
Interpreting Thermal 3D Models of Indoor Environments for

Energy Efficiency

Girum G. Demisse, Dorit Borrmann, and Andreas Nüchter

Abstract—In recent years, 3D models of buildings are used
in maintenance and inspection, preservation, and other building
related applications. However, the usage of these models is limited,
because most models are pure representations with no or little
associated semantics. In this paper, we present a pipeline of
techniques used for interior interpretation, object detection, and
adding energy related semantics to windows of a 3D thermal
model. A sequence of algorithms is presented for building the
fundamental semantics of a 3D model. Furthermore, a Markov
Random Field is used to model the temperature distribution of
detected windows to further label the windows as either open,
closed or damaged.

Key words: Energy efficiency, 3D thermal model, Boltz-
mann distribution, energy function, window detection

I. INTRODUCTION

Efficiency in energy usage is a fundamental step in adopt-
ing Green energy and conservation of natural resources: the
European Commission estimates the largest and cost-effective
energy saving potential lies in residential (≈ 27%) and
commercial (≈ 30%) buildings [5]. Among other factors,
uncontrolled air leakage, known as air infiltration, plays a
significant role in energy consumption, both during heating
seasons, but also in geographical locations where air condi-
tioning is a necessity. Infrared thermometers are mainly used
to detect faulty insulation in a labor intensive and time taking
manner [8], [13]. Consequently, automating the process of
detecting air infiltration has a significant impact on efficiency,
cost and effectiveness of the leakage detection and proofing
process. A high rate of air infiltration is also caused by opened
windows or doors. This can easily be resolved by human
intervention once detected.

Motivated by the economic and environmental impact we
contribute to the efforts of fully automating the energy leakage
detection process. Building on results obtained in [5], where
a method for acquiring a 3D thermal model of a building is

A. Nüchter and D. Borrmann are with the Robotics and Telematics group
at University of Würzburg, Germany, andreas@nuechti.de. The work
was performed while the authors were at Jacobs University Bremen gGmbH,
Germany.

thermal

3D scan

point cloud

w/ temperatures

pre-processing

filtering and wall detection

windowwindow

detection labeling

Fig. 1: Overview of window Detection and labeling pipeline.

presented, we present a sequential pipeline of algorithms for
3D scene understanding and temperature distribution modeling
as given in Fig. 1. Particularly, the temperature distribution is
used to model the state of a window, as either opened, closed,
or damaged, i.e., not properly insulated. After describing our
autonomous robot and reviewing related work, we define and
formalize the problem mathematically in section II. Our solu-
tion pipeline uses probabilistic modeling and pre-processing of
a 3D point cloud and is presented in section III and IV. Finally,
experimental results are presented in Section V. Section VI
concludes the paper.

A. Automatic Acquisition of Thermal 3D Models

Thermal imaging is state of the art in recording energy
related issues, while terrestrial laser scanning has been used
for years to create 3D models. The combination of these two
yield a 3D model that contains precise temperature information
including the dimensions of heat and air leaks.

The setup for simultaneous acquisition of 3D laser scan
data and thermal images is the robot Irma3D (cf. Fig. 2).
Irma3D is built of a Volksbot RT-3 chassis. Its main sensor is
a Riegl VZ-400 laser scanner from terrestrial laser scanning.
The optris PI160 thermal camera has an image resolution of
160×120 pixels and a thermal resolution of 0.1◦ C. It acquires
images at a frame rate of 120 Hz and with an accuracy of
2◦ C. The laser scanner acquires data with a field of view of
360◦ × 100◦. To achieve the full horizontal field of view the
scanner head rotates around the vertical scanner axis when
acquiring the data. We take advantage of this feature when
acquiring image data. Since the thermal camera is mounted on
top of the scanner, it is also rotated. We acquire 9 images with
the camera during one scanning process to cover the full 360◦.

To acquire thermal 3D point clouds of indoor environments,
we have performed the intrinsic and extrinsic calibration using
a special pattern. The color mapping procedure regards the
inaccuracies and low resolution camera issues [5]. In all our ex-
periments, we pay attention to general rules of thermography,
such as the weather. There has to be a temperature difference
between indoor and outdoor of at least 15◦ to measure a valid,

Fig. 2: The robot Irma3D, with a 3D laser scanner, a thermal
camera and a webcam.

noise-reduced thermogram. Other error sources such as sun
light, wind and rain, clear sky were minimized as well.

