
Localizing Google SketchUp Models in Outdoor
3D Scans

Flavia Grosan, Alexandru Tandrau, Andreas Nüchter
Jacobs University Bremen gGmbH

Automation Group, School of Engineering and Science
Campus Ring 1, 28759 Bremen, Germany

Email: me@flaviagrosan.com|alexandru@tandrau.com|andreas@nuechti.de

Abstract—This work introduces a novel solution for localizing
objects based on search strings and freely available Google
SketchUp models. To this end we automatically download and
preprocess a collection of 3D models to obtain equivalent point
clouds. The outdoor scan is segmented into individual objects,
which are sequentially matched with the models by a variant of
iterative closest points algorithm using seven degrees of freedom
and resulting in a highly precise pose estimation of the object.
An error function evaluates the similarity level. The approach
is verified using various segmented cars and their corresponding
3D models.

Index Terms—object localization, 3D model, Google SketchUp,
iterative closest points algorithm with scale, 3D laser scan

I. INTRODUCTION

Mobile robots need a semantically meaningful map of the
environment to act intelligently. Thus, one fundamental topic
in robotics is simultaneous localization and mapping (SLAM).
In SLAM, the robot builds a map without prior information
about the environment. Laser range scanners are helpful in
solving SLAM since they provide a series of scans taken
from different poses. To obtain a complete, consistent and
precise map of the exploration site, scans are often matched
with iterative closest points algorithm [9]. This algorithm is
commonly used in real time and it iteratively alters the rigid-
body transformations needed to minimize the distance between
consecutive scans. Finally, a GraphSLAM relaxation algorithm
is used to refine the map and to yield high precise pose
estimates [14].

Once the world is mapped, the next step towards a knowl-
edge based robotic system is obtaining semantic information
about the environment, thus enabling the robot to understand
and interact efficiently with the exploration site. Semantic
SLAM adds information to the obtained scene by identifying
static objects or dynamic events. Through localization the
robot determines where a particular object is found. Our
approach towards semantic mapping takes advantage of the
large amount of information publicly available on the Internet.
Google Warehouse, a vast collection of user-made 3D models,
offers valuable content. For instance, given a precise goal
(“There is a BMW Z3 in the environment. Go find it!”),
the robot downloads the 3D models available for this object,
converts them into 3D cloud points and the localization process
is then simplified to common scan matching with an additional

Fig. 1: Left: 3D BMW Z3 in Google Warehouse. Right: Car
in 3D laser scan.

attention to scale (Fig. 1). To solve the goal “find the BMW
Z3” requires solving semantic SLAM by the mobile robot.

II. RELATED WORK

3D models are becoming the standard representation in
applications ranging from the medical sector to architecture.
They are used for visualization and object design because
both humans and machines interact with them naturally [2],
[11]. Tangelder et al. discuss ways in which models are
queried based on text and shape [13]. The similarity between
objects is achieved using the nearest neighbor algorithm and
improves the scan matching process. The scans are matched
using iterative closest points algorithm (ICP). Given an initial
relative transformation between two scans, ICP matches points
and computes an estimate of a more precise transformation
between the two scans. The process is repeated until con-
vergence. Horn proposed a closed form solution of absolute
orientation using unit quaternions, which supports all the basic
geometric transformations (translation, rotation and scale) [3].

Nüchter et al. [10] make use of SLAM and ICP to achieve
semantic mapping. After determining the coarse scene features
(e.g., walls, floors), a trained classifier identifies more delicate
objects. Our work improves the semantic map by creating an
even finer differentiation between objects in the environment.

