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Abstract—This paper presents a novel technique for detecting
vegetation of virtually all forms in terrestrial laser scanning data
of urban environments. We make use of a modern laser range
finder capability to measure multiple echoes per laser pulse via
Full Wave Analysis. The algorithm is able to efficiently, i.e., less
than acquisition time, identify vegetation to a high degree of
accuracy (more than 99 percent). We present and evaluate three
alternatives to classify candidate regions as either vegetation or
non-vegetation.

Index Terms—Semantic Mapping, Object Recognition, Full
Wave Analysis

I. INTRODUCTION

Recognizing and understanding sensor data of laser range

scanners is beneficial for many applications. The robotic

mapping problem has received a lot of attention in recent years

and the current trend is to add meaningful labels to the maps.

Annotating metric maps with semantic labels is a necessary

prerequisite to achieve true autonomy for any mobile robot.

This paper deals with identifying vegetation in unorganized

point clouds. Unlike other approaches, the presented algorithm

makes no implicit assumption about a single non-moving

viewpoint. This is particularly important for urban modelling

applications where data is usually acquired continuously on a

moving vehicle instead of in a stop-and-go fashion. Therefore,

the algorithm is also inherently able to deal with registered

range images, allowing it to consider all available data. The

points are classified into two categories, vegetation and non-

Fig. 1. A scan from the Campus data set with all echoes (left) and without points that were classified as vegetation (right). Points are colored in accordance
to their calibrated reflectance values.

vegetation. This topic is relevant for several reasons. First, it

is an important first step in a comprehensive semantic robotic

mapping system. Detecting vegetation means that subsequent

interpretation algorithms can focus their attention on parts of

the data that contain relevant structures. Second, for geometric

modeling applications in urban environments with terrestrial

laser scanner like 3D city modeling it is often of interest to

only reconstruct houses and streets to a high level of detail. In

this context, the possibility of removing vegetation from point

clouds as in Fig. I is of obvious importance.

We intend to solve this problem by purposefully extracting

vegetation from laser scans. Last but not least, the proposed

method can be used for automated forest surveys and forestry

assessment.

II. STATE OF THE ART

Fig. 2 shows the robot platform that acquired the data

sets presented in this paper. The main sensor is a RIEGL

VZ-400 laser scanner [11]. The device distinguishes itself

from common range scanner used in surveying or robotics

by the Full-Waveform-Analysis (FWA) [12]. Common pulsed

or continuous-wave laser scanner are based on the time-of-

flight principle to measure distances to the target. Reception

is typically detected by an analog threshold. Most non FWA

capable devices are therefore restricted to one range measure-

ment per pulse. Very often a pulse hits multiple surfaces, so

that multiple reflections are received. This usually occurs on
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Fig. 2. The mobile robot Irma3D (Intelligent robot for mapping applications
in 3D) with its main sensor, the RIEGL VZ-400, which is mounted roughly
60cm above ground. The scanner typically acquires 125, 000 points per
second and requires 6 seconds per rotation. Bottom: The principle of Full
Wave Analysis. The beam sent out by the laser scanner causes an echo to
be received for each obstruction in proportion to the object’s distance. The
response is sampled with a very high temporal resolution so that multiple
echoes and their properties (distance, reflectance, amplitude, deviation) can
be recovered.

the edges of structures, predominantly on trees and vegetation.

FWA is the technique of modeling the received signal with

several Gaussian functions, one for each range measurements.

The laser scanner VZ-400 is therefore capable of measuring

multiple targets per pulse with additional features such as

amplitude and standard deviation per range measurement (cf.

Fig. 2. The device has a maximum range of up to 500m and

an absolute minimum range of 1.5m. Within the entire range

multiple echoes are received so that vegetation detection is

possible (cf. Fig. 6).

