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Abstract—The automation of transport and work tasks in var-
ious application domains continues to be a major challenge. The
proposed paper presents key technologies within a process from
sensing to reasoning and includes: (i) understanding the scene and
its relations through new approaches in object classification and
pose estimation based on machine learning, as well as methods
for reliable detection of objects and object features; (ii) reliable
and safe outdoor localization and mapping based on multi-modal
approaches and innovative camera-based methods. The fusion of
different sensor data is used for reliable obstacle detection and
collision avoidance. The investigation of suitable system architec-
tures, data processing platforms and communication mechanisms
taking into account safety requirements is a prerequisite for the
operation in a safety-critical environment. The paper provides a
proof of concept for an automated platform to demonstrate and
evaluate application scenario provided by the Linz Airport in the
form of an automated transport process for air freight between
a terminal and the aircraft.

Index Terms—Localization, Mapping and Navigation, Appli-
cations of Autonomous Intelligent Robots, Autonomous Robotic
Systems, Robotic Simulation, Sensors and Sensor Integration

I. INTRODUCTION

The general field of robotics and the automation of transport
and work processes with mobile devices represent major
challenges [24]. High demands on efficiency and flexibility
are confronted with complex processes and often difficult en-
vironmental conditions. Relevant technological developments
have so far taken place primarily in the automotive sec-
tor. However, these developments can only be transferred
to other domains to a limited extent. In many cases, new
approaches and innovations are necessary due to specific
requirements. In particular, for tasks where a high degree
of situation understanding is required for the successful and
safe implementation of automated activities. This includes,
for example, the robust classification of objects and the reli-
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Fig. 1. Final evaluation of the automation concept when approaching the
ramp at the DHL depot at Linz Airport

able differentiation between obstacles and working materials.
Different environmental conditions, as well as the necessary
precise localization outdoors under all conceivable weather
conditions, further complicate these tasks. The goal of the
project was therefore to research, develop and demonstrate
key technologies that enable automated transportation and
workflows. The innovations implemented are core elements
in a process from perception to decision. These include scene
understanding and its relationships through new approaches
to object classification and pose estimation, and they reliable
and secure outdoor localization and mapping based on multi-
modal approaches and innovative camera-based methods. The
fusion of various sensor data was used to provide reliable
obstacle detection and collision avoidance. Likewise, a concept
for functional safety when used in critical work areas was
designed. The experimental results were used in two applica-
tion areas where the automation of certain sub-tasks could be
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successfully advanced:

o (i) Cleaning of traffic areas in municipal service and
o (ii) Transport of air cargo between airport apron and
depot, see Fig.1.

II. RELATED WORK

The accurate perception of the environment is also essential
for safe and efficient automation of vehicles in outdoor envi-
ronments [13]. Modern solutions must be able to cope with
complex 3D environments and react accordingly to changing
environmental conditions [23]. The improvement of perception
capabilities towards 3D data is typically achieved using stereo-
camera systems as described in [8] or LIDAR (laser detection
and ranging) sensors (see [9] and [25]). Both concepts provide
dense depth perception that can be used for map construction
based on passive and active photonic technologies, respec-
tively. While LIDAR sensors are still relatively expensive
and therefor primarily used in experimental settings, cameras
are relatively cost-efficient and their potential for reliable
dense and precise 3D perception is still not exhausted. Visual
data can also be used for localization. Visual Simultaneous
Localization and Mapping (VSLAM) is performed through
image based scene reconstruction and pose estimation. The
research and development in this field is currently producing a
variety of powerful algorithms like [7], [6] and [14]. However,
real-world scenarios especially in changing environments are
still challenging for those algorithms making it hard to create
an accurate representation of the real world which directly
influences the precision of the pose estimation. Recent devel-
opments try to utilize semantic information to improve the
accuracy and robustness of visual mapping and localization
methods. The method is referred to as Semantic SLAM (see
[3]). Current research like in [1], [12], [15] and [20] focuses on
large-scale outdoor applications where localization, navigation
and mapping are challenging and the generation of represen-
tative training data causes a lot of effort. Self-driving vehicles
that aren’t primarily used for transportation of passengers are
often referred to as Autonomous Ground Vehicles (AGV), see
Fig.2. There is already a variety of remote-controlled tool
carriers existing on the market, see Fig.2. These vehicles can
be used very versatile, but the main application is in landscape
management. Most of them are hydraulically driven and run on

