA, USA,
January 1999.

[24] D. Simon, M. Hebert, and T. Kanade. Real–time 3–D pose estimation
using a high–speed range sensor. In Proceedings of IEEE International

Conference on Robotics and Automation (ICRA ’94), volume 3, pages
2235 – 2241, San Diego, CA, USA, May 1994.

[25] I. Stamos and P. Allen. 3-D Model Construction Using Range and Image
Data. In Proceedings of the Conference on Computer Vision and Pattern

Recognition (CVPR ’00), USA, June 2000.

[26] H. Surmann, K. Lingemann, A. Nüchter, and J. Hertzberg. A 3D laser
range finder for autonomous mobile robots. In Proceedings of the of

the 32nd International Symposium on Robotics (ISR ’01), pages 153 –
158, Seoul, Korea, April 2001.

[27] H. Surmann, A. Nüchter, K. Lingemann, and J. Hertzberg. 6D SLAM
A Preliminary Report on Closing the Loop in Six Dimensions. In
Proceedings of the 5th IFAC Symposium on Intelligent Autonomous

Vehicles (IAV ’04), Lisabon, Portugal, July 2004.
[28] S. Thrun, D. Fox, and W. Burgard. A real-time algorithm for mobile

robot mapping with application to multi robot and 3D mapping. In
Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA ’00), San Francisco, CA, USA, April 2000.

[29] O. Wulf, K. O. Arras, H. I. Christensen, and B. A. Wagner. 2D
Mapping of Cluttered Indoor Environments by Means of 3D Perception.
In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 4204 – 4209, New Orleans, USA, April 2004.
[30] H. Zhao and R. Shibasaki. Reconstructing Textured CAD Model of

Urban Environment Using Vehicle-Borne Laser Range Scanners and
Line Cameras. In Second International Workshop on Computer Vision

System (ICVS ’01), pages 284 – 295, Vancouver, Canada, July 2001.

angle [°]

translation Z [cm]

−80

−40

 0

 40

 80

 200 100 0−100−200

matchable poses

translation X [cm]

tr
an

sl
at

io
n

Z
 [c

m
]

−200

−100

 0

 100

 200

 100 0−100−200 200

matchable poses

(a) (b)

angle [°]

translation Z [cm]

−80

−40

 0

 40

 80

 200 100 0−100−200

matchable poses

translation X [cm]

tr
an

sl
at

io
n

Z
 [c

m
]

−200

−100

 0

 100

 200

 100 0−100−200 200

matchable poses

(c) (d)

angle [°]

translation Z [cm]

−80

−40

 0

 40

 80

 200 100 0−100−200

matchable poses

translation X [cm]

tr
an

sl
at

io
n

Z
 [c

m
]

−200

−100

 0

 100

 200

 100 0−100−200 200

matchable poses

(e) (f)

angle [°]

translation Z [cm]

−80

−40

 0

 40

 80

 200 100 0−100−200

matchable poses

tr
an

sl
at

io
n

Z
 [c

m
]

translation X [cm]

−200

−100

 0

 100

 200

 100 0−100−200 200

matchable poses

(g) (h)

Fig. 10. Initial poses are marked in (x, z, θy) from which a correct alignment of two 3D scans is possible. The scans of Fig. 2 have been used. (a) and
(b): ε = 1 and b = 10. (c) and (d): ε = 1 and b = 20. (e) and (f): ε = 10 and b = 10. (g) and (h): ε = 50 and b = 5. The rows represent second angle
projections of the 3D space of matchable poses.

