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Abstract— To reconstruct environments 3D point clouds ac-
quired by laser scanners are registered. This is an important but
also time consuming part of any mapping system for mobile
robots. The time needed for mapping is drastically reduced
when the size of the input data is reduced. This paper examines
different ways of reducing the size of point clouds without losing
vital information for the matching process. We present novel
point cloud reduction methods on the basis of panorama images.
It is shown that the reduced point clouds are ideally suited for
feature based registration on panorama images. We evaluate
the presented reduction methods based on their effect on the
performance of the registration algorithm.

I. INTRODUCTION

Laser scanners are used in modeling 3D structures, for

object detection, digitizing entire cities and landscapes. A

3D laser scanner creates an image of its surrounding by

scanning it with laser beams thus acquiring a 3D point

cloud. Digitizing environments without occlusions requires

multiple 3D scans. Scan registration is the process of creating

a correct and consistent model by merging the coordinate

systems of several scans.

2D laser scanners use a rotating mirror to deflect the

emitted laser beam and measure the distance r to an object

under a certain angle ϕ. The polar representation (ϕ, r) of a

surface profile can be transformed into Cartesian coordinates.
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Fig. 1: Illustration of a 3D scan with a FARO Focus3D laser

scanner. The scanner gages up to 976000 points/sec on a

sphere around it by a rotating mirror and a second rotation

around the vertical axis. The background image is courtesy

of FARO.

)

3D laser scanners either use a second mirror or rotate a 2D

laser scanner to generate 3D point clouds of the scanned

environment (cf. Fig. 1). The resulting 3D data in spherical

coordinates (θ, ϕ, r), with θ as the angle of the second

rotation, can again be transformed into Cartesian coordinates

(x, y, z).
Data acquisition with 3D laser scanner is virtually unlim-

ited with respect to resolution. Modern laser scanners can

acquire more than a million points per second. This leads

to point clouds with large numbers of points. Data reduction

becomes necessary to efficiently perform operations on these

point clouds. Reduced point clouds will notably increase the

speed of the registration process. In this paper we will discuss

scan reduction for this task.

Most of recent terrestrial laser scanners provide reflectance

and sometimes even color data in addition to range informa-

tion. This data can be used to generate panorama images

from the acquired 3D scans. Image generation from point

clouds will allow for applying the conventional 2D image

matching algorithms to point clouds.

Böhm et al. explore the application of the scale invariant

feature transform (SIFT) method on laser reflectance data [1].

In our previous work we study the different projections for

key point based registration of panoramic terrestrial 3D laser

scans [2]. In the following we will present several panorama

generation methods and exploit their ability to reduce point

clouds to speed up the registration process. The methods are

contrasted with a state of the art reduction method based on

octrees.

II. STATE OF THE ART

Generating 3D models of structures, objects and envi-

ronments requires multiple 3D scans. Rigid 3D models are

created from the registration of several scans. This process

requires selection of initial feature or point correspondences

for every two acquired scan pairs. The relative orientation

between scan pairs is computed with the aforementioned

correspondences.

In automatic pairwise scan-to-scan registration methods

the transformation matrix between two corresponding scan

pairs is computed based on automatically detected similari-

ties in the point clouds. These similarities rely either purely

on points or on features in the scans.

Point based registration methods register 3D point clouds

by selecting point correspondences. These algorithms require

no computation of features. The Iterative Closest Point (ICP)

algorithm is a well known algorithm for point based regis-

tration [3]. It works for point correspondences on the basis

of smallest distance and minimizing the resulting Euclidean



error. The algorithm converges to a local minimum. Good

start estimate are essential for good matching results. These

start estimates can be produced by feature based algorithms.

The fine registration is then achieved by the ICP algorithm.

There are methods based on natural features that are gen-

erated automatically from 3D point clouds. These features

are exploited to find correspondences between scan pairs.

Hansen et al. consider an application of scale-invariant fea-

ture detection using scale-space analysis [4], [5]. Böhm and

Becker suggest the use of scale invariant feature transform

(SIFT) features for automatic registration [1]. Wang and

Brenner extend this work by using additional geometry fea-

tures to reduce the number of matching outliers in panoramic

outdoor scans [6]. Weinmann et al. present a method that is

based on both range and reflectance information of 3D point

clouds [7], [8]. These approaches extract the correspondences

for registration based on features extracted both from the

images and directly from the 3D point cloud. In our previous

work we proposed an approach to convert 3D scans into

panorama images, extract features from the images. We

used conventional 2D feature detectors and descriptors to

extract the correspondences for scan pairs, such as the

scale invariant feature transform (SIFT) [9], speed-up robust

features (SURF) [10] and others ([11], [12], [13], [14]). The

transformation matrix is computed by using RANSAC and

a least squares method [2].

