
Efficient Processing of Large 3D Point Clouds

Jan Elseberg, Dorit Borrmann, Andreas Nüchter

School of Engineering and Science, Jacobs University Bremen gGmbH, 28759 Bremen, Germany

Email: {j.elseberg|d.borrmann|a.nuechter}@jacobs-university.de

Abstract—Autonomous robots equipped with laser scanners
acquire data at an increasingly high rate. Registration, data
abstraction and visualization of this data requires the processing
of a massive amount of 3D data. The increasing sampling rates
make it easy to acquire Billions of spatial data points. This
paper presents algorithms and data structures for handling this
data. We propose an efficient octree to store and compress 3D
data without loss of precision. We demonstrate its usage for fast
3D scan matching and shape detection algorithms. We evaluate
our approach using typical data acquired by mobile scanning
platforms.

Index Terms—3D Scanning, Data Structures, Octree,
RANSAC, Nearest Neighbor Search

I. INTRODUCTION

Laser range scanning provides an efficient way to actively

acquire accurate and dense 3D point clouds of object surfaces

or environments. 3D point clouds provide a basis for rapid

modeling in industrial automation, architecture, agriculture,

construction or maintenance of tunnels and mines, facility

management, and urban and regional planning. Modern ter-

restrial and kinematic laser scan systems acquire data at an

astonishing rate. For example, the Faro Focus3D delivers up

to 976000 3D points per second and the Velodyne HDL-64E

yields 1.8 million range measurements per second. Kinematic

laser scan systems often use multiple line scanners and also

produce a huge amount of 3D data points. A common way

to deal with the data is to process only a small subset of it.

While this is an acceptable way of handling the data for some

applications it calls into question why so many measurements

were acquired in the first place.

Using innovations from the computer graphics community,

we develop an octree implementation with advantageous prop-

erties. First, we prefer a data structure that stores the raw

point cloud over a highly approximate voxel representation.

While the latter is perfectly justifiable for some use cases, it is

incompatible with tasks that require exact point measurements

like data visualization and scan matching. Second, the octree

ought to be fast, i.e., access, insert and delete operations must

be in O(log n), where n is the number of stored points. Last

and most important, the data structure has to be memory

efficient. We present an easy to implement octree encoding that

fulfills these requirements and is capable of storing one billion

points in 8 GB of memory. In principle, it is also possible to

employ disk caching with the the data structure, i.e., larger

data sets can be streamed from a mass storage device when

processing it.

In addition to the octree, this paper presents algorithms

exploiting the properties of our data structure: An efficient

RANSAC implementation for shape detection and the nearest

neighbor search for ICP-based scan matching. Not discussed

in this paper is the fast adaptable visualization using frustum

culling as in [?]. The presented data structure and algorithms

are available as open-source. The octree, as a data structure

heavily employed in computer graphics, is also capable of

very efficient ray tracing. This is important for occupancy grid

mapping, which relies on ray casting for “simulating” laser

beams. Even though neighbor pointers are not stored in our

particular octree, ray casting can still be done efficiently and

with a constant number of floating point operations per ray.

II. STATE OF THE ART

Since its introduction in the early 80’s by Meagher [12], the

octree data structure has experienced widespread use among

various fields that deal with large quantities of 3 dimensional

data, especially computer graphics [9], [10], [7], [11] but also

theoretical physics [1] and, of course, robotics [17].

In computer graphics and visualization the octree has re-

cently had a resurgence under the term sparse voxel octree.

It is used for efficient ray tracing and casting, since an octree

can represent large data sets with a small memory footprint

and simultaneously provides ray casting in O(log n). In this

application octrees are representations of a voxel map only,

i.e., leaf nodes do not store other data, apart from the properties

needed to visualize a voxel such as its color and normal.

Laine and Karras [11] have presented an octree encoding for

the GPU which is similar to ours. Their implementation also

stores contours in each node in addition to the usual color and

normal information. Knoll et al. have developed powerful ray

tracing algorithms on octrees [9], [10]. They employ the fast

indexing scheme as presented by Frisken and Perry [4] and

improve upon standard ray traversal with slice-based coherent

octree traversal.

Furthermore, octrees are used in the color quantization algo-

rithm as designed by Gervautz and Purgathofer [6] to minimize

memory requirements. Each level in their tree represents one

bit of the colors contained therein, beginning with the most

significant bit in the first level. This is similar to how we

propose to compress point clouds by implicitly by storing the

most significant bits in our compact octree data structure.

