
Analytical Change Detection on the KITTI dataset

Johannes Schauer Marin Rodrigues and Andreas Nüchter1

Abstract— We present an algorithm for explicit change detec-
tion on 3D point cloud data from a mobile mapping scenario,
namely the KITTI dataset. Our method is able to partition
a 3D point cloud into static and dynamic points using ray
traversal of a 3D voxel grid. We are thus not using a machine
learning approach or RGB camera data but instead compute
the intersections of the scene volume with the lines-of-sight
between the sensor and the measured points. Our approach
does thus not require any object detection or tracking and has
comparatively low requirements on the hardware. While our
earlier work focused on dense point clouds from terrestrial
3D laser scans, here we investigate its application on the
sparse 3D point clouds produced by a Velodyne laser range
finder in a mobile mapping scenario and compare our results
to two competing implementations using the ground truth
annotation from FuseMODNet for a quantitative analysis. We
also introduce spherical quadtree point cloud reduction as
a way to only work on less than 1% of the original data,
making processing multiple times faster while at the same time
producing results with equivalent F1 scores.

I. INTRODUCTION

3D point clouds collected in urban environments are

usually cluttered with noise from moving objects. Figure 1

shows a busy crossroad with the static environment in yellow

and moving cars, cyclists and pedestrians in magenta. Since

the points in the scene come from hundreds of individual

scans, moving objects are seen multiple times and show up

as long stripes or smears throughout the scene. For most

applications it is not desirable to have the artifacts created

by moving objects be part of the final point cloud. In an

earlier publication [1] we presented a solution for removing

1Informatics VII: Robotics and Telematics, Julius-
Maximilians-University, Am Hubland, Würzburg 97074, Ger-
many johannes.schauer@uni-wuerzburg.de,
andreas.nuechter@uni-wuerzburg.de

Fig. 1: crossroad from KITTI scene 51 with moving objects

in magenta and static objects in yellow

dynamic objects from 3D point clouds from terrestrial scans.

In this publication we apply our solution to scans gather

from a continuously scanning mobile platform. Using such

point clouds as input is challenging because in contrast to

dense point clouds from terrestrial mapping, the point clouds

are sparse and do not always provide clear surface normals.

Registering thousands of point clouds also poses greater

demands on the utilized SLAM algorithm and scanners used

for mobile mapping are usually less precise than stationary

terrestrial scanners.

In this publication we evaluate our algorithm on the

KITTI [2] dataset. We show how we achieve better F1 scores

than a competing solution while also being faster. On a

normal desktop computer we are able to process nearly 700

scans per second, purely on a Desktop CPU, which makes

our solution fit for real-time applications. All our code is

provided as part of 3DTK – The 3D Toolkit1 under the terms

of the GPL. To make it possible for other researchers to

benchmark their solution against ours, we also publish a shell

script which downloads, compiles and runs all required code

to output table I from the results section.2 The website also

contains the video published together with this paper as well

as high-resolution images.

The input to our algorithm is registered 3D range data,

typically acquired by a 3D laser range finder. While we

only test our approach with LIDAR scans, it is in principle

also compatible with scans obtained from RADAR or RGB-

D systems or point clouds from stereo vision. Given such

a set of registered point clouds, our algorithm is able to

partition the points into those belonging to static as well

as dynamic objects. Essentially, if a volume is seen as free

where another scan measured points, then these points must

be non-static and get marked for removal. We approximate

occupied volume by a voxel grid and determine free voxels

by traversing the lines of sight from the sensor to the

measured points through the voxel grid. Our approach is

able to detect change where two or more scans overlap

in the volumes they explicitly observe as free or occupied.

Apparent change created by occlusion is suppressed.