B. Related work

According to Xiong and Huber, creating a 3D model of an
indoor environment has notable advantages in maintenance,
management, and architectural renovation of buildings [18].
The traditional approach to create a 3D model is based
on CAD (Computer-aided design) tools and manual mea-
surements, despite the consequential high cost and lengthy
time consumption. However, recent technological advances in
laser scanning technology prompted the full automation of
3D model creation [1], [16]. 3D model creation is still a
fairly complex task with challenges at different levels. These
challenges can be categorized in two; lower level problems and
higher level problems. Lower level problems are successfully
explored in the computer vision community. In 3D point
cloud processing the acquisition of accurate data is solved
by technological means. Computer vision methods are widely
used to solve fundamental problems such as registration [3],
i.e., solving simultaneous localization and mapping [6], and
representation, i.e., octrees [10] and range images. The ad-
dition of semantics belongs to the second group of problems.
Semantics range from primitive shape detection to higher level
knowledge inference. Several shape detection methods have
been proposed in the computer vision community that can
cope with uncertainties and clutter in the data sets [9], [15].
Additionally, the current trend in 3D point cloud interpretation
is to infer higher level knowledge [12].

Building thermal 3D models of environments received
some attention recently. Borrmann et al. [5] and Vidas et
al. [17] focus on co-calibrating a thermal camera and a 3D
range sensor. Ham and Golparvar-Fard model and evaluate
thermal models of building exteriors and the energy perfor-
mance of buildings [8]. However, to the best of our knowledge,
there has not been any work done in automatic temperature
analysis for the understanding of an object state.

II. PROBLEM DEFINITION

Inferring higher level knowledge about the property of an
object can be seen as two problems that are highly related.
First, the detection of objects that belong to a certain class.
This is a problem where the emphasis is on understanding
and modeling of time-invariant properties of a certain class
of objects, e.g. all windows are made of glass, so that the

properties are used to recognize an object of that class.
Second, the inference about the object, rather than the class,
using specific knowledge. In the second case, the problem
is recognizing properties of an object that are observed in a
certain time frame under a certain condition; which, of course,
gives information about the objects state rather than the class
it belongs to. Consequently, each of the above problems is
usually solved separately and sequentially. In fact, the solution
space of the first problem is the domain/problem space of the
second problem. In this paper, we will be dealing with window
detection and labeling, i.e, assessing windows either as open
(O), closed (C) or damaged (D), i.e., a window without the
proper insulation. Apparently, window detection belongs to the
first group of problems while window labeling belongs to the
second group of problems.

Although, window detection from a point cloud represen-
tation of a room full of objects is a challenging task we have
designed sequential pre-processing modules which essentially
reduce window detection to the estimation of a mapping
function f(·). Assuming we have successfully identified 3D
points that represent a window, the 3D points are considered
as random variables taking a temperature value, from R. Thus,
the labeling of windows as closed, opened or damaged is
formulated as a probability distribution modeling problem. In
general, probabilistic models for object recognition are catego-
rized either as generative models or discriminative models. The
former one attempts to model the joint probability distribution
P (X,Y) between the data denoted by X and the label denoted
by Y . Alternatively, the discriminative model approach is to
model the posterior probability P (Y |X) directly from the
data. A discriminative model is widely believed to be the
better modeling technique with better predictive ability [11]
Consequently, we have chosen the discriminative modeling
approach, and thus the posterior probability of a label, e.g.,
C, is modeled as:

ts = f(x), (1)

P (C|ts) =
p(ts|C)P (C)

p(ts)
, (2)

where x is the fully registered thermal 3D point cloud model
of the room, f(·) is a function that takes this model as an
input and outputs the temperature distribution of the detected
window, ts ∈ R

n, where n is the number of 3D points
representing the window. Since p(ts) is exactly the same for
all the labels it has no effect on the label specific posterior,
and thus is ignored. Additionally, the probability of a window
being closed is assumed to be exactly the same as being open
or being damaged. In fact, this might not be true but we
have no prior information to assume otherwise. Therefore, the
modeling task is:

P (C|ts) ≈ p(ts|C)

In summary, labeling a window as open, closed or dam-
aged is formulated as estimating the conditional probability
distribution of every label, followed by a decision rule, where
the decision will be based on MAP (Maximum a posteriori)
to minimize the expected error [4]. MAP is summarized as:

ŷ = arg maxyi∈Y P (y = yi|ts) (3)

where ŷ is the final label assigned to the temperature distri-
bution of a window t ∈ R

n, and Y = {C,O,D}. In the
following sections a solution to the problem formulation given
in Eq. (2) is presented, respectively.