Fig. 2. Automated utility platforms by Raussendorf, Clearpath Robotics and
Honda; Tool carriers by IRUS, KommTek and Robotmakers

crawler tracks which makes them unsuitable for use on asphalt
surfaces. The current solutions can be controlled remotely and
do not offer autonomous driving capabilities. However, there
are already some projects where such tracked vehicles can be
used autonomously in row crops (e.g. Robotmakers RowCrop-
Pilot'). These solutions partially use GNSS equipment for
navigation while local obstacle avoidance is performed using
laser scanners. There is also an increasing demand for auto-
mated systems in this air-side operation sector ( [2], [19]).
Special interest has already been shown by cargo operators
and logistics companies towards the transportation of luggage
and freight between the terminal and the aircraft. Typically,
towing vehicles used for such operations are attached with
multiple container trolleys. The TractEasy system is based
on an autonomous passenger shuttle developed by EasyMile?.
Other prominent companies who are currently presenting such
shuttles are NAVYA® and Local Motors*. In general, those
vehicles utilize cameras, ultra-sound, LIDAR, and GNSS-
based localization and are therefore a good reference when
it comes to the practical experiences with those technologies
in real-world applications.

III. DESIGN AND INTEGRATION OF AN AUTOMATED
VEHICLE PLATFORM

The use cases air freight transport and surface cleaning
were intensively analyzed and described in detail. The insights
gained through textual descriptions, interviews and internal
project workshops contributed fundamentally to the under-
standing of the ODDs (Operational Design Domain) and were
taken into account accordingly in the system design [16].

A. Vehicle platform

For the proof of concept a remote-controlled petrol-hybrid
tool-carrier was used. The REFORM Metron RC48 is operated
via a remote control providing continuous bi-directional drive
up to a velocity of 8 km/h, see Fig.3.

The vehicle concept is based on a 48 HP Kubota petrol
engine, a generator flanged directly to the flywheel, 4 electric
wheel motors and a battery pack. The Metron P48 RC has an
optional rear linkage and a front linkage with a Power Take-
Off (PTO) which is transferring mechanical power between
farm tractor and auxiliary equipment.

Its main dimensions are 2.2 m in length, 1.4 m in width
and 1.15 m in height with a weight of around 1.150 kg. The
vehicle can be operated either electrically or as a plugin hybrid.
The changeover between those modes can be done while
driving and can either be controlled via the remote control
or automatically. The vehicle has no on-board hydraulics, all
functions are servomotors which allows the highest possible
monitoring of all functions.

To control the vehicle platform a custom communication
protocol was developed, which connects to the existing CAN

Uhttps://robotmakers.de/en/solutions/autonomykits/rowcroppilot/
Zhttp://easymile.com/

3https://navya.tech/en/

“https://localmotors.com/
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Fig. 3. Collision scenario when using the automated equipment carrier with
sweeper at the Digitrans test track

bus of the vehicle. The main aspects of this interface are
real-time capability, lightweight data exchange and functional
safety between vehicle and high-level control. Considering
the maximum vehicle dynamics, an cycle time of 100ms
was chosen and combined with an 200 ms watchdog timer to
ensure halting of the vehicle in the event of a communication
failure or system error.

B. Automation sensor kit

For the proof of concept, a wide variety of sensor modalities
were evaluated with regard to the defined use cases and
concepts for integration were developed. This included (stereo)
camera systems, projector-based cameras, Lidar sensors (rotat-
ing and solid-state) and radar, see Fig.5. The used sensors
were synchronized as far as possible and built on a mo-
bile modular sensor concept [5]. A corresponding calibration
serves for the correct spatial overlay of the individual detection
results, which are mostly available as point clouds (Fig.4).
For the formation of reference trajectories and as time source,
high-precision RTK components were used in a dual-antenna
constellation. For an inertial evaluation of the sensors, the
sensor module was initially installed on a passenger car, which
has appropriate adaptations in terms of mounting and power
supply.

Based on these findings, an sensor concept was developed
for the Metron test platform and includes the following sensor
technology:

« PPM RTK GPS System with two Novatel antennas

o u-blox GPS Receiver with IMU

o LeiShen C16 Lidar

o Livox Mid 70 Lidar

o StereoLabs ZED?2 camera

« OCCAM 360° camera

o Self developed stereo camera system with two PointGrey

GigE POE cameras

o Texas Instruments mmWave Radar

In addition to the sensor technology, this setup also contains
electronics for communication with the vehicle, all computing

Fig. 4. Combined point cloud from LIDAR and stereo camera sensor data in
the test environment

Fig. 5. Sensor concept for final evaluation

units and communication equipment for WLAN and mobile
communications.