Our algorithm makes very few requirements on the under-

lying geometry of the scanned data, vantage points and the

temporal separation between individual scans. The vantage

points together with the geometry of the scene must be

chosen such that the volumes of interest are not occluded

from the sensor. Instead, the volumes that one wants to

remove moving objects from must have been observed at

1http://threedtk.de
2https://robotik.informatik.uni-wuerzburg.de/

telematics/download/icarcv2020/



least by two different scans. Furthermore, the temporal

difference between these two scans must be large enough

such that any object that one considers “dynamic” in the

observed volume was moved to a different location. But if a

given voxel volume was observed more than twice, then it is

sufficient that the voxel was seen as “free” by only a single

scan.

This paper is structured as follows. In the next section

we handle work related to ours. In the following section III

we explain our measurement method. Section IV contains

an explanation of how we use the spherical quadtree that we

introduced in our earlier research to speed up processing.

Section V then contains timing benchmarks as well as

quantitative and qualitative results of our approach as applied

on the KITTI dataset and a discussion thereof. We describe

our future work and draw conclusions in the last two sections.

II. RELATED WORK

Our solution falls into the realm of change detection [3]

but only few publications deal with classifying points as

either dynamic or static. Even fewer approaches compute

the free volume between a measured point and the sensor

itself. Most solutions for change detection compare incoming

geometries or point clouds in a way that results in ”change”

merely due to occlusion or incomplete sensor coverage. One

example for such an approach is the method by Vieira et

al which uses spatial density patterns [4]. Or the solution

shown in by Liu et al. [5] which just computes the difference

in voxel occupation between two input scans. But for our

purpose of ”cleaning” scans, it is undesirable to remove

these parts from the dataset. Doing so would mean to remove

potentially useful data from the input. Instead, we designed

our algorithm to be conservative. It only removes volumes

which it is able to confidently determine to be dynamic.

Volumes which it cannot make a decision upon, for example

because they were only measured by a single scan, are

left untouched. Meeting this requirement is only possible

by computing unoccupied volumes and detecting change

explicitly. The changes we are interested in can only be

detected if a given point falls into the volume that another

measurement observed as free.

The work most similar to ours is the seminal work by

Underwood et al. [6] It is able to detect changes between

two scans by ray tracing points in a spherical coordinate

system. But since their algorithm is limited to comparing no

more than two scans at a time it is not directly applicable to

our use case without either additional heuristics or quadratic

runtime with respect to the number of scans. Given N input

scans and without additional processing to find scan pairs

with a ”meaningful” overlap in their observed volume, the

only way to find all changed points is to compare all possible

pairs of scans. With N scans this results in a worst case

scenario of
N(N−1)

2 comparisons and thus quadratic runtime.

Our approach is of linear complexity relative to the input size

because all comparisons are made against a global occupancy

grid and not directly against point data from other scans. The

authors publicly provide their code and their datasets which

we thus use to benchmark our own method against theirs.

The KITTI dataset [2] is a popular dataset for computer

vision benchmarks from the Karlsruhe Institute of Technol-

ogy and their raw datasets are free to download.3 They equip

a standard station wagon with two high-resolution color and

grayscale video cameras, a Velodyne laser scanner and a GPS

localization system with an IMU. The focus of the dataset

lies on object recognition, object tracking and visual odom-

etry or laser-based SLAM. For these purposes, the dataset

comes with extensive ground truth annotations in form of

2D and 3D bounding boxes for the 2D camera images and

the 3D point cloud from the laser scanner, respectively. But

while objects like cars, vans, trucks, pedestrians, trams and

cyclists are correctly annotated, this does not yet supply a

fitting ground truth for the evaluation of our approach to

change detection because many of these objects can also be

stationary, like parked cars or sitting people.