III. WINDOW DETECTION

Window detection is a difficult task with many associated
problems. Here, in this paper, we will describe a simple
but effective detection technique exploiting our hardware.
Intuitively, the core idea is the difference in material property,
i.e., all windows are made of glass and, walls are made of
some other material. This means, given a thermal 3D point
cloud of a room that contains only windows and walls, there
is a thermal conductivity difference between the wall material
and the window material. There will always be a temperature
difference which is used to recognize one from the other.
However, a 3D point cloud representation of a room contains in
addition other objects and clutter. Consequently, a mandatory
pre-processing has to be done to detect and remove these other
objects from the 3D point cloud.

A. Pre-processing

Filtering objects inside rooms and points that are scanned
through windows (see Fig. 3), is a challenging task that
is simplified with practical and realistic assumptions. The
assumptions taken are:

• A room has a rectangular shape.

• The scanner is located inside a room.

• The walls and windows are not completely occluded,
i.e., some part of the wall is always visible.

• The thermal 3D point clouds are registered to a single
co-ordinate system.

Assuming the above conditions are true, a sequential procedure
is proposed for filtering out objects from the scene, such that
the point cloud consists then only of walls and windows.

1) From 3D to 2D: Assuming that windows are located on
the walls and not on the ceiling, neither the height of the room
nor points representing the floor and ceiling are important for
window detection. Hence, points representing the floor and
ceiling need to be filtered out from the scan. Floors and the
ceilings are, again, almost always parallel to each other and
perpendicular to the walls. Thus, the normal vector of a 3D
point representing the ceiling is parallel to a wall. Given the
above, we conclude that a 3D point is representing the floor or
ceiling if its normal vector is perpendicular to the x−y-plane,
or parallel to the x− z-plane, where z is the vertical axis. Let
a = (1, 0, 0) be a vector on the x-axis, and ni be the normal
vector of the ith point, then the following is true if the 3D
point is on the floor or ceiling:

a · ni = ‖a‖‖ni‖ cos θ = {80◦, . . . , 100◦}
We set the threshold to ≥ 10◦, due to noise and inaccuracy in
calculating normals.

Inspired by the work of Xiong and Huber [18] our software
further simplifies the 3D representation of the room to a 2D
representation, since the height of the room is not really needed

in wall detection. Thus, the 3D points are transformed to a 2D
plane as follows:

(

p′

0

)

= p− (p · n)n

where n is the normal vector of the projection plane, p′ ∈ R2

is the projected point, and p ∈ R3, is the point to be projected.
Now that the room is projected onto a 2D plane, walls are
represented with lines instead of planes (cf. Fig. 3).

2) Wall Detection: The projection of the room to a 2D
space enables us to work with lines as walls instead of planes.
We have assumed that the room has a rectangular shape, that
the origin of the scan is inside the room, and that the walls
are not completely occluded. Hence we can conclude that the
x- and y-axes of the 2D plane with the origin at the scanner
location intersect with each all four wall lines independent of
the orientation and the position of the scanner, as long as it
is in the room. The only exception is when the axes intersect
with the corners. As a line equation is defined by two points
that lie on the line we need to detect two points on each wall
(line) to detect all the walls of a room.

The first four points are determined by selecting the farthest
point on the ± x-axis and ± y-axis. To determine a second
point on each line, the registered scans are rotated by a given
angle θ2. Again the farthest point on each ± x- and y-axes are
selected. Rotating the selected points back by −θ2 yields the
second set of points needed for defining the four line equations.

The algorithm fails in cases where the furthest point on one
of the axes is not a wall point, e.g. due to occlusions, noise or
windows. Further problems occur when one of the intersecting
points lies in a corner of the room. To ensure an accurate and
robust wall detection the following conditions are introduced:

• Each detected line has to be perpendicular to two lines,
the ones it is intersecting with, and parallel to the
other, the one it is not intersecting with. This is a hard
constraint that has to be fulfilled in order to detect the
walls with a reasonable accuracy; in other words, the
slope of two intersecting lines should satisfy S1 = −1

S2
.

• To avoid outliers there should be a considerable num-
ber of points at all four intersection points of the four
detected lines. This is more of a soft constraint, espe-
cially, in a heavily occluded scan. Consequently, this
constraint is mainly used to measure the confidence
level, i.e., error = 1− confidence.

