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Abstract—This publication describes a 2D Simultaneous Lo-
calization and Mapping approach applicable to multiple mobile
robots. The presented strategy uses data of 2D LIDAR sensors
to build a dynamic representation based on Signed Distance
Functions. A multi-threaded software architecture performs reg-
istration and data integration in parallel allowing for drift-
reduced pose estimation of multiple robots. Experiments are
provided demonstrating the application with single and multiple
robot mapping using simulated data, public accessible recorded
data as well as two actual robots operating in a comparably large
area.

I. INTRODUCTION

Rescue forces risk their own health and life in service for
people in serious trouble. In collapsed or burning buildings the
search for victims is dangerous and time critical. In general,
such disaster sites can be assumed as unknown areas wherefore
the search for injured or trapped persons is an exploration
task in the first place. Included autonomous robots face the
well-known Simultaneous Localization and Mapping (SLAM)
problem.

Fig. 1: Cooperating Robots at the RoboCup German Open
2014.

The chance to save lives reduces gradually in time. Efficient
search is performed in parallel. Multiple rescue forces enter the
disaster area from different access points. In order to support
human rescue forces in dangerous tasks with multiple robots,
coordination and data fusion is mandatory to defragment
collected sensor data of several robots. Piecing together these
fragments is required for getting a general idea about the whole
situation. Rescue forces are instructed more efficiently having
the global overview.

In this paper, we propose a 2D multi-SLAM framework
allowing a robot team to cooperate together for drift-reduced
pose estimation and shared mapping. A multi-threaded soft-
ware architecture allows parallel pose estimation of multiple
2D LIDAR inputs. Either a shared map or individual maps can
be used for all robot instances.

One could mention that a 2D algorithm is not sufficient re-
garding the comparably structured area of a search and rescue
site. The proposed approach is derived from our previously
published framework which allows application to 2D and 3D.
However, as this publication focuses on multi robot SLAM
of large areas which would require a high amount of system
resources, 2D perception is performed. Nevertheless, a 2D map
is easier to read for human rescue personal in high stress
situations.

The content of this paper is structured as follows: Section II
reviews related work in multi-robot SLAM. Section III outlines
our framework and develops the concrete model for including
2D laser scanners. Section IV extends the framework for
application to multi-robot SLAM. In Section V single-robot
and multi-robot SLAM experiments are performed, either in
simulation and in a real world scenario. Finally, Section VI
concludes with an outlook on future work.

II. RELATED WORK

In an early approach, Burgard et al. considered multiple
robots as independent systems to be coordinated for a faster
coverage of the exploration area [1]. The global map is a result
of integrating several local maps. If their relative poses are
known, map integration is straightforward. While focusing on
the collaboration aspect, an extended approach still makes need
of close initial robot poses [2].

Several probabilistic models were proposed to solve the
problem of unknown starting poses of multiple robots in a
joined exploration task. Konolige et al. used local probabilistic
constraints among robot poses [3]. Each pair of the robot team
exchanges local maps for merging both to obtain a globally
consistent map with loop-closure techniques. Howard proposed
Rao-Blackwellized particle filters for the localization problem
[4]. Local maps are merged as the robots bump into each other
during mission.

Fox et al. demonstrated the efficient exploration of un-
known environments by a team of mobile robots [5]. Also



this approach does not rely on initial pose information about
the robot team members. Having the ability to explore in-
dependently, the robots can build clusters in order to share
a map as soon as they come close enough for establishing
stable communication links. The robots need to determine
their pose relative to the coordinate system of the shared
map. Particle filters are employed for this task on each robot.
The proposed approach works efficiently for up to six robots.
Global consistency is ensured by the application of loop-
closure techniques.

The approach of Kim et al. relies on multiple relative pose
graphs for the cooperative mapping task with a team of mobile
robots [6]. Real-time applicability was achieved as well as fast
convergence to a global solution. The approach also employs
loop-closure detection. Kim et al. illustrated the performance
in larger environments, of which several thousand laser scans
were provided. Different kinematic concepts were included,
i.e., the cooperative mapping using a quadrotor and a ground
robot.

Granström et al. proposed the detection of loop clo-
sures with a machine learning approach [7]. The group used
AdaBoost for building rotation invariant features detected in
laser scans.