The FWA property has been used in aerial laser scanning for

identifying vegetation for some years [14]. Yu et al. segment

range data into vegetation and non-vegetation to measure

forest growth and individual tree-sizes [15]. Using such data,

single trees are identified in dense forests by employing

normalized cut segmentation [4]. Reitberger et al. detect the

stem of individual trees by a robust RANSAC-based estimation

of the stem points. With single trees identified, Holmgren

and Persson classify trees by their species [3]. Using only

an unorganized point cloud and no further feature aside from

the type of echo (first, single, last, etc.) they were able to

distinguish between spruce and pine trees with an accuracy

of 95 percent. As we will be conducting terrestrial instead

of aerial laser scanning, approaches to vegetation detection

must change with the perspective. Trees seen from the side

instead of from above will not have their trunk obscured as

much, making multiple echoes less prominent. The distance

between scanning device and tree will also vary in a terrestrial

scenarios. Pfeifer et al. identify trees in terrestrial data taken

from forests by cylindrical fitting [9]. They model the branch

structure of a tree by cylinder following, while the foliage is

captured by an outer hull model. Barnea et al. employ the

k-nearest neighbors algorithm for classifying range images

of urban environments [1]. As they work directly on the

depth image taken by the scanner, the algorithm is viewpoint

dependent and does not benefit from registering multiple scans

to each other.

Recently conditional random fields (CRF) have become a

popular approach for classifying point cloud data. Lim and

Suter [5] have presented a classification algorithm based on

CRFs that uses super-voxels to reduce the amount of data to

be processed. Other machine learning approaches like Markov

networks and support vector machines (SVM) have also been

applied for point cloud classification tasks. Munoz et al. [6]

have adapted the functional gradient technique to max-margin

Markov networks for learning high-order classification mod-

els. To handle the usually large amount of data and the ensuing

high computation time Triebel et al. [13] adaptively reduce

the point cloud by utilizing k-D trees before using associative

Markov networks. Posner et al. [10] combine camera images

with 3D point cloud data taken on a continuously moving

vehicle and classify it into multiple classes using a support

vector machine.

III. THE ALGORITHM

Based on the assumption that trees and other vegetation

contain a high amount of multiple echoes, the algorithm

presented in this paper first segments the point cloud into

regions of interest. Then for each region shape description

features are computed. The regions are afterwards classified

according to the features into vegetation and non-vegetation.

All points from the entire data set falling into regions classified

as vegetation are then labeled vegetation as well. As a large

number of points from the floor will be included in this last

step, a post-processing step identifies large planar surfaces and

removes them from the regions. This is done by horizontally

sweeping over the tree to compute the largest horizontal slice

underneath the vegetation. This post-processing is very fast as

it is linear in the number of input points.

The following two sections will lay out the efficient seg-

mentation of the point cloud and three features we employ to

classify the segments.



A. Multi-Resolution Clustering

To get an impression of the distribution of the received

multiple echoes, refer to the third image in Fig. 7. Trees and

vegetation will have a high incidence of echoes. In aerial laser

scanning, vegetation, particularly trees are virtually the only

source of such echoes. In terrestrial laser scanning additional

structures such as fences, power lines, people and window or

door frames are present. All of these will produce more than

a single range measurement per pulse. Echos are of several

types, according to how many there are and when they occur.

There is the single echo (only one measurement), the first

and last echoes (closest and farthest echo respectively) and

the inner echoes that lie between the first and last echoes. To

model regions without vegetation in aerial range data it usually

suffices to use only single and last echoes. In that scenario the

scanner is always several 100 meters away from any tree so

that it is very unlikely echoes of that type will stem from trees.

This is not the case at all in terrestrial data acquired in urban

environments. However, we assume that vegetation will always

contain inner or first echoes. We therefore segment regions of

the scan with a high concentration of those types of echoes.

Our approach is based on the two-pass clustering algo-

rithm [2]. Initially the point cloud is leveled by rotating it

according to the inclinometer on the measuring platform. The

scan is then projected on the horizontal ground plane and

converted to a binary occupancy grid. A grid cell is set if the

corresponding patch of the scan contains inner or first echoes,

otherwise it is not set. Segments are then identified by the

classical two-pass algorithm. One pass to label each pixel with

its neighbor’s label, or with a new unique label if no neighbors

exist. The second pass ensures each pixel is labeled equivalent

to the connected component the pixel belongs to. Ideally we

wish to segment the scans with a resolution of 10cm, so that

each pixel represents a patch of 100cm
2. As the employed

laser range finder VZ-400 has a maximum range of up to

500m and a registered data set encompasses several times that

area, a resolution of 10cm would be prohibitive. To cope with

large areas, we employ a multi resolution two-pass algorithm.

The scan is clustered on multiple resolutions from coarse to

fine. An initial coarse image is segmented using the two-pass

algorithm. Any identified cluster containing more than 100

echoes is converted to a finer resolution and segmented. The

recursion stops when the finest resolution is reached. At any

one point the memory requirements of the algorithm is kept to

a minimum, while the runtime is close to linear in the number

of points.