The confidence of acceptance is quantified by counting the
intersection points that have a considerable number of points
on and around them, e.g., if of the four intersection points
three has a significant number of points on and around them
the confidence is 3/4 or 75%.

If the constraints are not met the scan is rotated by an
angle θ1 and two new sets of intersection points are calculated.
The procedure is outlined in Algorithm 1. After a successful
detection of the lines representing the walls all points that are
further than a threshold away from the wall are removed. An
example is given in Fig. 3.

Fig. 3: Top: A 3D thermal model of the Automation Lab
at Jacobs University Bremen. Bottom left: 2D projection of
the room with the x-y axis colored in red. Bottom right: The
detected outer rectangular shape, or walls of the room.

Algorithm 1: Wall Detecting Algorithm

Data: Registered and pre-processed scan
Result: Equation of four lines
initialization;
θ1, θ2, ε;
while search do

calculate the first axis-line intersections;
rotate scan by θ2;
calculate the second axis-line intersections;
rotate scan by −θ2;
calculate the lines equation;
if (S1 +

1
S2

) < ε and (S3 +
1
S4
) < ε then

count = # of corner points where significant #
of points are found;
confidence = count/4;
search = false;

else
rotate scan by θ1;

B. Window Detection

The result of the pre-processing step is a 3D model of
the walls of the room. Now, the remaining point cloud is
dominated by points from the wall, which means most points
have an almost similar temperature value. However, 3D points
of a window and points around it show a considerable tem-
perature difference from the wall points, cf. Fig. 4. Thus, the
window detection technique aims to exploit these temperature
differences as a main feature.

Since there are significantly more 3D points that represent
the walls than those that represent the window area a typical
temperature distribution in a room takes a bell curved shape,

 160000

 120000

 80000

 40000

 0
 10 20 30 40 50

n
u

m
b

er
 o

f
p

o
in

ts

temperature

Fig. 4: Typical temperature distribution of a 3D scan with walls
and windows only.

cf. Fig. 4. The rare ends of this temperature distribution
correspond to temperature peaks. On the lower end these are
objects that are cooler than the room temperature, i.e., mostly
windows. The upper end represents hotter objects that are close
to the wall, e.g., computers or heaters. Thus, filtering points
with a constant threshold that is dependent on the standard
deviation and mean of the temperature distribution enables us
to detect points with uncommon temperature values, regardless
how expressed the bell in the temperature distributions is.
Although, it must be noted that for sensitive thresholding one
has to consider the possible asymmetry of the distribution, e.g.,
heaters might be turned off. Furthermore, in the warm season
when air conditioning is used windows will contribute to the
upper end of the temperature scale. The thresholding constant
is given as follows:

thres =
1

N

N
∑

j=1

tj ±

√

√

√

√

1

N

N
∑

j=1

(tj − µ)2

where tj represent the temperature values of the room with
walls, windows and other nearby objects.

Algorithm 2: Clustering Algorithm

Data: Potential 3D window points P
Result: Set of clusters S
initialization;
P , S, ε;
for ∀pi ∈ P do

for ∀Sa ∈ S do
for ∀pj ∈ Sa do

dist = ‖~pi − ~pj‖;
if dist ≤ ε then

add pi to cluster Sa;
break out of loop;

if above loop broke out then
break out of loop;

if above loops did not break out then
create new cluster Sn;
add pi to Sn;
add Sn to the cluster set S;

remove pi from P ;

Using this threshold we detect points with lower tempera-

ture values and conclude that these points represent windows.
In the next step the potential window points are clustered ac-
cording to their spatial distance from each other. The clustering
is done based on a simplified version of k-means clustering,
i.e., the clusters emphasize compactness and connectedness.
See Algorithm 2 for summary. A final filtering procedure
removes clusters with a small number of points.

Each of the remaining clusters is processed individually
in case there is more than one window in the room. We
approximately determine the width and height of each window
from the cluster. This has the major advantage that we can
control the number of points on the window. The boundaries
of the window are approximated by first determining the plane
the window lies on by removing the axis with the smallest
variance. Second, we select the extreme ± of each axis,
i.e., the distance from the respective component of the mean
vector of the clusters. Finally, the extreme points are used to
determine the boundary points. To achieve an identical number
of points on each detected window we use an octree based sub-
sampling (see [7]). The procedure takes into account the size
of the window by creating an octree with a variable minimum
voxel size and taking only one point from each voxel.