There are approaches for reducing the complexity of scan

registration by extracting planes from the data [15], [16].

However, by using geometrical features the precise point

measurements are lost. Little work has been done on sub-

sampling 3D point clouds, e.g., by using range images [17].

Other methods for reducing the size of point clouds separate

the space into voxels and sample points from each voxel.

Efficient methods with uniform voxels use octrees [18].

Similarly Lee subdivides the point cloud into a non-uniform

grid based on normals [19]. Suter et al. cluster the data with

a k-nearest neighbor approach to remove points from the

original data [20]. Methods that use multiple scans to reduce

redundancies such as the method proposed by Swadzba

et. al. [21] cannot be used for registration as they require

knowledge about correspondences beforehand.

III. PANORAMA GENERATION

Range and reflectance information from the acquired scans

are used for the generation of the panoramic images. On

these images we utilize 2D feature detector and description

methods for 3D scan registration. The scanned environment

can be considered as projected to a sphere with the scanner

positioned in the center of the sphere. Panorama generation

is the process of mapping the spherical coordinates θ, ϕ, r

of the points to the image coordinates x and y.

A. EQUIRECTANGULAR

The equirectangular projection is the simplest projection

and is used in many applications to map a portion of a

surface of a sphere to a flat image. With this projection the

longitude and latitude are mapped to horizontal and vertical

coordinates of a grid with no transformation or scaling

applied. In an equirectangular projected image all vertical

straight lines remain vertical and straight, however horizontal

straight lines will become curves expect the horizon. This

projection supports 360◦ in the horizontal field of view and

180◦ in the vertical field of view. Coordinates relate linearly

to θ and ϕ. Poles in this projection are stretched to the

entire width of the image at the top and bottom edges. The

transformation equations of this projection are:

x = θ (1a)

y = ϕ, (1b)

where the longitude θ and the latitude ϕ are the spherical

coordinates (see Figure 2).

B. CYLINDRICAL

The cylindrical projection can be envisioned by wrapping a

flat piece of paper around the circumference of a sphere, such

that it is a sphere tangent to the equator of the sphere. Emit-

ting light from the center of the sphere will project the sphere

onto the cylinder.This projection is similar to the equirect-

angular projection. Straight vertical lines remain straight,

and horizontal lines become curves. Objects are stretched

vertically, especially those close to the north and south pole

of the sphere. The vertical field of view is restricted to 120◦

or less. However, it has the same recommended horizontal

field of view as the equirectangular projection which is a

field of view between 120◦ and 360◦ (see Figure 2). The

noticeable distortion of this projection is mostly on the top

and the bottom of the mapped image. For outdoor scenarios

this is mostly the sky and the ground. Therefore distortions

have little effect on the feature detection process in outdoor

scenarios. To map the panorama data onto the image, the

projection proceeds as:

x = θ (2a)

y = tanϕ. (2b)

C. MERCATOR

The Mercator projection is related to the equirectangu-

lar projection and the cylindrical projection. It shows less

pronounced distortions compared to the aforementioned pro-

jections. The Mercator projection is a conformal projection.

It has less vertical stretching and a greater field of view. A

variation of this projection is often used for very tall vertical

panoramas. The Mercator projection is recommended for a

horizontal field of view between 120◦ and 360◦ and a vertical

field of view less than 150◦. This projection is an isogonic

projection, i.e., angles are preserved. It proceeds as:

x = θ (3a)

y = ln

(

tanϕ+
1

cosϕ

)

, (3b)



mapping the longitude θ to horizontal coordinates and

calculating the vertical coordinates of the image (see Figure

2).