To still use the KITTI dataset for evaluation, we make

use of the third party annotations provided by the authors of

MODNet [7] in form of the MoSeg-KITTI Motion Segmen-

tation or KITTI MoSeg dataset. That dataset provides binary

masks for 1300 images from different scenes from the KITTI

dataset. This data was further expanded by the authors of

FuseMODNet [8] to binary masks for 12919 images.4

Due to space constraints, we do not go into detail about

our algorithm in this paper. To understand concepts like

“point shadows” or the spherical quadtree data structure, we

kindly refer the reader to our earlier detailed publications.[9]

The novel contributions by this paper are the application of

our existing algorithm to a different problem space and the

speed-ups we gain without reducing the output quality by

reducing the input point clouds to below 1% of their original

size by using the existing spherical quadtree data structure

for point cloud reduction.

III. METHOD

Since change detection approaches are highly sensitive to

registration errors, the KITTI scans were registered using

slam6d, a SLAM implementation from 3DTK. For this

purpose, the scan locations were transformed from WGS-84

coordinates into ECEF coordinates, centered at the position

of the first scan as coordinate origin. This transformation

is not only useful because most software requires cartesian

coordinates as input but also because the 32 bit floating

point datatype is not precise enough to store large values

as they are common in WGS-84 coordinates to a precision

necessary for change detection. Attempting to handle WGS-

84 positions as 32 bit floats will commonly result in a loss of

precision in the range of several decimeters. At the latitude

where the KITTI dataset was recorded, the distance between

two representable poses in 32 bit floating point is 42 cm and

thus unsuitable to accurately represent the point cloud data.

3http://www.cvlibs.net/datasets/kitti/raw_data.

php
4https://sites.google.com/view/fusemodnet



The image masks from FuseMODNet apply to the images

captured by the left camera on the KITTI measurement setup.

White pixels signify moving objects and black pixels mark

static objects in the captured image. Since our algorithm

works on the point cloud data only, we use the transformation

matrices between the laser scanner and the left camera as

provided in the KITTI datasets to project the point clouds

onto the image space. Of the total point cloud, only 15.87%

of all points on average are also seen by the left camera.

We classify assign the ground truth values of being either

dynamic or static points to them depending on whether they

are projected onto a white or black pixel, respectively.

Our own method as well as the method by Underwood et

al. that we will be benchmarking against use several parame-

ters. For both methods, we selected optimal input parameters

by computing the F1 score for several discrete values. Since

the approach by Underwood et al. only compares scan pairs

and would thus require
N(N−1)

2 comparison for a scene with

N scans, we only compare the current scan to 10 randomly

selected different scans within a radius of 10 m of the

current scan That strategy produced better F1 scores than

other approaches like picking 5 scans immediately before and

after the current scan. A possible explanation for this effect

is, that the latter approach does not account for situations in

which the vehicle is stationary, because picking scans from

different vantage points improves the result. This reduces

the necessary number of comparisons from 6125127 down

to 128547 or 19 hours of computation time for the whole

dataset. The best parameters for the approach by Underwood

et al. are Ta = 1.3 and Tr(m) = 0.74. The only parameter

for our method is the voxel size. The voxel size with the best

results was 0.39 m.

IV. SPHERICAL QUADTREE REDUCTION

The runtime of our approach linearly depends on the

number of input points to compute the intersection between

measurement rays and the voxel grid. The closer to the

sensor, the more measurement rays intersect with the same

voxel but to mark a voxel as “free” it only needs to be

traversed by a single ray. The effect is more pronounced for

dense point clouds but is even applicable for sparse point

clouds from the KITTI dataset because the ground truth data

only labels objects that are relatively close. The problem also

occurs for scanners with more than one rotational axis where

the closer to one of the axis one gets, the more dense the

point cloud becomes.

From knowing the geometry of the Velodyne scanner used

in the KITTI dataset, it would be straight forward to generate

a sampling pattern that would produce an overall equal

sampling of the measurement rays. Instead, we choose a

solution that works equally well without knowing the scanner

geometry upfront. For this task we make use of the spherical

quadtree which our algorithm already created for computing

“point shadows”. The data structure is created by recursively

subdividing the projection of a octahedron onto a unit sphere

surface. This produces a data structure where each triangle

on the unit sphere surface is subdivided into four smaller

triangles of similar area until a stopping criterion is reached.