IV. WINDOW LABELING

A Markov Random Field (MRF) is a modeling technique
for a graph of random variables. A MRF was first introduced
by Besag in 1974 as a parametric model for spatial data analy-
sis [2]. It is mainly used to express the statistical dependencies
between several random variables arranged in some form of
spatial configuration or graph. Alternatively, Gibbs (Boltz-
mann) distribution is a probability distribution for spatially
arranged random variables where the joint probability distri-
bution can be factorized as: P (z1, · · · , zn) =

∏n
j=1 φj(ψj),

where φj is any real valued function defined for each clique
set. A clique is a set of nodes where every node is directly
connected with each other. The equivalence between MRF and
Boltzmann distribution is shown in [2].

We will use the labeling of windows into either Closed,
Opened or Damaged. The Boltzmann distribution is used to
model the likelihood of each label, and in effect the posterior.
Let {x1, · · · , xn} be the random variables, or 3D points,
spatially arranged in a window shape, and take a temperature
value ts = {t1, · · · , tn}, where ts ∈ R

n. The Boltzmann
distribution is then defined as follows:

p(ts) =
1

Z
exp(

−E(ts)

T
) (4)

where Z is the normalization constant, T is a controlling
constant, and E(ts) is a label specific energy function.

A. Energy functions

Temperature plays the main role in the labeling of win-
dows. Apparently, the temperature distribution of a closed
window exhibits a very small variance, regardless of the peak
temperature. On the contrary, the temperature distribution of
an opened window has a much higher variance, comparatively.
This has shown to be a very robust feature, i.e., invariant to
peak temperature value. Damaged windows are particularly
detectable because of the NOT smooth temperature distribu-
tion. Intuitively, the roughness in temperature value is the

main feature of a leaky window. Therefore, roughness in
the temperature distribution is the emphasized feature in the
energy function of a damaged window. However, it must be
noted that the temperature distribution of both opened and
closed windows are smooth, i.e., small temperature difference
between neighboring points.

Based on the noted above features the energy function of
each label is given as follows:

EC(ts) = α1

N
∑

j=1

(tj − µ)2

N
+ α2

N
∑

j=1

d(xj ,K)

N
(5a)

EO(ts) = α1
N

∑N
j=1(tj − µ)2

+ α3

N
∑

j=1

d(xj ,K)

N
(5b)

ED(ts) = α1
N

∑N
j=1 d(xj ,K)

, (5c)

where α1, α2, α3 are weighting constants of each term, N is
the number of random variables (3D points) representing the
window. d calculates the average temperature difference of the
K closest points in the spatial neighborhood of xj .

The first term encourages a small variance in case of the
closed window energy function (Eq. (5a)), and a high variance
in case of an open window (Eq. (5b)). The second second
term in both cases, open and closed window, emphasizes
smoothness. However, the damaged window energy function
(Eq. (5c)) encourages a rough temperature distribution.

B. Monte Carlo integration

So far, we have defined the energy function of each class
but the normalization constant still needs to be calculated.
The normalization constant for n continuous random variables
defined on the same probability space is calculated as:

Z =

∫

Rn

exp(
−E(t)

T
) dt (6)

The above high dimensional integration is very difficult for
a straight forward computation and has to be approximated.
Consequently, we have to resort to the numerical method of
Monte Carlo Integration, which is typically used for higher
dimensional integrals [14]. The first step of Monte Carlo is to
express Eq. (6) as follows:

E[
exp(−E(t)

T)

p(t)
] = Z =

∫

Rn

exp(−E(t)
T)

p(t)
p(t) dt, (7)

where p(t) can be any probability distribution; t ∈ R
n, where

n is the number of random variables or 3D points of the
window. E[·] is used to represent the expectation value. The
law of large numbers assures the approximation of the expected
value with a large number of samples and thus Eq. (7) is
reduced to

E[
exp(−E(t)

T)

p(t)
] =

1

M

M
∑

j=1

exp(
−E(tj)

T)

p(tj)
,

where tj ∈ R
n is sampled according to p(t) for M times. The

larger M is the better the approximation will be.