D. RECTILINEAR

The rectilinear projection can be imagined by placing a

piece of flat paper tangent to a sphere at a single point and

illuminating the surface from the center of the sphere. The

projected image to the paper is the rectilinear projection of

the portion of the sphere onto the flat image.This projection

maps the straight lines in 3D space to straight lines in the

2D image. It has a smaller field of view as compared to the

aforementioned projections. The image is stretched towards

the corners and the distortion grows with larger fields of view

(see Figure 2). The projection proceeds as:

x =
cosϕ sin (θ − θ0)

sinϕ1 sinϕ+ cosϕ1 cosϕ cos (θ − θ0)
(4a)

y =
cosϕ1 sinϕ− sinϕ1 cosϕ cos (θ − θ0)

sinϕ1 sinϕ+ cosϕ1 cosϕ cos (θ − θ0)
. (4b)

The recommended horizontal and vertical field of view

for this projection is less than 120◦. The generation of a

360◦ panorama image requires multiple rectilinear projected

images. One can generate three rectilinear projected images

with 120◦ field of view and merge them respectively to

produce a full 360◦ panorama image.

E. PANNINI

The Pannini projection is a mathematical rule for con-

structing perspective images with a very large field of view. It

can be imagined as a rectilinear projection of a 3D cylindrical

image. This image is itself a projection of the sphere onto

a tangent cylinder. The center of the rectilinear projection

can vary and is on the viewing axis at distance d from the

cylinder axis. For d = 0 the projection is rectilinear and

for d → ∞ it gives the cylindrical orthographic projection.

The projection with d = 1 has been defined as the Pannini

projection. The images produced by the Pannini projection

have a single central vanishing point. The images appear

to have a correct perspective even when using a wide field

of view. These images often resemble a normal rectilinear

perspective. The horizontal field of view can be larger than

for rectilinear projection, without the noticeable distortions

at the edges in the rectilinear projection. Straight vertical

lines remain straight and the radial lines through the center

of the image stay straight. However, it transforms horizontal

lines into curves (see Figure 2). The recommended vertical

and horizontal field of view for the Pannini projection is

less than 150◦. Therefore, the projection demands dividing a

360◦ scan into several sub-sets. The projection proceeds as:

x =
(d+ 1) sin (θ − θ0)

d+ sinϕ1 tanϕ+ cosϕ1 cos (θ − θ0)
(5a)

y =
(d+ 1) tanϕ

(

cosϕ1 − sinϕ1

(

1
tanϕ

)

cos (θ − θ0)
)

d+ sinϕ1 tanϕ+ cosϕ1 cos (θ − θ0)
.

(5b)

For the original Pannini projection the projection center

was assumed to be at the south pole ([22]). The equations

given here are modified to allow for different projection

centers. Thus θ0 and ϕ1 are the projection center in each

subset of the data.

F. STEROGRAPHIC

The sterographic projection can be imagined by placing

a flat paper tangent to a sphere and illuminating it from

the other pole. Each point on the sphere casts a shadow on

the paper. One pole is the center of the projection. Latitude

lines appear as circles around the central point. Distortions

increase further from the pole up to the equator. The equator

is increased twice in size compared to the sphere. The other

hemisphere of the sphere is stretched even more through the

pole where it is mapped to infinity. However, the center of

the projection and the illuminating point are not bound to

the poles of the sphere. The center of the point can be any

point on the sphere. The illuminating point can have any

distance R from the central point. Images over 330◦ are not

very functional. The recommended horizontal and vertical

field of view for this projection is less than 120◦. In order to

satisfy the essentials of this projection dividing a 360◦ scan

to sub-sets is required, and the projection proceeds as:

x =
2R cosϕ sin (θ − θ0)

1 + sinϕ1 sinϕ+ cosϕ1 cosϕ cos (θ − θ0)
(6a)

y =
2R (cosϕ1 sinϕ− sinϕ1 cosϕ cos (θ − θ0))

1 + sinϕ1 sinϕ+ cosϕ1 cosϕ cos (θ − θ0)
, (6b)

where θ0 and ϕ1 are the projection centers in each data

subset (see Figure 2). The R parameter is any non negative

value. R = 1 generates the Pannini projection. High values

for R introduce more distortion. We use R = 2 in our

experiments.