Object localization is another application of 3D models.
The robot is given a precise target to detect in an unknown
environment. This topic is thoroughly studied in the 2D field.
Li-Jia Li et al. propose a hierarchical generative model to
classify, label and recognize objects in a 2D scene using
both a visual and a textual model [7]. Similar approaches are
implemented during the Semantic Robot Vision Challenge,

Fig. 2: Left: 3D Scan as panorama image. Right: Robot used for scan acquisition.

where Meger et al. designed a robot capable of detecting
objects in images collected directly from its camera [8]. In
the 3D field, Kestler et al. use a probabilistic representation.
The targets are modeled in a knowledge base with descriptive
identifiers and attributes. Feature detection and hierarchical
neural net classification are used for object identification,
while robot localization is solved through sensor fusion, spatial
abstraction and multi-level spatial representations [5]. The
drawback of this approach is the need to maintain internal,
neural net trained data. Recently, Lai and Fox treated the
aforementioned problem and proposed the use of Google
Warehouse for training classifiers in order to improve and
extend object detection [6]. The classifier is based on a
distance function for image features, which are obtained via
spin images implemented by Johnson and Hebert [4]. The
objects in the outdoor environment are classified in seven
categories: cars, people, trees, street signs, fences, buildings
and background. The paper does not give a solution for
identifying very precise targets, e.g., a BMW Z3. We solve this
problem, thus taking an extra step within the field of object
recognition and localization.

Albrecht et al. use CAD models to introduce semantics
in maps obtained with SLAM [1]. They created an ontology
modeling relationships between objects in an indoor environ-
ment scene and use standard ICP to match objects with their
corresponding CAD models. The main disadvantage of this
approach is the need to store size information in the ontology
about the scan components, problem mitigated in this work
through our implementation of ICP with scale.

III. OBTAINING POINT CLOUDS FROM 3D MODELS

Google 3D Warehouse is a collection of user made
SketchUp models. Thousands of models are freely available
and searchable by strings or tags. A SketchUp model is
composed of different entities, i.e., Face, ComponentInstance,
or Group. A Face is a triangle defined by three 3D points.
ComponentInstances and Groups are entities (with an associ-
ated transformation) recursively composed of other entities.
Any model is decomposed into a list of faces defined by
their respective points. The obtained point clouds are not
uniformly sampled, thus requiring an additional sampling
procedure. Our sampling procedure adds random points inside
each triangular face proportionally to the area of the triangle.
We center the point clouds in their respective centroid and
bound the coordinates in [−α, α]. This clipping avoids initial

Fig. 3: Audi A4 SketchUp Model before (top) and after
(bottom) sampling.

transformations which would hinder the matching algorithm
in the following steps. Fig. 3 shows an Audi A4 model before
and after the sampling procedure.

IV. MATCHING SCANNED OBJECTS WITH GENERATED 3D
POINT CLOUDS

To find the desired object in the outdoor scene, the 3D
laser scan is segmented. We exploit the assumptions that all
objects are on the ground, i.e., a car always has the wheels on
the ground and so do the downloaded models. Therefore the
first step is to remove the ground. For this purpose, we use
the approach described by Stiene et al. [12]. The points are
converted into cylindrical coordinates and the nearest neighbor
within the vertical sweep plane is identified. The angular
gradient defines the nature of the point (ground or not ground).
Fig. 4 shows the obtained result. The components of the scan
become distinguishable and spatially disconnected.

After the ground has been removed, we automatically select
an object with an interactively provided starting guess. First,
we find the point p which is closest to the starting guess.
Then, a region is grown around p by iteratively adding points
p′ satisfying the conditions px − ε ≤ p′x ≤ px + ε, py − ε ≤
p′y ≤ py + ε, pz − ε ≤ p′z ≤ pz + ε. To quickly find the points
which match the criteria a k-d tree is used. The ε threshold is

Fig. 4: Partial view (left) of the point cloud presented in Fig. 2
and with ground points removed (right).

dependent on the point density of the scans and the distance
from the scan origin to the starting guess. Fig. 5 (left) shows
an obtained segmented object.

A complete automatic system repeatedly applies the above
scheme using random points as starting guesses. Region
growing is applied to automatically segment the environment
scan. The procedure is repeated with the remaining points,
thus obtaining non-overlapping components. Regions with at
least 500 points are considered valid object candidates. They
are centered in their respective centroid and scaled in the α-
bounding box as in the interactive scheme.