B. Features

Each of the segments identified have to be analyzed to

distinguish vegetation from clutter. We have implemented 2

features that were used for SVM classification and a fast

classification based on a threshold verification.

Inspired by the trunk detection employed by Reitberger

et al. [4], we compute a histogram of point densities along

the trunk of the hypothetical tree within the cluster. Point

density is computed for 10cm wide horizontal slices along

 0

 40

 80

 120

 160

 0  0.04  0.08  0.12  0.16

Tree

Clutter

Fraction of Points

B
u

ck
et

 0

 2

 4

 6

 8

 0  10  20  30  40  50

Tree

Clutter

Bucket

P
er

ce
n

ta
g

e

Fig. 3. Top: Histogram feature where each bucket contains the number
of points in a horizontal slice of 10cm in proportion to the total number
of points. Bottom: Eigenvalue histogram of the smallest eigenvalue of 500
randomly selected points and their neighborhood.

the supposed supposed trunk. Fig. 3 shows the histogram

feature for two exemplary clusters. The vegetation is clearly

distinguishable from the clutter. As a second feature describing

the shape of vegetation in a more encompassing fashion we

also implemented a histogram of eigenvalues. Vegetation of

any type should generally appear volumetric in the point cloud,

while clutter as discussed above stems primarily from close to

planar structures. This is captured by a principal component

analysis (PCA), i.e., the eigenvalues λ1, λ2, λ3 of the mean

centered covariance matrix. The ratio λ1∑
i
λi

of the smallest

eigenvalue λ1 to the sum of eigenvalues is a measure of the

planarity of the measured points. We compute this ratio of 500

randomly selected points and their neighborhood and record it

in a histogram of 50 evenly spaced buckets. The result of this

computation for two exemplary clusters is presented in Fig. 3.

As an alternative to the two histogram features, we devised

a fast classification based on the PCA of the entire cluster.

As shown in Fig. 4 the ratios of the two smallest eigenvalues

are a rough predictor of the class of the cluster. We therefore

classify segments using two threshold. If the ratio of second
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Fig. 4. Smallest eigenvalue plotted against the 2nd smallest eigenvalue of
clusters in a scan of the city data set. Clusters that do not contain trees tend
to be planar and have smaller eigenvalues.

(a) Aeriel View (b) Multiple Echos

(c) Clusters (d) Detected Trees

Fig. 5. Scans from the campus data set. a) Aerial view of the scanned regions.
Image courtesy of Google Maps. b) Overview of a single scan containing only
multiple echoes. Single as well as last echoes are not shown. c) The same
scan clustered, where each cluster is colored distinctly. d) The entire scan
from above. All identified trees are colored green.

smallest eigenvalue is below 0.05 or the ratio of the smallest is

below 0.01 the cluster is labeled non-vegetation. These values

have proven themselves to be reliable across many different

environments.

TABLE I
RESULTS FOR EACH CLASSIFICATION STRATEGY.

(a) SVM with point density histogram feature

Clusters true false

positive 0.5537 0.0473

negative 0.0959 0.3031∑
0.6496 0.3504

Points true false

positive 0.1070 0.0025

negative 0.4689 0.4216∑
0.5759 0.4241

(b) SVM with eigenvalue histogram feature

Clusters true false

positive 0.7775 0.0115

negative 0.1317 0.0793∑
0.9092 0.0908

Points true false

positive 0.4788 0.0009

negative 0.4705 0.0499∑
0.9493 0.0508

(c) Eigenvalue threshold classification

Clusters true false

positive 0.8133 0.0166

negative 0.1266 0.0435∑
0.9399 0.0601

Points true false

positive 0.5252 0.0009

negative 0.4704 0.0034∑
0.9956 0.0043

IV. RESULTS

The algorithm is evaluated with all three classifications on

a data set comprising 9 scans taken on our university campus.

This data set contains a wide variety of trees and shrubs. Trees

were of all sizes between 3 and 30 meters. The data set is very

challenging due to the trees’ proximity to buildings and the

presence of clutter like cars and people. An overview of the

data set is given in the top of Fig. 6.

For the histogram features, a training data set in a different

urban environment was acquired. 13 scans were taken in the

historic city center with enough overlap to allow for a complete

registration. The result of scan matching is presented in Fig. 7.