G. ALBERS EQUAL-AREA CONIC

The Albers equal-area conic projection can be imagined

as a map wrapped onto a cone set over the sphere. The

cone intersects the sphere at one or two latitude lines called

standard lines. The term conic is referred to any projection

in which longitudes are mapped to equally distanced lines,

converging at a point which may or not be a pole. Circles of

latitude are mapped to arcs of circles, concentric in the point

of convergence of longitude lines. The resulting map has

low distortion in scale, shape and area near these standard

lines. Equal area projections are projections that preserve

the area. The Albers equal-area conic projection has little

distortions along the central latitude and none at the standard

lines. This projection is suited for those areas on the sphere

that extend from east to west rather than those from north to

south. In this projection the 90◦ angles between latitudes and

longitudes are preserved. However, since the scale along the

lines of longitude does not match the scale along the lines of

latitude, the projection is not conformal. This projection is

recommended for a horizontal field of view up to 360◦ and a



(a) Latitude and longitude map with equirectangular projection (b) Reflectance map with equirectangular projection

(c) Latitude and longitude map with cylindrical projection (d) Reflectance map with cylindrical projection

(e) Latitude and longitude map with Mercator projection (f) Reflectance map with Mercator projection

(g) Latitude and longitude map with rectilinear projection (h) Reflectance map with rectilinear projection

(i) Latitude and longitude map with Pannini projection (j) Reflectance map with Pannini projection

(k) Latitude and longitude map with stereographic projection (l) Reflectance map with stereographic projection

(m) Latitude and longitude map with Albers equal-area conic projection (n) Reflectance map with Albers equal-area conic projection

Fig. 2: Panorama projections



vertical field of view less than 60◦. The projection proceeds

as:

x = ρ sin θ (7a)

y = ρ0 − ρ cos θ, (7b)

where

n =
1

2
(sinϕ1 + sinϕ2) (8a)

θ = n(λ− λ0) (8b)

C = cos( 2)ϕ1 + 2n sinϕ1 (8c)

ρ =

√
C − 2n sinϕ

n
(8d)

ρ0 =

√
C − 2n sinϕ0

n
. (8e)

The ϕ0 and λ0 are the latitude and longitude of the origin

of the cartesian coordinates. The ϕ1 and ϕ2 are the standard

lines (see Figure 2). In our experiments we have utilized

(ϕ0, λ0) = (0◦, 0◦) and the standard lines at ϕ1 = −40◦

and ϕ2 = 60◦.

IV. AUTOMATIC REGISTRATION

For the automatic registration of point clouds using these

panoramas, features are extracted for each scan. These cor-

respondences are used to generate pairwise transformation

matrices with a RANSAC-like [23] approach. The registra-

tion matches features from the two panorama images of a

scan pair, i.e., identifies features in one image that is closest

to the sampled feature from the other image based on a

comparison of their descriptors. Several algorithms such as

k−nearest neighbor (KNN) search and radius KNN search

are possible solutions to this problem. The ratio nearest

search as presented by [9] has shown the most promising

results. The registration proceeds by testing a subset of 3

point pair matches and examining the two triangles that are

defined by these points. The algorithm translates the triangles

so that their centroids lie at the center of the common

reference frame. The orientation that minimizes the error

between the points is then computed by the closed form

solution proposed by [24].

V. SCAN REDUCTION

Modern laser scanners are virtually unlimited with respect

to resolution. They can acquire more than a million points per

second. A simple scan often takes a few minutes to finished.

Therefore, a large number of points are available in each

scan. Scan reduction becomes necessary to efficiently process

the data, e.g. registration.

A. POINT BASED SCAN REDUCTION

Given a large number of points from a laser scan we

propose to uniformly subsample the entire point cloud to

reduce the number of points. This is achieved by first binning

the point cloud in a regular 3D grid and then randomly

selecting a number of points in each voxel. Both the number

of points and the side length of a voxel can vary to allow

for many different point densities. An additional advantage

of the uniformity of the subsampling is that surfaces closer

to the scanner do not unfairly influence the quality measure

more than surfaces that are farther away. In [25] we describe

a spatial data structure called octree with a low memory con-

sumption. An octree is a tree data structure for indexing 3D

data. Each node of the octree represents a rectangular cuboid

volume. Each node can have up to eight children. Each child

corresponds to one octant of the cube. A node without a

child implies that no further subdivision is necessary for the

corresponding volume and it can be uniformly represented.

Storing a point cloud in an octree has a stopping rule for the

accepted volume. The stopping criteria is defined as both

maximal depth and minimal number of points. All nodes

without children are considered as empty space. Since laser

scanners sample the surface of objects, the 3D point cloud is

not fully volumetric. Therefore, most octree nodes will only

have few children. The octree data structure is ideally suited

for 3D point clouds. To reduce the data we select a fixed

number of points from each voxel. This will remove more

points in voxels close to the scanner than in the voxels further

from the scanner. After reduction the points will be uniformly

distributed across the scanned environment. This is ideal for

point based registration. Point based scan reduction is not

suitable for panorama based registration. When creating a

panorama image equally sized areas will be mapped onto

differently sized areas in the panorama image depending on

the projection type. The result of point based reduction is an

even distribution in 3D space. This will lead to an uneven

distribution of points in the 2D projection, with too few

points in areas near to the scanner. The result is a panorama

image that contains many holes.