We already used this data structure to efficiently look up

angular neighbors in our earlier publications. Now we use

the same existing data structure to sample the point cloud

up to a certain number of points per angular radius. This

process works analogous to how points are reduced in an

Octree.[10]

V. RESULTS

A. Performance

We carried out our benchmarks on an Intel Xeon e5-2630

v3 octacore desktop system with 2.4 GHz and 32 GB RAM.

If the time to load data from disk and writing the results back

to disk are ignored, then our algorithm is able to process the

whole KITTI dataset (1553 Million points) in 183 seconds.

This translates to 70 scans per second or 8.5 Million points

per second. If one is only interested in the points that are seen

by the left camera (246 Million overall), then our method

is able to process 202 scans per second. By using spherical

quadtree reduction, the number of points the algorithm needs

to process can be further reduced. Using the parameters that

produced the results in the sevenths column of Table I, only

1661637 (0.67%) points remain. Even including the time

it takes to perform the point reduction, we can measure

a performance of 693 scans per second. This means, that

a 3.4 time speedup can be realized on the KITTI dataset

without sacrificing output quality in terms of F1 score. Since

the KITTI dataset contains 10 scans per second, we would

be able to process it nearly at 70 times the normal speed.

With dense 3D point cloud data from terrestrial mapping, the

speedup gained by this method can be up to two orders of

magnitude with equal solution quality.

B. Quantitative Results

The results of running our approach as well as the method

by Underwood et al. on the KITTI dataset can be seen in

Table I. The first column shows the KITTI scene identifier.

The second column shows the number of scans in that scene.

Each full scan contains 120000 points on average. Since the

results in this table are limited to the points seen by the left

camera, each scan contains around 19000 points. The third

column shows the percentage of non-static points according

to the ground truth information from the FuseMODNet image

masks. The fourth column “F1 UW” shows the F1 score from

applying the method by Underwood et al. The fifth column

shows the F1 score for our method. The sixth column “F1

210” shows the F1 score with a minimum cluster size of 210.