The major practical difficulty in using the Monte Carlo
integration is the design of p(t) especially for a function

 16

 12

 8

 4

 0

number of points
 0 20000 40000 60000 80000

te
m

p
er

at
u
re

 10

 12

 14

 16

 18

 20

 0 40000 80000 120000

te
m

p
er

at
u

re

number of points

Fig. 5: Left: Open and closed windows colored according to the thermal distribution. Right: the temperature distribution of each
window, respectively.

defined in a large space. For example, if we assume p(t) to be

uniformly distributed the fraction
exp(

−E(tj)

T
)

p(tj)
becomes almost

infinity; since p(t) will be extremely small due to the high
dimensionality of the space. Theoretically, this can be solved
if we take an infinite amount of sample from p(t). The issue
can only be dealt with a hand designed probability distribution
p(t) that tracks the energy function very well, which means,

if exp(
−E(tj)

T) is small then p(tj) is small and vice-versa.

So, the fraction
exp(

−E(tj)

T
)

p(tj)
is a more pragmatic number

that contributes to the estimation significantly. Moreover, we
estimate a more accurate expectation and in effect a better
estimate with a small number of samples, comparatively, if a
well-behaved probability distribution is designed, cf. Fig. 6.

C. Designing a probability distribution

Since the energy function of each label is different, the
design of the probability distribution is also label specific.
Our goal is to design a probability distribution that tracks

the energy function well. This means K · p(t) ∝ exp(−E(t)
T).

Therefore, we have set two conditions to be satisfied by a
probability distribution to be considered as a well designed
probability distribution: First, good tracking capability and
second, p(x) should NOT be negligibly small regardless of
its tracking capability, which is the case for most probability
distributions defined in a vast space. An attempt is made
to meet the first condition by designing a Markov chain as
follows:

Xi+1 = Xi +W · N (0, σ2) (8)

X0 = N (k, σ2),

where i counts the steps starting from 0 to the number
of random variables, and X is a random variable taking a
temperature value from R. X0 is the initial state of the process.
W is a weight that can be used to control the rate of variation
and k is a constant that can be tuned accordingly. σ is the
standard deviation of the Gaussian distribution.

The probability of a temperature distribution instant, t =
{xn, · · · , x0}, that is proposed using Eq. (8) iteratively until
i reaches a given number n is given as follows. Note that the
Markov property is being used to simplify the computation of
the joint distribution:

p(xn, · · · , x0) = p(xn, · · · , x1|x0)p(x0) (9)

= p(xn, · · · , x2|x1, x0)p(x1|x0)p(x0)
...

= p(xn|xn−1) · · · p(x2|x1)p(x1|x0)p(x0)

And from Eq. (8):

p(xi|xi−1) =
1

σ
√
2π
er

2/2σ2

(10)

where r is a number sampled from N (0, σ2) at the ith step.
Thus, any sample t = {xn, · · · , x0} generated using Eq. (8)
can be made to track the energy function of each label by
tuning the free parameters. The second condition for the
probability distribution is NOT to be negligibly small. We have
approached this problem by clustering points, with their spatial
location, and treat each cluster as a random variable, i.e., every
point in the cluster will have the same temperature value, and
thus reducing the domain space to the number of clusters from
the number of points, which means the joint distribution is very
much higher than the same distribution in the original space.

The free parameters of Eq. (8) are assigned as W = 1 and
σ2 = 0.3 for the label closed window. Consequently, Eq. (10)
and (9) are high valued when there is less variance between
consecutive points, i.e., xi−1 and xi+1, and small when there
is high variance. This by itself encourages smoothness. On
the contrary, the variance of the temperature distribution for
open window is much higher than the variance of closed
window, but the smoothness should be exactly the same.
Hence, setting W = 20.0, aims to cause a higher variance
between clusters, NOT between points, and will cause Eq. (10)
and (9) to be high valued for states with high variance yet
a smooth temperature distribution. Note that increasing W
achieves proposal states with higher variance without causing
the probability distribution to shrink which would happen if
we simply increase the variance. Thus, the variance is left as
σ2 = 0.3.

As noted in the previous sections, the most distinctive
feature of a damaged window is the roughness of the temper-
ature distribution, unlike for closed or opened window. The
design of the probability distribution for the energy function
for the label damaged window is based on Eq. (8) with minor
but basic modifications on the handling of points inside a
cluster. For open and closed windows each point in a cluster
is assigned exactly the same temperature. But, in case of
damaged windows the assignment is done as follows:

pj = Xi−1 +W2 · U(0, 1) · r, (11)

where pj is a point in a cluster Xi, Xi−1 is the value of the
previous cluster, r is a sample generated from N (0, σ2) at the
ith step, and U(0, 1) is a uniform distribution that is sampled
iteratively ∀pj ∈ Xi. Finally, W2 is a weighting constant that
is used to amplify roughness. As can be seen, each point in a
cluster will have different value, unlike the points in a closed