Roboticists have utilized the octree/quadtree data structure

mainly for mapping applications. The advantage of efficiently

representing uniform space has been most useful for occu-

pancy grid (cf. [3]) based mapping approaches [17], [13].

III. OCTREES FOR STORING 3D POINT CLOUDS

An octree is a tree data structure that is used for indexing

three dimensional data. It is the generalization of binary trees

and quadtrees, which store one and two dimensional data

respectively. Each node in an octree represents the volume

formed by a rectangular cuboid, often, also in our imple-

mentation, simplified to an axis aligned cube. This is anal-

ogous to representing a line segment, or rectangle for binary

and quadtrees. Consequently an octree node has up to eight

children, each corresponding to one octant of the overlying

cube/node. A node having no children usually implies that

the corresponding volume can be uniformly represented, i.e.,

no further subdivision is necessary to disambiguate. This

convention is not completely applicable when storing points,

which are dimensionless, i.e., there is no volume associated

with them. When storing a point cloud, we must therefore

define a stopping rule for occupied volumes. We define both a

maximal depth and a minimal number of points as a stopping

criteria. If either the maximal depth is exceeded or the number

of points is below the given limit leaf nodes, instead of inner

nodes, are generated. Defining a maximal depth is equivalent

to defining the smallest possible leaf size, also referred to as

the voxel size. A list of points is stored in each occupied leaf.

By applying two simple criteria we avoid building a perfect

octree, i.e., an octree where all leaves are at the same depth

and all other nodes have exactly 8 children. First and foremost

the uniformity criteria above is applied to volumes without

points, such that subdivision is not necessary in empty nodes.

In fact, we only create child nodes for octree volumes with

points. Nodes without children are empty and represent empty

space. Second, we do not subdivide a volume further that

contains only a single point. Laser scanners sample only the

surface of objects, and usually provide only a single distance

measurement per angle pair. This leads to a 3-dimensional

point cloud that is not fully volumetric. Consequently, most

space is not occupied and most octree nodes will only have few

children. The octree data structure is therefore ideally suited

to store and retrieve 3D data efficiently.

A. Memory efficient encoding of an octree

We prioritize memory efficiency in our octree implementa-

tion. This is not usually done, since the compression achieved

by representing uniform subvolumes as a single node is suffi-

cient for many applications. Not subdividing uniform volumes

will compress the data to a very large degree as compared to

a 3D grid stored as an array.

Many implementations store redundant information in each

octree node. In computer graphics, for example, neighbor

pointers as well as a parent pointer are used to facilitate

extremely fast ray tracing at the cost of additional memory.

Another encoding, that redundantly stores the position and size

in each node is given in Fig. 1, where center and size store

the position and size of the node while child is an array of

pointers to the 8 children. This allows to stop subdivision for

empty nodes, thus potentially reducing the number of nodes

required for storage. On a standard 64-bit architecture, each

node requires 100 bytes of memory. This implementation will

be the implementation that we will compare against.

We create an efficient octree implementation that is free of

redundancies and is nevertheless capable of fast access op-

struct OcTree {

float center[3];

float size[3];

OcTree *child[8];

int nr_points;

float **points;

};

Fig. 1. Definition of an octree with redundant information. Each node
contains position, size and eight pointers to child nodes. The size of this
node in a C/C++ implementation on a 64 bit architecture is at least 100
bytes. Similar implementations are found with (72 + x) bytes in OctoMap –

3D occupancy mapping [17], [8] and with (72+ x) bytes in the Point Cloud

Library (PCL ver. 1.1.1) [15], [14]. There is also a low memory variant of
the octree in the PCL with (25 + x) bytes per node. x varies due to the use
of C++ templates.

erations. Serialized pointer-free octrees are the most memory

efficient encoding. However, accessing the data structure is

then in O(n), where n is the size of the data (number of

points/cells). Such a serialization is only useful when storing

the data structure for later use or when communicating over

channels where bandwidth is an issue. Our implementation

allows for access operations in O(log n). Add and delete

operations are also in O(log n), even though in the worst

case longer blocks of memory will have to be allocated or

deallocated.