The city data set also contains a wide variety of trees and

clutter. The amount of clutter is clearly much higher in the

city data set as the scans were taken on a highly populated

street, with many trams, cars, people and other. SVM training

and classification was performed by the SVM implementation

of the Bioinformatics Toolbox for Matlab with the Gaussian

Radial Basis Function.

Ground truth for both data sets was manually acquired.

We identified regions in the scan that represent trees, shrubs

and parts thereof. Points falling into these regions should be

identified positively. Note: Lawn is not considered vegetation

for this classification task. All points that are not classified

thusly are considered non-vegetation.

The effectiveness of the clustering algorithm can be ob-

served in Fig. 5. With the exception of highly occluded and

distant trees (more than 100 meters from the scan position) all

of the vegetation is present within the clusters. A disadvantage

of this clustering approach is manifested in the upper right

corner of the scan. A large tree is split up into several segments

due to occlusion caused by a trunk closer to the scanner. In

this case, each segment was correctly identified as vegetation,

however smaller segments stand a higher chance of being

wrongly classified.

The results for the evaluation of the SVM based classifi-

cations are given in Table I. A single tree may be present in



Fig. 6. The Campus data set consisting of 9 scans with approx. 22 million points each used for evaluation. In entirety the data set contains 186, 172, 085

with approx. 53% vegetation. Top: An overview of 8 of the scans shown as a range image. Bottom: The last scan from the Campus data set in the perspective
of the laser scanner. The first is a depth image where each pixel is shaded according to distance. In the second depth image pixels containing multiple echoes
are colored green. In the third depth image points labeled as vegetation are represented as green.

several clusters, and clusters are of varying sizes. Therefore,

accuracy is measured both in terms of correctly/incorrectly

labeled clusters as well as points. Interestingly, the point

density histogram fares badly on the campus data set. This

is in contrast to earlier trials on the city data set, where the

overall accuracy was high. The density histogram is evidently

not adequate for general vegetation detection across different

domains. The city data set’s vegetation is generally smaller and

contains less shrub-like vegetation. This is likely the cause of

the lower performance.

The histogram of eigenvalue features fares far better in the

evaluation. Points were classified correctly with an accuracy

of about 95 percent, suggesting that this feature vector distin-

guishes vegetation very well from clutter. Interestingly, the

simple eigenvalue threshold achieves even better results as

shown in Table I bottom row. Since computing the eigenvalues

of the covariance matrix of the points is linear in the number

of points, the most efficient feature also proved to be the most

accurate.

V. CONCLUSIONS AND FUTURE WORK

This paper aimed at bringing the Full Wave Analysis for

scene interpretation to the attention of researchers in the

robotics community. We presented an approach to detect

vegetation with a very high success rate that is based on the

inner echoes returned by a FWA capable laser range finders.

We evaluated three approaches to classify point clouds, two of

which were based on SVM classification. However, the most



Fig. 7. City data set comprising 13 scans with approx. 22 million measurements each used for training. Top: The data set (available at [7]) was registered
with the 6D SLAM algorithm of Nüchter et al. [8]. Points are colored according to their height. Second: Scan 2 from the city data set as a 1440× 400 range
image representation shaded according to distance. Third: Areas of the scan with inner echoes are indicated in green. Bottom: Areas in green were classified
as vegetation by the eigenvalue threshold of the clusters. The incorrectly classified scaffold in the right is a notorious issue due to its structure. The window
frame on the left being labeled vegetation is a consequence of the cluttered rooms behind the windows, i.e. window blinds, decoration and furniture.



efficient approach in terms of runtime, i.e., the threshold of

eigenvalues was also the most accurate one. The histogram

of eigenvalues as the most computationally expensive is a

viable alternative for classification as it achieves a well enough

accuracy.

In the future, the post processing will be expanded to include

strategies to identify individual trees as in [4]. In addition

to providing semantically richer labels, this should further

increase the accuracy of the vegetation identification. Further-

more, regions should be merged to compensate for occlusions

that occur frequently due to larger branches. This in turn will

drive down the rate of false negatives, as small regions from

only parts of a tree make identification in isolation difficult.

Further future work will also concentrate on life-long map-

ping. We will verify our algorithm on data sets taken in

different seasons to analyze the green of leaves influence. This

will result in a season independent mobile mapping system.
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