In 2D SLAM approaches loop-closure detection plays
an important role. Interestingly, the 3D SLAM approach
KinectFusion has no need to rely on this step. Izadi et al.
demonstrated that the representation of a Signed Distance
Function (SDF) [8] applied to the SLAM problem, achieves
accurate tracking results with limited drift [9]. The group
achieved real-time capability by the use of massive parallelism
on GPU. A hand-held Kinect was localized by Iterative Closest
Point (ICP) registration while tracking against the growing full
surface model. The convergence of the system without explicit
global optimization was demonstrated in several closed-loop
scenarios. This approach aims at the assimilation of as many
surface measurements as possible in time and features a limited
drift and high accuracy.

In a previous publication, we generalized the KinectFusion
approach in order to make it applicable to different types
of sensors, i.e., 2D and 3D laser scanners, Time-of-Flight
and stereo cameras or structured light sensors [10]. In this
publication we extend this framework for the SLAM problem
performed by multiple robots. The approach can either be
applied to several robots independently or to a team of robots
sharing and updating a joined map.

III. ALGORITHM

For the reader’s convenience we explain in this Section the
application of the generic framework to 2D laser scanners [10].
The multi-robot extension and closed-loop experiments follow
subsequently.

An iteration of our SLAM approach consists of three steps,
it is triggered by new sensor frames. In the first step, the
physical parameters of the input device are used to reconstruct
a model M = {~mi | i = 1..nm} containing coordinates
~mi = (xi, yi)

T , a virtual sensor frame from the pose the sensor
was previously localized at.

θ

Fig. 2: Raycasting model for 2D laser range finder.

Step two uses this data as model for scan matching with
the current sensor data, the scene D = {~di | i = 1..nd}
containing coordinates ~di = (xi, yi)

T , deploying the ICP
algorithm introduced by Zhang and Zhengyou [11] and Chen
and Medioni [12]. The sensor’s pose, denoted as 3 × 3
transformation matrix Ti, is updated with incremental pose
change T∗ from time step i− 1 to i.

The third step uses the current pose and sensor data to
update the representation by calling the method push, see
Figure 3. The grid contains Truncated Signed Distances (TSD)
similar to the KinectFusion approach [9]. We call this represen-
tation TSD grid in the remainder. Listing 1 illustrates coarsely
the whole approach.

Algorithm 1 Main SLAM Strategy
D← acquire sensor data
M← reconstruct: raycast at pose Ti−1

T∗ ← scan registration between D and M
Ti ← T∗Ti−1

Integrate data D at pose Ti

Localization of multiple robots can be performed in par-
allel, since raycasting and scan matching apply only reading
access. The SLAM strategy of a single robot can be parallelized
itself, because map updating is executed only in small incre-
mental steps. The possible error induced by a conflicting read
and write access can be neglected, as we assimilate as many
surface measurements as possible in time, cf. KinectFusion
approach [9].

A. Reconstruction

A representation based on SDF has the characteristic, that
raycasting can be employed to reconstruct scans from arbi-
trary point of views. Data integrated from multiple views are
weighted with a decreasing weight. Thus, the reconstruction
from the TSD grid at a certain point of view entails information
of all integrated scans so far and features reduced noise. The
sensor model for the raycaster defines a set of vectors, i.e., the
line of sight of each laser beam, cf. Fig. 2.

B. Data Integration

The SDF is calculated for every grid cell visible by the
sensor, wherefore the first step is back projecting the cell
centroids V = {~vi | i = 1..nv}, i.e., assigning a certain laser
beam. As these coordinates are in the world coordinate system,



they need to be registered to the sensor coordinate system as
follows:

V∗ = T−1
i V (1)

The centroids ~v∗i are assigned to laser beams as follows:

αi = arctan(
v∗iy
v∗ix

), (2)

ii =
αi
r

(3)

where αi is the beam’s polar angle, ii the assigned beam index
and r the sensor’s angular resolution.

IV. MULTI-ROBOT FRAMEWORK

As described in the previous Section, an iteration of the
SLAM approach consists mainly of three steps: reconstruction,
localization and data integration. Considering the usage of a
Robot Operating System (ROS)-based architecture, a fourth
step is necessary extracting a compatible representation out of
the TSD grid. Many ROS nodes require an occupancy grid as
input.