Most information about inner nodes of an octree is com-

puted when recursing through the structure. The depth of a

node is calculated as the depth of its parent plus one. Due

to the properties of the regular octant subdivisions the size

of a node is a function of its depth. Similarly the position of

a node is computed by displacing the position of the parent

node by half of the cell size in the appropriate direction. In

the same manner parent pointers may be computed, or rather

remembered, by pushing visited parents onto a stack. It is

even possible to compute neighbor pointers by a fast indexing

scheme. However, this operation requires limited backtracking

along the parent stack so that it is somewhat less efficient.

For the sake of memory efficiency, we omit any information

that is computable by traversing the tree. However, referring to

the baseline implementation in Fig. 1, the removed redundancy

accounts for only 24 of 100 bytes. 64 remain for child pointers

and 12 bytes for the point storage. We downsized this by

moving the information about whether or not a node exists

from the node itself into its parent. We add a single byte, where

each bit corresponds to one octant of the node. This allows us

to remove the constraint to always store 8 children, so that

only those child nodes need to exist that contain valuable

information in the first place. We can therefore remove 56

further bytes by storing only a single pointer to all children.

Adding another byte, where each bit signals whether the

corresponding octant is a leaf allows the removal of the point

information that is unnecessary in inner nodes. The resulting

encoding is presented in Fig. 2.

Our encoding consists of three parts. The child pointer is

the largest part of each node and is implemented as a relative

pointer to the first child. All other valid children are arranged

linearly in memory as shown in Fig. 2. The pointer can vary

in size for different systems. For 64 bit architectures we have

child pointer

valid leaf

Fig. 2. The proposed encodings of an octree node optimized for memory
efficiency. The child pointer as the relative pointer is the largest part of an
octree node, but varies in size to accommodate different systems.

child pointer

01001100 00001000

child pointer

11100101 10100001 pointer to

data child pointer

01001100 00000000

1 x y z r

Fig. 3. An example of a simple octree as it is stored using the proposed
encoding. The node in the upper left has three valid children, one of which is
a leaf. The leaf node is a simple pointer to an array storing both the number
of points and their attributes.

chosen 6 bytes. There is no need for an additional bit signaling

for a far pointer as proposed in [11], since this is sufficient

to address a total of 256 terabyte, Using a far pointer flag

would require more sophisticated memory management, but it

would enable one to reduce the size of the child pointer to

two or fewer bytes. There is a second, easier way to reduce

the number of bytes required for the child pointer, if we are

willing to sacrifice O(log n) add and delete operations. In this

case, the octree can be stored in a linear array in breadth

first order, with each child pointer simply indexing the array.

However, further discussion will focus on using this 6-byte

pointer implementation.

The attributes valid and leaf are each a single byte

large, one bit for each subvolume. The valid bits signal

whether the corresponding octant is present, while the leaf

bits signal whether the corresponding child is a leaf node.

This encoding is somewhat redundant, as non-valid children

cannot be leaf nodes. There are only 38 = 6561 combinations

possible. These could be compressed and represented with

only 13 instead of 16 bits. Due to concerns about the runtime

efficiency and the relatively minor reduction of the memory

requirements, we decided against such a compression. It is

possible to remove the leaf byte, by enforcing a constant depth

of the octree. This reduces the size of an octree node but at the

same time increases the number of nodes to obtain the defined

depth. Point clouds acquired by laser scanners are much too

sparse for this to still allow for a reduction in overall size.

Our implementation stores points in the leaf nodes, thus

they need to be represented differently from inner nodes. In

Fig. 3, leaf nodes are pointers to arrays of points. The first

entry is always the total number of points, then sequentially the

information for each point, i.e., the coordinates and additional

attributes such as reflectance. In that representation, leaf nodes

would be n bytes larger than inner nodes, where n is the

number of bytes used to encode the number of points. In our

case it is more than sufficient to reserve n = 4 bytes for this

purpose. Such a point list representation is then already more

memory efficient than the usual float**, as it cuts down on

a pointer.

B. Octree based compression of 3D point clouds

Our octree encoding drastically decreases the overhead for

obtaining the data structure itself (cf. Table I). As opposed

to the reference implementation the memory for the point

cloud exceeds now the overhead (cf. Fig. 5). Therefore, we

seek to compress the point list as well. For a simple technical

reason we like to store each point coordinate using only two

bytes. Two bytes are exactly the resolution at which most

laser scanners measure additional point attributes, such as

reflectance, deviation. To store floating point coordinates in

only two bytes without significant loss of precision, we use

each bit of the two byte coordinate as s/216 increments to the

lower left front corner of the rectangular cuboid of the leaf

node, where s is the side length of the cuboid. This is similar

to color quantization as used for example in [6].