 1000 800 600 400 200 0

 3

 4

 5

 6

 7

number of samples

n
o
rm

al
iz

at
io

n
 c

o
n
st

an
t

Fig. 6: The convergence of the mean sequence; the approxi-
mation of the normalization constant of a closed window with
1000 samples.

or open window. But, most importantly, the probability for a
point is exactly the same as for a cluster, since every value
is sampled from U(0, 1) with a probability equal to 1. And
this property, enables the proposed distribution to propose a
very rough temperature distribution, which is expected, without
flattening the probability distribution.

As a result from the octree based sub-sampling, the 3D
points on a typical window are assumed to be constant. Thus,
the normalization constant is approximated offline, which
otherwise would have to be computed for each labeling task.
For applications where speed is not an issue the normalization
constant can be calculated online. However, we have not seen
any significant difference on the final performance except the
apparent overhead in the later case.

V. EXPERIMENTAL RESULTS

The test data set is acquired with a high precise laser
scanner, the Riegl VZ-400, and an Optris PI160 thermal
camera. The pre-processing, e.g., registration, visualization and
mapping of the thermal image is done with 3DTK – The
3D Toolkit (http://threedtk.de/). The window detection is tested
on acquired data sets and has been proven to be adequate,
see Fig. 7. Open, semi-open or closed windows are correctly
detected. However, as discussed in the previous sections there
are free parameters, apart from the normalization constant, that
need to be estimated for the final labeling of windows.

The normalization constant for each label is approximated
with 1000 samples randomly taken according to the designed
probability distribution, see subsection IV-B. Since the approx-
imation of the mean gets closer to the true mean as N → ∞,
where N is the number of samples, the error is estimated with
the variance of the following sequence Mh, that gets smaller

TABLE I: Summary of the approximated normalization value
and error range.

Label Number of Sample Normalization constant Error range

Closed 1000 5.79517 0.0333378

Open 1000 5.26492 0.0231288

Damaged 1000 4.64347 0.0379469

TABLE II: The value of free parameters for each labels energy
function.

Label α1 α2 α3 T

Closed 0.05 1 N/A 1

Open 2 1 N/A 1

Damaged N/A N/A 0.1 1

and smaller as N → ∞, cf. Fig. 6:

Mh =

h
∑

i=1

fi

h
,

where h goes from 1 to N and fi =
exp(−E(ti)/T)

p(ti)
. As shown

in Table I the error range of the normalization constants Z
for each label is very low. Despite the hand tuning of the
free parameters the algorithm performed as expected. The
experimentally determined parameters α1, α2, α3, and T
are given in Table II. Exemplary results achieved with these
parameters are detailed in Table III. All examples are correctly
labeled by the algorithm. The probabilities for each label and
also the probability to choose a wrong label are given. Closed
windows are reliably detected. The probability to mislabel an
open window is much higher. This is due to the fact that in
these cases the roughness increases the probability that the
window is damaged. This suggests that the roughness function
is not optimal for window labeling. Nevertheless, also in these
cases the correct label was chosen.

VI. CONCLUSIONS

In this paper, we presented a thermal information analysis
for object detection and labeling, which is shown to be a
robust feature. In effect, we presented a reasonable approach
for understanding the structure of a room, and we have,
sequentially, shown usage of temperature as a main feature
for object detection and, furthermore, modeling of temperature
distribution to infer object related semantics. Although, the
main aim of this work is to contribute to the efforts of automat-
ing energy leak detection and prevention, the approaches can
be adopted for object detection and modeling task in general,
especially in cases where there is a small data set to learn from.
In future work we plan to further assess and try to improve
the methods presented here. First, this includes a thorough
evaluation of the performance under changing temperature
distributions. Especially transferring the approach to examine
rooms with air condition rather than heating systems is a goal.
Second, different energy functions should be evaluated in order
to improve the reliability of the labeling. Third, we would like
to extend the processing pipeline to label other heat sources
and to detect poor insulation in buildings.

VII. ACKNOWLEDGMENTS

This work was partially supported by the SEE-ERA.NET
project ThermalMapper under the project number ERA 14/01.