Considering simultaneous multi-SLAM capabilities, these
tasks have to be performed for every robot. However, as the
current pose needs to be supplied with a fast and constant
update rate in order to use it for pose and motion controllers,
the localization should be decoupled from other tasks. Modern
CPUs consist in general of multiple cores allowing parallel
processing of data with a multi-threaded architecture.

To supply a fast pose update rate, a high priority local-
ization thread is started for each robot, which is triggered by
new input data. Map building (data integration) is executed
asynchronously because it only needs to be performed if
the pose changes significantly. Most navigation tools in ROS
do not require a high update rate for the map wherefore
the occupancy grid generation is triggered by a timer at a
comparably low rate.

The framework provides three thread classes: a localiza-
tion thread (ThreadLocalize) is instantiated for every
robot. Grid extraction (ThreadGrid) and data integration
(ThreadMapping) is performed each by a single thread as
well. The data integration module provides a queue to relax
heavy work load, when multiple robots desire to integrate their
data to the shared map. Fig. 3 depicts the coarse framework.

A. Localization Thread

The model for ICP matching is reconstructed from the
TSD grid, which is used simultaneously by all robots. As only
reading access is performed, no racing conditions can appear,
even if multiple accesses to the same cell are performed.
Therefore, the multi-robot-SLAM approach uses one separate
localization thread for each robot.

B. Mapping Thread

All localization threads access the same instance of the rep-
resentation wherefore these accesses have to be synchronized.
Our framework uses an additional thread for this task, which
updates the representation with a given data set.

As the localization cycle time is the most crucial, these
threads must not wait for the map update. Therefore, our
approach uses a First in First Out buffer to which access is
controlled by a mutex. Multiple localization threads add data
to the queue wherefore waiting is restricted to the copying
of the data. Typical 2D laser frames contain approximately
1000 points, wherefore the time for copying is negligible.

An instance of our sensor interface includes this informa-
tion. Sensor data is handled using instances of this interface.
The mapping thread remains inactive until data is added to the
queue. Its event loop updates the map with the sensor data
until the queue is empty.

However, as multiple robots add data to the map, it has to
be ensured that an active robot is not mapped as an obstacle
by another robot. For instance, consider one robot following
another. Therefore, a filter takes the positions and footprints
of all robots into account. This filter applies two steps:

First, the corners of their footprints are back projected to
assign laser beams of the sensor’s model (Equations (1)-(3)).
Gained indices are verified whether they are in the sensor’s
field of view, otherwise the referring robot is not visible and
not to be considered any further in this iteration.

Second, the distance of the footprint corners to the referring
measurements are compared. This is necessary in order to
detect occlusion by another object. If the footprint corners are
visible, the associated depth data is not taken into account
in the map building process. This approach is illustrated in
Algorithm 2.

Algorithm 2 Robot pose filter
for all known robot positions with robot radius ri do

for all robot footprint corners C = {~ci | i = 1..nc} do
~c∗i ← T−1

i ~ci

ii ←
arctan(

ciy
cix

)

ri
if (ii within sensor bounds) then

if (D(ii) >
∥∥~ci − ~ti∥∥) then

exclude D(ii)
end if

end if
end for

end for

C. Occupancygrid Thread

In order to supply map data represented as occupancy grid,
the TSD grid content has to be translated into occupancy likeli-
hoods, wherefore an additional thread is integrated performing
this task.

The SLAM approach knows three possible cell states:
unknown, empty or occupied, i.e., containing an object. The
ROS definition of an occupancy grid sets unknown areas to
−1 and empty areas to 0. A cell containing an object with
100 % likelihood is marked with the value 100.

As surfaces are determined by a sign change in the SDF, re-
construction is performed by raycasting. Our approach applies
axis-aligned rays traversing from two adjacent sides of the grid
to their opposite side. On the contrary to the reconstruction
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Fig. 3: UML diagram of the thread architecture.

from a certain point of view, this approach does not aim at
getting a virtual sensor frame, it reconstructs the complete
content of the representation at once.

V. EXPERIMENTS

All experiments described in the following were performed
on the same type of CPU, an Intel Core i7 quad core. As
operating system, Ubuntu 14.04 lts with ROS Indigo was
chosen.