Data of terrestrial laser scanners represented as four byte

floating point value has a precision of approx. 100µm (100

micrometer) at the maximal distance of 500m. At a smaller

distance, e.g., at 1.5m, the precision increases to 1µm. To

achieve the same 1µm precision the smallest volume in the

octree must have a side length of 6.5 cm. Assuming a desired

precision of 10µm, which is still 2 orders of magnitude

smaller than typical specified measurement precisions, the

largest node is allowed to have a side length of 65 cm. At

this voxel size the octree overhead is minimal even for large

scans.

IV. EFFICIENT ALGORITHMS ON OCTREES

A. RANSAC for efficient parameter estimation

The Random Sample Consensus (RANSAC) algorithm is

an approach for estimating parameters of a model that best

describes a set of sample points [5]. While it is traditionally

used for line and plane detection RANSAC can be used for

any parameterized model. It is an iterative algorithm that

repeatedly draws a small number of samples from the data

to be modeled. From this subset of samples the parameters

of the model are computed and the number of points in the

entire data set that intersect with the model is calculated. As

the process is repeated the model with the largest number of

points is selected as the result.

The most evident drawback of RANSAC is its computa-

tional complexity. The number of iterations required to detect a

model with any certainty can easily reach impracticable levels.

In addition, verifying a model on a large data set is itself a

time consuming task. For shape detection, the octree offers

ways to mitigate both problems to a drastic degree. Schnabel et

al. [16] have shown that by carefully selecting samples that are

in proximity to each other, the number of iterations required

to detect a shape with a certain probability can be reduced by

several orders of magnitude. This is done by first selecting a

sample in a random leaf l, and then selecting further samples

only from children of a randomly selected parent node of l.
In an unorganized point cloud, determining the number of

points that agree with the candidate model requires iterating

over all points. We employ the octree data structure for

a significant speedup of this step. The candidate model is

recursively intersected with the octree nodes to determine

which nodes may contain points on the model. The process

is depicted in 2D in Fig. 4. After a candidate line has been

Fig. 4. How an octree can speed up RANSAC. Top left: The initial sample
set in which a plane should be detected. A line has been generated from a
subsample and is intersected with the octree. The dashed lines signify the
maximal distance threshold of RANSAC. Nodes colored in blue are outside
of the model, green nodes intersect the line. The intersection test continues
only in the children of the nodes that are known to intersect the model.

generated, intersection tests are performed on the children of

nodes known to be at least partially on the line. This process is

executed from top to bottom, until the points are counted in the

leaves. In this way a large number of points are automatically

excluded from being checked against the model thus leading

to a massive speedup.

B. Nearest neighbor search for scan matching

Nearest neighbor search (NNS) is a part of many scan

matching algorithms for establishing corresponding points.

The most prominent example of this is the Iterative Closest

Point (ICP) algorithm, which spends most of its processing

time in the lookup of closest points. It is therefore of utmost

importance for this application to reduce the computing time

of this task. Very naively implemented, finding a closest point

requires iterating over the entire data set, i.e., it is in O(n),
where n is the number of points in the point cloud. This

expensive running time is avoided by employing metric data

structures. By far the most popular data structure to speed

up NNS in scan matching is the k-d tree. Since k-d trees

are binary trees they allow for an efficient implementation of

NNS. Principally, octrees should allow for the same efficiency.

In fact, due to the regular subdivision in an octree it ought to

be better suited for NNS than the k-d tree. The complication

arises during the implementation of NNS on an octree. The

key to an efficient traversal to the node containing the nearest

neighbor for both tree variants is the order in which children

are visited. The number of nodes that we need to visit is

best reduced by the closest child first criteria, i.e. the order

of traversal is determined by the distance to the query point.

This is trivial to do for the binary k-d tree, but somewhat

more involved for an octree which may have one to eight

child nodes.

For any octree node with 8 children there is a total of 48
possible sequences in which to traverse the children. Every

child corresponds to an octant of the entire coordinate space.