The seventh column “F1 Red” shows the F1 sore achieved

after reducing the points using the spherical quadtree such

that at most 10 points remain in an angular radius of 0.2

radians as well as a minimum cluster size of 210. The

last column shows the result of the same experiment as for

column F1 but using the Intersection over Union metric for

the moving points. We omitted the IoU for the static points

because it was consistently close to or above 0.98 with a

total non-moving IoU of 0.9783. This effect can also be

seen in Figure 2b. The last line shows grand totals. The total



TABLE I: Quantitative results

ID scans dyn F1 UW F1 F1 210 F1 Red IoU

1 108 0 0 0 0.0 0.0 0.0
2 77 0.03 0.0019 0.0047 0.0 0.0 0.0
5 154 2.37 0.2633 0.4279 0.5162 0.5015 0.3479
9 443 1.47 0.3005 0.3658 0.5817 0.2916 0.4101
11 233 3.24 0.4385 0.5544 0.6523 0.4185 0.4840
13 144 3.31 0.2610 0.5684 0.6643 0.3323 0.4973
14 314 2.49 0.1311 0.2582 0.2277 0.0835 0.1285
15 297 2.31 0.4906 0.6331 0.6818 0.4406 0.5172
17 114 3.00 0.7122 0.6285 0.6155 0.5311 0.4446
18 270 3.62 0.4409 0.4975 0.7065 0.6561 0.5462
19 481 1.27 0.2287 0.4534 0.7434 0.5370 0.5916
20 86 0.10 0.0055 0.0281 0.0384 0.0 0.0196
22 800 0.58 0.1035 0.2295 0.6454 0.6044 0.4764
23 474 0.02 0.0004 0.0005 0.0 0.0 0.0
27 188 0.71 0.3008 0.4856 0.6988 0.4305 0.5371
28 430 0.49 0.0373 0.4312 0.6795 0.0 0.5146
29 430 1.67 0.1426 0.3943 0.4678 0.6095 0.3053
32 390 1.80 0.0270 0.4960 0.6001 0.3069 0.4287
35 131 0.02 0 0.0021 0.0 0.0 0.0
36 803 1.73 0.0879 0.4845 0.6702 0.6255 0.5040
39 395 0.61 0.2994 0.2739 0.7382 0.4790 0.5850
46 125 2.13 0.2373 0.6562 0.8290 0.7178 0.7080
48 22 6.39 0.2051 0.5656 0.5972 0.0 0.4257
51 438 5.63 0.2161 0.6529 0.7724 0.6834 0.6292
52 78 0 0 0 0.0 0.0 1.0
56 294 1.61 0.1141 0.4341 0.5047 0.4971 0.3375
57 361 3.38 0.2125 0.2708 0.3096 0.2527 0.1831
59 373 2.98 0.4090 0.4449 0.5758 0.4893 0.4043
60 78 0.26 0.1634 0.3380 0.6480 0.0 0.4792
61 703 0 0 0 0.0 0.0 1.0
64 570 0.07 0.0229 0.0520 0.4670 0.4784 0.3047
70 420 0.42 0.0462 0.3831 0.6564 0.6885 0.4886
79 100 0 0 0 0.0 0.0 1.0
84 383 0.79 0.1249 0.2260 0.3877 0.3764 0.2405
86 706 0 0 0 0.0 0.0 0.0
87 729 0 0 0 0.0 0.0 0.0
91 340 0 0 0.0005 0.0007 0.0010 0.0004
93 433 0 0 0 0.0 0.0 0.0

all 12915 1.19 0.1462 0.2936 0.4173 0.4232 0.2637

number of scans is lower than the 12919 masks provided

by the FuseMODNet dataset, because some camera images

in the KITTI dataset did not come with an associated 3D

point cloud. The remaining numbers in the last row are not

an average of the numbers above, but are computed as if all

KITTI scenes together were one single dataset.

Both the F1 score as well as IoU yield low results when

the number of moving points in a scene is low compared to

the number of static points or even zero. Rows with close to

zero or zero dynamic points (column three) in Table I also

yield F1 scores or IoU values close to zero. In figure 2a

we plot the relationship between the percentage of dynamic

points of the total number of points versus their respective

F1 scores. No obvious relationship between the two values

exists.

The minimum cluster size of 210 in column six of Table

I was chosen after evaluating the F1 score for multiple

minimum cluster sizes as can be seen in Figure 2b. Larger

cluster sizes produce better F1 scores, because the ground

truth data from FuseMODNet does not label pedestrians

or cyclists as moving. Thus, our algorithm achieves better

scores if it ignores smaller moving objects in favor of cars

and trucks.

Figure 2c shows how there is a relatively large range of

voxel sizes that produce close to optimal F1 scores. Values

between 25 and 50 all produce F1 scores over 0.5. More

research is needed to evaluate how scene or scanner specific

the voxel size really is.

Even though we provide results using the IoU metric,

a direct comparison to the results from the FuseMODNet

paper is not possible because our approach works on the

point cloud while theirs evaluates IoU in the two-dimensional

image space of the camera. Since the point clouds from the

velodyne scanner are not dense enough, even projecting the

point clouds into the image plane would not yield comparable

results.

While our solution does outperform the algorithm by

Underwood et al, our F1 scores are much below those of

over 0.95 that we achieved for terrestrial scans in earlier

publications. There are multiple reasons for this effect.

Importantly, the FuseMODNet labeling only labels vehicles.

Any other moving objects that are correctly identified will

be classified as false positives according to our ground truth.

Furthermore, the sparse point clouds from the Velodyne laser

scanner provide less reliable surface normals and thus our

approach to avoid artifacts by computing “point shadows”

fails.