B. PANORAMA BASED SCAN REDUCTION

For a panorama based registration we require a reduction

method that reduces points based on the 2D projection.

Panorama generation implicitly reduces points by discretiz-

ing the projection into a 2D grid. The 2D grid is necessarily

of lower resolution than the original point cloud. This is

due to the distortions inherent to the projection onto a

2D plane. Some areas will be “compressed” and others

“stretched”. In the latter case, the original resolution of the

3D scan is often insufficient for complete coverage of the 2D

grid. Consequently, for an image without holes the overall

resolution of the 2D image has to be reduced. To generate

a rectilinear panorama image of a medium sized scan with

22.5 million points the resolution of the image should not

exceed 3600×1000. This equates to 3.6 million points, i. e.,

a reduction by a factor of five. This is a more than sufficient

resolution for registration. Further reduction leads to an even

larger decrease of memory usage. Figure 3 shows an example

of scan reduction. It is obvious that the point cloud reduced

based on the octree is more evenly distributed while the

panorama based reduction is a closer representation of the

original data.



Fig. 3: Point cloud reduction. Left: original data, middle: octree based reduction, right: panorama based reduction.

We proposed three methods for panorama based scan re-

duction using the correspondences between panorama image

pixels and 3D points in the point cloud. For the first method

we project all 3D points onto the pixels of the panorama

image. For each pixel we discard all points except the one

with the furthest distance from the scanner thus reducing the

data to at most one point per pixel. This subsampling method

uses direct mapping between pixels and original point data.

In the second method inverse equations are used to recover

the point data from the panorama images. The original point

information is lost and replaced by an approximation based

on the center of the pixel and the range information of the

furthest point. The reflectance information of the original

point data is retained. The third method is used on top of

the first two methods. After creating the panorama image

conventional image resizing algorithms are applied. Due

to the resizing of the image reflectance values have to be

reassigned to the points as well. The different approaches

used here will be explained in the experimental section.

VI. EXPERIMENTS AND RESULTS

For our experiments we implemented the three afore-

mentioned panorama based scan reduction methods. The

reduction methods were tested on data that was acquired at

the campus of the Wuhan University in China with a Riegl

VZ-400 laser scanner. Each scan contains around 15 million

points. We compare the reduction methods with regards to

their performance in panorama based scan registration. The

time needed for registration is recorded as well as the success

of the registration. This was decided upon visual inspection

of the resulting transformation. We use the equirectangular

projection in the experiments because it gives us the widest

range of possible resolutions.

First we compare the first two reduction methods. The

results for different resolutions of the panorama image are

given in Table I. Both methods fail on images with a

resolution lower than 1800 × 500. In these failure cases

the runtime is very low. The subsampling method, i.e.,

selecting the furthest point per pixel from the original data,

performs more reliably but also slower. The experiments

show that the modification of the point coordinates using

the inverse projection equations has a negative influence on

the registration quality, especially with decreasing number of

TABLE I: Performance of reduction methods. Time is given

in seconds.

features.

The results of the third method on top of the others is

shown in Table II. Panorama images with a resolution of

7200 × 2000 are scaled by the factor indicated in the first

column. This is done using the scaling algorithms that are

implemented in OpenCV [26]. We use both the bilinear

interpolation as well as the nearest neighbor interpolation.

The former is a true interpolation in the sense that new pixel

values are computed, whereas the latter chooses one of the

surrounding pixels in the original image as a representative.

The bilinear interpolation is slower and less reliable than

the nearest neighbor approach. However, the original sub-

sampling method outperforms both of them as it registers

point clouds with as little as 500,000 points while the scaling

methods fail for higher point cloud sizes.

VII. CONCLUSIONS

We have shown that some of the reduction methods are

very effective at drastically reducing point clouds while

retaining all necessary information for panorama based regis-

tration. Reduced input sizes strongly decrease the runtime of

the registration algorithm. In the future we plan to improve

the results of the reduction method by applying the resizing

method to the original point cloud rather than to already

reduced data.
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