The query point may fall into any of those 8 octants. For

each of those cases there are 6 possible traversals determined

by the order of proximity of the query point to the 3 split

planes. Therefore, NNS in an octree has to make proximity

checks to 3 split planes, sort them and select the appropriate

sequence of traversal for a closest child first search for every

traversed node. Compared to this, the order of traversal in a

k-d tree is instantly determined by a single proximity check,

Algorithm 1 FindClosest

Input: query point q, maximal allowed distance d
lookup deepest node N containing bounding box of q
convert q to octree coordinate i
return FindClosestInNode(N , q, i, d)

Algorithm 2 FindClosestInNode

Input: query point q and its coordinate i
Input: maximal allowed distance d and the current node N
1: compute child index c from i
2: for j = 0 to 8 do
3: get next closest child C = N .children[sequence[c][j]]
4: if C is outside of bounding ball then
5: return currently closest point p
6: else
7: if C is a leaf then
8: FindClosestInLeaf(C, q, d)
9: update currently closest point p
10: else
11: FindClosestInNode(C, q, i, d)
12: update currently closest point p
13: end if
14: end if

15: end for
16: return currently closest point p

thereby avoiding unnecessary computations if nodes need not

be visited.

However, the regular subdivisions of an octree can still be

leveraged for an NNS that is in most cases faster or as fast

as on a k-d tree. The biggest benefit is that fast indexing

is possible in an octree. Any real-valued point coordinate

can immediately be converted to (x, y, z) integer coordinates

valid on the deepest level of the octree. Using these integer

coordinates, it is possible to very efficiently traverse the octree

using only bit operations as explained in [4].

This allows us to directly traverse to the deepest octree

node, which contains the bounding sphere of the query point,

with a constant number of floating point operations. The

full NNS with closest child first and backtracking is then

performed on this node. The initial lookup for finding the

deepest octree node that contains the bounding box around

the query point is a modified indexed lookup. For this purpose

the two diametrically opposed corners of the bounding box are

converted into integer coordinates. The tree is then traversed

until both indices disagree as to what child is to be traversed

next.

The initial lookup is considerably faster than the equivalent

operation in a k-d tree, which is essentially a lookup of a

point already in the tree. However, the speedup gained by this

is clearly dependent on the maximal allowed distance to the

query point. The smaller this distance is, the deeper the node

enclosing the bounding sphere is on average. The deeper said

node is, the fewer steps need to be performed in the following

NNS.

For ease of implementation and to further reduce the number

of floating point operations, we only employ 8 orders of

traversal instead of all 48. Since the order of traversal can now

be decided by the octant into which the query point falls, there

is no need for proximity checks or sorting. Consequently, no

floating point operations are required in our NNS implementa-

tion except in the leaves of the octree, where stored points are

checked against the query point. The approach is summarized

in Algorithm 1. We use the function FindClosestInLeaf,

which is a trivial check of the points stored in the leaf.

V. EXPERIMENTS AND RESULTS

The following experiments were conducted using the data

sets displayed in Fig. 5. Data sets are representative of their

corresponding domain, each with a different point density.

To demonstrate the effectiveness of the proposed octree

encodings, we computed the required memory for the octree

data structure (without the points) with different depths. The

data is given in Table I to III for both the new compact and

the reference representation. The given leaf size is half of the

side length of the leaf nodes. For all tests, the root volume and

therefore all octree volumes are axis aligned cubes. The size

and position of the root is such that it represents the smallest

cube possible to contain the entire data set. For smaller and

sparse data sets the benefits of the compact encoding are less

apparent than for the denser point clouds. For the large data

set (city) the reduced memory requirements are indispensable.

In this case the octree with all points and their reflectance

attributes required 121 MB as compared to the 242 MB the

unorganized raw list of points requires.

We further compare the computing time of standard

RANSAC for plane detection with RANSAC sped up solely

by fast model checking in Table IV. Results were averaged

over 100 runs, each with 5000 iterations and include the

construction time for the octree. The latter is only significant

for the city data set (≈ 88 s). Even including the construction

time of the octree we achieve significant decrease in computing

time.