C. Digital twin for application-oriented simulation

The efficient development and evaluation of sensor fusion
and self-localization based navigation methods requires the use
of simulation environments and corresponding models. Fig.6
shows a 3D model of the Reform Metron PAS8RC which was
fully remodeled as URDF (Unified Robot Description File) in
ROS Melodic and can be used for visualization and simulation
of the driving behavior. The kinematic model was also used for
the system design to define which sensors and interfaces are
required to generate an optimized multi-sensor system for the
respective identified use cases. The Gazebo Robot Simulator
was used to evaluate vehicle navigation in manually designed
environments. Due to the extensive use of virtualization in the
development of novel robot and sensor systems, arbitrarily
complex scenarios can be defined and tested as problems
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Fig. 6. Simulations of vehicle and sensor data (left) and modeled airport
environment (right)

without the need for expensive design work and field tests
have to be carried out.

IV. LOCALIZATION, MAPPING AND NAVIGATION IN
OUTDOOR SCENARIOS

Robust and precise localization posed a particular challenge
because the vehicle platform is to be used in a wide variety
of environments. Work and transport tasks near buildings or
under partially obscured skies do not allow relying exclusively
on GNSS-based technologies. Therefore, several supporting
concepts for sensor-based localization in semi-structured, dy-
namic environments have been developed:

o (I) motion estimation using visual stereo odometry,

o (II) lidar-SLAM method for point cloud-based localiza-
tion,

o (III) relative pose determination using model-based ma-
chine learning methods and

e (IV) integration of semantic information into visual
SLAM methods for stabilization in dynamic environ-
ments.

A. Multi-modal Localization Concept

The localization strategy for the project is based on a real-
time kinematic GPS system to produce a globally referenced
pose and enable the integration of geo-referenced maps for
navigation and work area restriction. However this GNSS
position alone is expected to not be reliable enough for
our tasks. Especially when driving near or under a roof the
accuracy drops significantly and the GPS localization can even
fail completely. In these cases the pose estimation has to be
combined from multiple independent localization strategies to
compensate sensor dropout and in our case includes LIDAR-
and camera-based localization as well as the odometry from
the vehicle. This combination was chosen as the advantages of
the individual concepts complement each other well. While the
lidar-based localization based on the LIO-SAM [22] algorithm
performs best in well structured areas and can achieve the
highest translational accuracy, whereas the visual odometry
and VSLAM uses SLAMANTIC [21] for the best rotational
accuracy. Lastly the vehicle odometry is used to confirm the
velocity, as it is coupled to the vehicle control, and avoid drift
over time.

In some situations it is not that important to know the
absolute position of the vehicle but rather the relative position
in reference to a key-feature. Such features could for example
be the edge of a loading ramp or simply the middle of a road

Fig. 7. Lane detection based on [17].

or lane. Naturally these features are very specific to individual
task, therefore a vision based machine learning approach was
taken. This could ether be a geometric approach like lane
detection seen in Fig.7.

B. Navigation with Scenario Constraints

The vehicle navigation system is built on top of the navi-
gation2 framework for ROS2, which provides path planners,
controllers and costmap construction tools for planar robot
navigation [10]. To represent obstacles in the environment, a
2d costmap is continuously updated with point cloud inputs.
This cell size is small in relation to the vehicle footprint,
and was chosen to enable driving close to loading ramps
or occupied parking lots in the application areas targeted in
this work. A stereo-visual point cloud and 360° lidar point
cloud, as visualized in Fig. 4, were used as inputs. The map
origin is defined as a planar GPS position at the center of
the deployment area. The costmap is referenced to the UTM
projection of the surface around this point. All inputs are
incorporated into a Spatio-Temporal Voxel Grid (STVL) and
are used to both mark and clear obstacles in the costmap. [11]
STVL tracks the time since specific voxels were added, and
removes them after a given decay time. This enabled us to deal
with dynamic obstacles and sensor noise during navigation.
The voxels are then projected on to the implicit driving plane
of the vehicle. The robots own footprint, as well as attached
devices such as the sweeper or a Dolly trailer, are masked
from the costmap. The choice of planner and controller is
application-specific:

1) Municipal service: When cleaning traffic areas, the
vehicle is potentially exposed to other road users, and must
be able to anticipate collisions at a distance. Furthermore, the
non-holonomic vehicle kinematics require the vehicle to plan
and execute turning maneuvers to cover all of the cleaned
area with the attached sweeper. To solve this, a naive A*
geometric planning was executed once per second on a static
costmap describing the boundaries of the area to be cleaned.
[4] A timed elastic band controller adapts this path within
a given distance horizon, using an optimization-based model
predictive control approach. An obstacle evasion path around a
passenger vehicle is shown in Fig. 8. In addition to the known
boundary, this approach takes into account obstacles within
a square 20x20m costmap centered on the robot. [18] Since
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Fig. 8. Visualization of local obstacle avoidance; (left) white background
obstacle map with radial lidar measurements, green target path and purple
avoidance path; (right) 3D view of the same situation in the simulator

Fig. 9. Navigation with global obstacle avoidance; (left) bird’s eye view of
the obstacle map, with planned path in green; (right) 3D view of the same
situation in the Gazebo simulator

the controller computes a path prediction with associated time
steps, the distance and time horizon up to which a collision is
considered imminent can be tuned to the application.