Figure 3 shows ”impossible” points situated under the

street surface which are a result of various reflections in the

scene. Common sources for these reflections are parked cars

and window fronts besides the street. Such points also exist

in other locations but those below the street are easiest to

visualize to demonstrate this problem. Since the algorithm

assumes that the line-of-sight between the laser range finder

and all points is ”empty”, reflected points will introduce false

positives.

Another problem source is, that the masks often misclas-

sify points as can be seen in Figure 4. The figure shows

the left camera frame number 385 from the KITTI scene

9 and is overlayed with the corresponding mask from the

FuseMODNet project. Pixels belonging to dynamic objects

are marked white. On the left-hand-side of the camera image,

one can see that large parts of the traffic sign were marked as

dynamic even though the traffic sign is static. In the center

of the image, it can be seen, that the front of the car was

not marked as dynamic even though it belongs to a dynamic

object. Thus, imperfections of the underlying ground truth

introduce false positives as well as false negatives into our

results.

Speaking in general, our algorithm produces false positives

in situations where scans are either not correctly registered

or due to sensor noise. An example is a flat surface where

not all points lie on the surface. The points ”in front” of

the surface in scanner direction will then be marked as

”see through” even though they belong to a static object.

Another source of false positives arises when surface normals

are wrongly computed and thus point shadows are not

determined correctly. Due to the noisy nature of the KITTI

dataset there were many sources of both of these issues,

leading to a high number of false positives. Another source



0.0

0.2

0.4

0.6

0.8

0 2 4 6

percent of dynamic points

F
1

sc
o

re

(a) F1 score with (red) and without (green)
minimum cluster size by percentage of dy-
namic points in a KITTI scene.

0.25

0.50

0.75

1.00

0 500 1000 1500 2000

cluster size

v
al

u
e

(b) F1 score (green), moving IoU (red) and
non-moving IoU (blue) for different minimum
cluster sizes over the whole KITTI dataset

0.2

0.3

0.4

0.5

0 25 50 75 100

voxel size

F
1

sc
o

re

(c) F1 score with different voxel sizes for the
scans marked grey in Table I

Fig. 3: Points from reflections under the street surface

Fig. 4: Examples of wrong classifications of binary masks

from FuseMODNet from KITTI scene 9, frame 385.

of false positives are mirrors and transparent objects. Lastly

– if enabled – some false positives are introduced by our

approach to subvoxel accuracy which we only enabled for

the qualitative results.

False negatives are created either in situations where a

volume was only seen by a single laser scan or in volumes

that were ”shadowed” by closer points. We observed the

latter problem in a dataset where we placed the scanner

directly on the ground instead of on a tripod to take a scan.

This resulted in points from the ground directly adjacent to

the scanner to shadow most of the lower part of the scan and

thus make it impossible for our algorithm to classify any

points close to the ground as dynamic. Additionally, false

negatives are introduced if the chosen voxel size is so small,

that rays are able to penetrate objects without intersecting

a voxel with points in it. Since the point density typically

decreases with their distance from the sensor, this effect also

occurs at very far distances. Applying a clustering filter can

also introduce false negatives if the dynamic object is smaller

than the chosen minimum cluster size.

C. Qualitative Results

Qualitative results can be seen in Figure 5. Additionally

we publish a video alongside with this publication which can

also be viewed on the project website as well as on YouTube5

using the scenes marked in grey in table I. In contrast to

the quantitative results from Table I, we use the full point

clouds from the Velodyne scanner and not just the 15.87%

of points that can be projected to the left camera image.

To produce the best possible results, we use the optimal

voxel size and minimum cluster size as parameters and do

not disable subvoxel accuracy.

Most figures show moving cars and trucks. A pedestrian

is most prominent in Figure 5b but also show in Figures 1

and 5l. Cyclists can be seen in Figures 1, 5g and 5h. Figure

5j shows a registration error that resulted in a wall seen in

multiple scans not being properly aligned in the registered

final point cloud. The result is, that the “outer” walls are

marked as dynamic because they appear as “see through”.