To evaluate the performance of the NNS for varying maxi-

mal distances, we performed ICP scan matching employing

the octree and the k-d tree NNS using default parameters

(i.e. a maximal distance of 25 cm and 50 ICP iterations). We

averaged results over 100 runs, except for the city, due to time

concerns. Results can be found in Table V and Fig. 6, where

the maximal distance was varied. Experiments were done with

the original point cloud as well as with reduced data sets. For

this purpose we created an octree with the same voxel size as is

used in NNS. In leaves that contained more than 10 points, we

randomly selected 10 points. All other points remained. This

creates a uniformly subsampled point cloud, which is often

used to speed up and improve upon ICP’s matching accuracy.

Since the k-d tree stops subdividing when a node contains less

than or exactly 10 points, both data structures will, on average,

have roughly the same number of points per leave.

The octree based NNS does not suffer considerably more

from larger maximal distances than the k-d tree based NNS.

We observe however, that there is an increase in the variance

for the computing time for the NNS using the octree. Con-

versely, the variance of the k-d tree based NNS is stable over

Fig. 5. Three point clouds are used for the following analysis. The top
point cloud is a 3D scan that was acquired by the mobile robot Kurt3D
using an actuated SICK LMS200 laser scanner in an office environment with
81360 points (≈ 1.5MB). Statistics for this data set are given in Table I. The
middle point cloud has been acquired by the Microsoft Kinect in an office
environment. The cloud contains 293772 points and is therefore relatively
dense. Data courtesy of N.N.. The scan on the bottom is a high resolution
scan taken in a historic city center using the Riegl VZ-400 3D scanner. The
point cloud contains 15896875 points (≈ 303MB). Refer to Table III for data
on this point cloud.

all distances. This suggests that the octree is more vulnerable

to the combination of large maximal distances and unfavorable

starting pose estimates.

VI. CONCLUSIONS AND OUTLOOK

We have implemented an efficient data structure for 3D

point clouds. All presented algorithms are available under the

GPL license and can be downloaded. The software contains

a small viewer application that is capable of processing 1

billion points while still enabling the user to navigate smoothly

through the point cloud.

This paper has further presented novel algorithms for the

efficient processing of very large point clouds. In addition to

storing and visualizing 1 billion points on modern hardware,

we are capable of fast shape detection and scan matching.

In future work we will continue using our octree for efficient

3D point cloud processing, e.g., for globally consistent scan

registration [2], for automatically deriving semantic informa-

tion, for dynamic maps, i.e., maps that can handle changes of

the scene, and for next-best-view planning.

ACKNOWLEDGMENT

This work was partially supported by the SEE-ERA.NET

project ThermalMapper under the project number ERA 14/01.

 0

 1

 2

 3

 4

 0 250 500 750 1000

Octree
k-d tree

maximal distance in cm

ti
m
e
in

s

Fig. 6. Plot of the average and standard deviation of the computing time of
ICP using octrees and k-d trees over the maximal allowed matching distance
for the Kurt3D data set . Noise was applied to the initial starting pose estimate
(±25cm translational, ±10◦ rotational) for each run.

REFERENCES

[1] J. Bielak amd O. Ghattas and E. J. Kim. Parallel octree-based finite
element method for large-scale earthquake ground motion simulation.
Computer Modeling in Engineering and Sciences, 10(2):99 – 112, 2005.

[2] D. Borrmann, J. Elseberg, K. Lingemann, A. Nüchter, and J. Hertzberg.
Globally consistent 3d mapping with scan matching. Journal Robotics

and Autonomous Systems (JRAS), 56(2):130–142, February 2008.
[3] A. Elfes. Using occupancy grids for mobile robot perception and

navigation. Computer, 22:46–57, June 1989.
[4] S. F-Frisken and R. N. Perry. Simple and Efficient Traversal Methods

for Quadtrees and Octrees. Journal of Graphics Tools, 7(3), 2002.
[5] M. A. Fischler and R. C. Bolles. Random Sample Consensus: A

Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. Communications of the ACM, 24:381 – 395,
1981.

[6] M. Gervauts and W. Purgathofer. A simple method for color quantiza-
tion: octree quantization. Graphics Gems I, pages 287–293, 1990.

[7] E. Gobbetti, F. Marton, G. Iglesias, and A. Jose. A single-pass gpu
ray casting framework for interactive out-of-core rendering of massive
volumetric datasets. Visual Computing, 24:797–806, July 2008.