REFERENCES

[1] A. Adan and D. Huber. 3D reconstruction of interior wall surfaces under
occlusion and clutter. In International Conference on 3D Imaging,
Modeling, Processing, Visualization and Transmission (3DIMPVT),
pages 275–281. IEEE, 2011.

http://threedtk.de/

Fig. 7: Top: Three original thermal 3D point clouds with temperature values. Bottom: The detected windows under different
circumstances, i.e., closed, semi-open, and fully open are shown in green.

TABLE III: A summary of experimental windows labeling and
probability of making an error

Probability of

segmented closed opened damaged making Final
window error Label

0.6427 0.3032 0.0540 0.3573 Closed

0.7315 0.1544 0.0248 0.1568 Closed

0.3080 0.4232 0.1569 0.5768 Opened

0.2712 0.4773 0.2514 0.5227 Opened

0.3474 0.4669 0.1857 0.5331 Opened

[2] J. E. Besag and P. AP. Moran. On the estimation and testing of spatial
interaction in Gaussian lattice processes. Biometrika, 62(3):555–562,
1975.

[3] P. Besl and N. McKay. A method for registration of 3–D shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(2):239
– 256, February 1992.

[4] C. M. Bishop. Pattern recognition and machine learning. Springer,
New York, 2006.

[5] D. Borrmann, H. Afzal, J. Elseberg, and A. Nüchter. Mutual calibration
for 3D thermal mapping. In Proceedings of the 10th International IFAC

Symposium on Robot Control (SYROCO ’12), volume 10, Dubrovnik,
Croatia, September 2012.

[6] D. Borrmann, J. Elseberg, K. Lingemann, A. Nüchter, and J. Hertzberg.
Globally consistent 3D mapping with scan matching. Journal Robotics

and Autonomous Systems (JRAS), 56(2):130–142, February 2008.

[7] J. Elseberg, D. Borrmann, and A. Nüchter. One billion points in the
cloud–An octree for efficient processing of 3D laser scans. ISPRS

Journal of Photogrammetry and Remote Sensing, 2012.

[8] Y. Ham and M. Golparvar-Fard. An automated vision-based method
for rapid 3D energy performance modeling of existing buildings using
thermal and digital imagery. Advanced Engineering Informatics, 2013.

[9] D. Holz, S. Holzer, R. B. Rusu, and S. Behnke. Real-time plane
segmentation using RGB-D cameras. In Proceedings of the 15th

RoboCup International Symposium, Istanbul, Turkey, July 2011.

[10] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard. OctoMap: An efficient probabilistic 3D mapping framework
based on octrees. Autonomous Robots, 2013. Software available at
http://octomap.github.com.

[11] A Jordan. On discriminative vs. generative classifiers: A comparison
of logistic regression and naive bayes. Advances in neural information

processing systems, 14:841, 2002.

[12] D. Pangercic, M. Tenorth, B. Pitzer, and M. Beetz. Semantic object
maps for robotic housework - Representation, acquisition and use. In
Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS ’12), Vilamoura, Portugal, October 2012.

[13] C. Pedersen and K. Hellevang. Insulation and air infiltration levels.
Tech. Report, 2008.

[14] C. P. Robert and G. Casella. Monte Carlo statistical methods, volume
319. Citeseer, 2004.

[15] R. Schnabel, R. Wessel, R. Wahl, and R. Klein. Shape recognition in
3D point-clouds. In The 16th International Conference in Central Eu-

rope on Computer Graphics, Visualization and Computer Vision’2008,
February 2008.

[16] H. Surmann, A. Nüchter, and J. Hertzberg. An autonomous mobile
robot with a 3D laser range finder for 3D exploration and digitalization
of indoor environments. Journal Robotics and Autonomous Systems
(JRAS), 45(3–4):181–198, December 2003.

[17] S. Vidas, P. Moghadam, and M. Bosse. 3D thermal mapping of building
interiors using an RGB-D and thermal camera. In Proceedings of the
IEEE Conference on Robotics and Automation (ICRA ’13), Karlsruhe,
Germany, May 2013.

[18] X. Xiong and D. Huber. Using context to create semantic 3D
models of indoor environments. In British Machine Vision Conference,

Aberystwyth, pages 45–1, 2010.

http://octomap.github.com

	Introduction
	Automatic Acquisition of Thermal 3D Models
	Related work

	Problem Definition
	Window Detection
	Pre-processing
	From 3D to 2D
	Wall Detection

	Window Detection

	Window Labeling
	Energy functions
	Monte Carlo integration
	Designing a probability distribution

	Experimental results
	Conclusions
	Acknowledgments
	References