VI. FUTURE WORK

Needless to say a lot of work remains to be done. While we

used our approach for the purpose of partitioning terrestrial

laser scan data into static and dynamic points for the purpose

of obtaining a point cloud free of dynamic points, applying

our approach to a mobile mapping scenario creates many

new possibilities. Currently our solution is a post-processing

method but there is no conceptual reason not to execute the

algorithm on live data. Another interesting application could

be to use the built-in point cloud segmentation functionality

to preprocess data for machine learning approaches.

VII. CONCLUSION

In this work we applied our algorithm for explicit change

detection on the well known KITTI dataset and compared

it with another competing approach. We have shown how

our algorithm achieves higher F1 scores and compares

favourably in runtime as well as in qualitative results. Using

the spherical quadtree as an existing pre-computed data

structure of our solution we are able to significantly speed up

our algorithm. Since it is very light on computing resources,

5https://youtu.be/khH7Bs7Cp3o



(a) scene 9 (b) scene 9 (c) scene 9

(d) scene 11 (e) scene 13 (f) scene 15

(g) scene 17 (h) scene 18 (i) scene 39

(j) scene 46 (k) scene 48 (l) scene 59

Fig. 5: Qualitative results from our method using the datasets marked gray in table I

it is an ideal companion algorithm as part of a bigger

pipeline.

REFERENCES

[1] J. Schauer and A. Nüchter, “The Peopleremover — Removing Dy-
namic Objects From 3-D Point Cloud Data by Traversing a Voxel
Occupancy Grid,” IEEE Robotics and Automation Letters (RAL),
vol. 3, no. 3, pp. 1679–1686, July 2018.

[2] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” International Journal of Robotics Research (IJRR),
2013.

[3] R. Qin, J. Tian, and P. Reinartz, “3d change detection–approaches and
applications,” ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 122, pp. 41–56, 2016.

[4] A. W. Vieira, P. L. Drews, and M. F. Campos, “Spatial density patterns
for efficient change detection in 3d environment for autonomous
surveillance robots,” IEEE Transactions on Automation Science and

Engineering, vol. 11, no. 3, pp. 766–774, 2014.

[5] K. Liu, J. Boehm, and C. Alis, “Change detection of mobile lidar
data using cloud computing,” in International Archives of the Pho-

togrammetry, Remote Sensing and Spatial Information Sciences-ISPRS

Archives, vol. 41. International Society of Photogrammetry and
Remote Sensing (ISPRS), 2016, pp. 309–313.

[6] J. P. Underwood, D. Gillsjö, T. Bailey, and V. Vlaskine, “Explicit
3d change detection using ray-tracing in spherical coordinates,” in
Robotics and Automation (ICRA), 2013 IEEE International Conference

on. IEEE, 2013, pp. 4735–4741.
[7] M. Siam, H. Mahgoub, M. Zahran, S. Yogamani, M. Jagersand,

and A. El-Sallab, “Modnet: Moving object detection network with
motion and appearance for autonomous driving,” arXiv preprint

arXiv:1709.04821, 2017.
[8] H. Rashed, M. Ramzy, V. Vaquero, A. El Sallab, G. Sistu, and

S. Yogamani, “Fusemodnet: Real-time camera and lidar based moving
object detection for robust low-light autonomous driving,” in The IEEE

International Conference on Computer Vision (ICCV) Workshops, Oct
2019.

[9] J. Schauer and A. Nüchter, “Removing non-static objects from 3d laser
scan data,” ISPRS Journal of Photogrammetry and Remote Sensing

(JPRS), vol. 143, pp. 15–38, 2018.
[10] J. Elseberg, D. Borrmann, and A. Nüchter, “Efficient Processing of

Large 3D Point Clouds,” in Proceedings of the XXIII International

Symposium on Information, Communication and Automation Tech-

nologies (ICAT ’11). Sarajevo, Bosnia: IEEE Xplore, October 2011.