[8] K. M. Wurm et al. Octomap. http://octomap.sourceforge.net/, May 2011.
[9] A. Knoll, I. Wald, S. Parker, and C. Hansen. Interactive isosurface ray

tracing of large octree volumes. In Proc. of the IEEE Symposium on

Interactive Ray Tracing, pages 115–124, September 2006.
[10] A. M. Knoll, I. Wald, and C. D. Hansen. Coherent multiresolution

isosurface ray tracing. Visual Computing., 25:209–225, February 2009.
[11] S. Laine and T. Karras. Efficient sparse voxel octrees. In Proceedings

of the ACM SIGGRAPH symposium on Interactive 3D Graphics and

Games (I3D ’10), pages 55–63, New York, NY, USA, 2010. ACM.
[12] D. Meagher. Geometric modeling using octree encoding. Computer

Graphics and Image Processing, 19(2):129 – 147, 1982.
[13] P. Payeur, P. Hebert, D. Laurendeau, and C.M. Gosselin. Probabilistic

octree modeling of a 3d dynamic environment. In Robotics and

Automation, 1997. Proceedings., 1997 IEEE International Conference

on, volume 2, pages 1289 –1296 vol.2, April 1997.
[14] Radu Bogdan Rusu et al. Point Cloud Library 1.1.1 revision 2440.

http://pointclouds.org/, September 2011.
[15] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library

(PCL). In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA ’11), Shanghai, China, May 2011.
[16] R. Schnabel, R. Wahl, and R. Klein. Efficient RANSAC for Point-Cloud

Shape Detection. Computer Graphics Forum, 2007.
[17] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard.

OctoMap: A Probabilistic, Flexible, and Compact 3D Map Representa-
tion for Robotic Systems. In Proceedings of the IEEE ICRA Workshop on

Best Practice in 3D Perception and Modeling for Mobile Manipulation,
Anchorage, AK, USA, 2010.

TABLE I
MEMORY REQUIREMENTS FOR THE OCTREE STRUCTURE OF THE SPARSE

KURT3D POINT CLOUD.

Leaf
size cm

Nodes # Leaves compressed
size

reference
size

876 1 8 104 B 954 B

219 34 77 1.19 kB 11.8 kB

54.76 282 505 8.31 kB 86.8 kB

13.69 1777 3688 58.4 kB 621.0 kB

3.423 9327 19064 303.3 kB 3.57 MB

0.855 27668 52836 855.3 kB 12.85 MB

TABLE II
MEMORY REQUIREMENTS FOR THE OCTREE STRUCTURE OF THE KINECT

DATA SET.

Leaf
size cm

Nodes # Leaves compressed
size

reference
size

143 1 6 80 B 742 B

35.9 24 64 960 B 9.3 kB

8.98 336 909 13.5 kB 131.9 kB

2.24 4593 10794 166.2 kB 1.63 MB

0.56 46510 86560 1.41 MB 14.10 MB

0.14 323479 253281 5.62 MB 61.13 MB

TABLE III
MEMORY REQUIREMENTS FOR THE OCTREE STRUCTURE OF THE DENSE

CITY DATA SET.

Leaf
size cm

Nodes # Leaves compressed
size

reference
size

8560 6 12 192 B 1.9 kB

2140 46 86 1.4 kB 13.9 kB

535 408 800 12.8 kB 130.1 kB

133 3616 7993 124.8 kB 1.25 MB

33.4 33965 75999 1.18 MB 11.91 MB

8.35 302573 687529 10.67 MB 109.53 MB

2.08 1927234 4166979 65.42 MB 742.98 MB

0.52 5592151 10142923 166.45 MB 2.643 GB

TABLE IV
AVERAGE COMPUTING TIME IN ms OF RANSAC.

Data set no octree octree speedup

Kurt3D 1666.57 176.69 9.43
Kinect 6905.94 429.32 16.08
city 388551.55 11084.81 35.05

TABLE V
AVERAGE COMPUTING TIME IN MS FOR ICP. NOISE TO THE INITIAL POSE

ESTIMATE WAS ADDED AS FOR FIG. 6.

Data set k-d tree octree speedup

Kurt3D 3043.099 2386.881 1.27
Kinect 19545.277 14507.198 1.34
city 355848.476 314506.905 1.13

Kurt3D reduced 757.514 625.683 1.21
Kinect reduced 169.079 152.356 1.10
city reduced 91735.667 74706.85 1.22