2) Air cargo transport: The most significant issue in this
use case were the narrow corridors, along which the vehicle
must execute turning maneuvers with an attached Dolly trailer.
The trailer effectively doubled the minimum turning radius,
and the dynamic rotation relative to the tractor necessitates a
dynamic costmap footprint. For this area, a Hybrid A* path
planning is performed every two seconds on the global map
between the loading area and airplane. Hybrid A* incorporates
kinematic constraints in the path planning, which ensured
that necessary turning maneuvers outside of visible sensor
range are identified and correctly approached [4]. The vehicle
is controlled along this path using a regulated pure pursuit
approach, as provided in the navigation2 framework. In its
default configuration, the controller chooses a goal point on
the path by minimum euclidean distance to the vehicle. In
contrast, since paths taken during a turning maneuver often
cross each other, the controller was configured to approach the
next point in the paths sequence. An example of this situation,
with a simulated reconstructed cargo ramp, is shown in Fig. 9.

V. EXPERIMENTAL RESULTS

Extensive tests were performed at the Digitans test track’,
which is being designed to test autonomous vehicles in outdoor
road scenarios. GNSS waypoint navigation tasks were set by

Shttps://www.digitrans.expert/en/

Fig. 10. (left) Evaluation at the test site with marking of the starting position
of the scenario and escort vehicle in the background; (right) visualization of
path planning including driving around an obstacle.

an operator over Wifi, and the vehicles ability to follow was
observed. The fidelity of obstacle detection was tested by
placing unknown objects in the defined path, as visualized
in Fig. 10.

Tests in outdoor environments were vital to determine issues
with sensor measurements when exposed to dust particles and
precipitation. The voxel obstacle map was chosen to combat
false positives in obstacle detection, and was configured to re-
quire at least two lidar returns per voxel per lidar measurement
to add an obstacle to the navigation costmap. The voxel size
was set to 20cm3. We evaluated the reactiveness to traffic
in context of parking lot cleaning, by operating a remote-
controlled vehicle dummy to cross a dynamically planned path.
The navigation system discussed in Section. IV-B1 was used
to control the vehicle, and its collision prediction range was
varied between 4 and 12 meters. The larger the prediction
range, the more likely the vehicle was to stop in reaction to the
dynamic obstacle. Conversely, a low prediction range allowed
the vehicle to plan evasion paths. Fig. 3 shows the the scenario,
and the proof-of-concept vehicle on an adapted evasion path.

In addition test sessions were held at the Linz Airport
with a special focus on evaluating the localization strategy.
It was quickly found out, that the SLAM was struggling
with the widespread environment of the airfield due to lack
of reference structures. However this provided nearly perfect
conditions for the GNSS system and overall an accuracy of
less then 10 cm could be archived for the largest part of the
desired route. In contrast near buildings and especially under
the roof of the cargo depot the error of the GNSS position
rose to nearly 10m. On the other hand these obstructions
naturally provide geometrical features, thereby improve the
performance of the SLAM. In summary, SLAM and GNSS
complement each other to such an extent that the localization
and navigation error in this scenario never exceeded 10cm,
measured in reference to the cargo ramp. The performance
of this localization fusion can be seen in Fig.11, where it is
compared to the raw GNSS signal while driving under the
depot roof at the Linz Airport.

These tests also showed a certain redundancy between visual
and LIDAR SLAM. In theory one of the two methods could
be omitted without decreasing the performance under optimal
conditions. However this redundancy enables the system to
work even if one SLAM method is compromised (e.g., fog,
sun effects or reflective surfaces).
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Fig. 11. Comparison between raw GNSS position and fused localization.

VI. CONCLUSION

In general the system was able to achieve all tasks under
all encountered real-world environment conditions. However
a complete objective evaluation of the performance was not
possible due to the lack of ground truth. With the interference
from the depot roof the usage of GPS as a reference was not
feasible, however the widespread area of operation made an
reference system based on cameras and markers impossible.

In addition the system shows potential to be used in many
different automated work processes without any changes to
ether hard- or software. It is capable to reliable localize
indoor and outdoor. The combination of the presented sensor
concept in combination with the hybrid drive technology even
allows the seamless switching between both environments.
The implementation of the navigation stack enables both
transport tugging and carrying tasks. Therefore future projects
in the field of agriculture and off-road transport are under
development.
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