A. Single Robot Loop Closure Experiment

In this experiment our rescue robot “Simon” (Figure 9 a),
equipped with a Hokuyo UTM-30LX LIDAR, was navigated
through the first floor of a building at our campus. The test
was aggravated through small floors consisting of walls with
few distinctive features and a noticeable amount of uncovered
glass surfaces. Additionally, start- and end point are closely
located. Loop closures could be detected, if applied. This is
done implicitly as the TSD grid weights all incoming data
appropriately and features minimal drift. The map has an edge
length of 122.88 m and a granularity of 0.015 m.

Figure 4 shows four steps of the loop closing, illustrating a
comparably small error as the robot arrives at its starting point
again. Figure 5 shows the final map with drawn trajectory of
this experiment.

B. Single Robot SLAM with Reference Data

A second experiment deploying a single robot has been
performed in order to test our SLAM framework. As input
data, reference laser frames from a data repository at the
University of Freiburg, Germany, were used [13]. In order to
validate the output of the software, an image of the resulting
map with printed trajectory is provided, cf. Figure 6a, as well
as the reference map and trajectory supplied by the University
of Freiburg, cf. Figure 6b.

Fig. 4: Three steps of the loop closing, chronological order
from left to right.

C. Multi SLAM with Simulated Robots

The multi-SLAM framework has been tested with the ROS
Simple Two Dimensional Robot Simulator (STDR)1 . The
simulator is installed on an additional PC, it provides artificial
laser data for every robot. As the main processor is a quad
core, the number of robots for this experiment has been set to
the number of physical processor cores, wherefore hardware
resources are used at high capacity. The map has an edge
length of 122.88 m and a granularity of 0.015 m.

1http://wiki.ros.org/stdr simulator, online accessed 14-January-2015



Fig. 5: Complete map of the single slam loop closure experi-
ment with drawn trajectory.

(a)

(b) source: http://kaspar.informatik.uni-freiburg.de/ slamEvalua-
tion/datasets.php

Fig. 6: Result of the reference data experiment. Fig. (a)
represents the generated map with estimated trajectory, (b)
shows a reference image taken from the data repository.

The four simulated units start at the same time and explore
a labyrinth, building a map of the surrounding. The experiment
was documented taking screenshots of the map containing the
ground truth of the simulator and the estimated trajectory.
Figure 7 and 8 show the process and the results of the
simulated experiment. The blue line marks the ground truth,
and the red line the estimated trajectory.

D. Multi SLAM of a Building Floor

This experiment addresses the RoboCup Rescue scenario,
the multi-SLAM is being developed for a team of two coop-
erating robots (Figure 9) exploring an indoor area. The robot
“Simon” explores one part of the building, and robot “Georg”

(a) (b) (c)

Fig. 7: Phases of the simulated multi-SLAM. Chronological
order from a to c.

(a) (b)

Fig. 8: Multi-SLAM simulation result. Comparison of the
reconstructed map (a) and the original model used by the
simulator (b).

another. Both are equipped with the same LIDAR, a Hokuyo
UTM30-LX. In order to validate the limited drifting error of
our framework, both trajectories contain loops. The mapped
building is the same as in section V-A.

(a) (b)

Fig. 9: Multi-SLAM with two cooperating robots. Image
showing “Simon” (a) and “Georg” (b) during the multi-SLAM
experiment.

Figure 10 illustrates both robots closing their loops simulta-
neously as they arrive at the same time at their starting points.
These images depict the limited drift of our framework as only
comparably small errors occur.



Fig. 10: Multi-SLAM loop closure. Image illustrating three
steps of the robots closing their loops simultaneously.

Fig. 11: Complete map of the cooperative mapping. Red color
marks Simon’s trajectory, green Georg’s trajectory.

VI. CONCLUSION AND FUTURE WORK

In this publication, we presented our multi-SLAM frame-
work. We illustrated how our previous work [10] is extended
to a simultaneous multi source localization and mapping
application.

The paper provides experiments which depict the localiza-
tion with limited drift in single- and multi-SLAM mode, with
simulated and real data. Future work will include an accuracy
analysis with an exact ground truth in order to evaluate the es-
timated trajectory. Additionally, a detailed timing evaluation of
the approach is required. As the approach already demonstrated
its capabilities with our rescue robot team, it will be deployed
at the RoboCup Rescue German Open 2015 competition.

The software is open source and available at http:
//www.github.com/autonohm/obviously.git and http://www.
github.com/autonohm/ohm tsd slam.git.
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