Afterwards, the obtained segmented objects and the Google
Warehouse models are matched using a variant of iterative
closest points algorithm (SICP). ICP determines the transla-
tion and rotation between the two point clouds (object and
model), but it does not include the scale factor. Following the
derivation for the scale factor by Horn [3], we compute for
n matching points of the two point clouds (model and scan)
{pm,i} and {ps,i} (both centered in their respective centroid):

s =

√
n∑

i=1
||pm,i||2/

n∑
i=1

||ps,i||2.

Fig. 5: Top left: Segmented Audi A4. Top right: Audi A4
scan and model matched using SICP (magenta model and
cyan scan data). Bottom: Recovered transformation matrix and
application to positioning the object in the scan.

The advantage of the formula above is that rotation is not
required to determine the scale factor. However, it requires
symmetric point matching in ICP: points from both point
clouds are matched with their closest counterpart, i.e. for all
points in the scan we find closest points in the model point
cloud and vice versa. This is different from the original ICP,
where the vice versa part is not present. Initially, the maximum
matching distance between points, ∆, is large to enforce coarse
alignment. This scales the model roughly to the same size as
the segmented object. We run i iterations with this distance
or until the error converges. The matching is further refined
by running the same number of iterations with a smaller
maximum distance, δ. This step allows fine matchings between
points and the objects are consequently perfectly aligned.
Fig. 5 (middle) shows a result of the matching between scan
and model using SICP. The right subfigure shows the model
aligned with its equivalent object in the initial scan.

V. EVALUATION METRICS

Running the matching algorithm and applying the recovery
transformations results in two sets of 3D points which share
the same coordinate system: S – the scan, and M – the
model. It is important to note that the scanned set depends on
the scanner view point and has occluded parts. We designed
an error function which penalizes points in the scan without
model correspondence.

Let c(p) ∈ M be the point in the model which is closest
to p ∈ S by Euclidean distance. Then, the error function is
defined as:

E =

∑|S|
i=1 dist(Si, c(Si))

|S|

A small E (≤ 150) denotes a very good match, while larger
E values suggest either a poor model or a different object.
In the experiments we discovered that the error function also
ranks models by similarity to the original scanned object. The
proposed error function does not penalize extra parts in the
model, but as our experiments show, this is sufficient for our
task.

VI. EXPERIMENT AND RESULTS

In the experiments we are using over 600 SketchUp models
and have completely automated downloading, processing and
organizing them. Given a search string as text, we parse
the Google Warehouse results page and identify the IDs of
SketchUp models. Each model is downloaded based on its ID
and related information (description, URL, image) is saved
into a local MySQL database. The collection of models is
explored with a Ruby on Rails web application. The web appli-
cation also maintains the collection of environment scans, runs
experiments and presents result reports. The SICP and ground
removal algorithms are implemented as new modules in the
3DTK – The 3D Toolkit. Finally, the process of converting
Google SketchUp models in point clouds is implemented as a
plugin for Google SketchUp, using the SketchUp Ruby API.

Fig. 6: Left column: Segmented Mercedes C350 and its best
SICP match. Right column: Segmented Volkswagen Golf and
its best SICP match.

We have acquired several scans using a Riegl VZ-400 3D
laser scanner in a complex scene, namely the Jacobs University
Bremen parking lot, without focusing on any particular car.
Each scan has roughly 4 million 3D points and 5 cars were
segmented. The cars are partially occluded. For each seg-
mented object we automatically downloaded all corresponding
models from Google Warehouse and ran SICP with 4 starting
rotations as (θx, θy, θz), where θy specifies the rotation around
the vertical axis. We only consider the rotation around the y
axis and use four initial angles: 0, π/2, π and 3π/2.

The first segmented car, Mercedes C350 (see Fig. 6), con-
tains 8920 points and we downloaded all 89 models available
in Google Warehouse. A large number of models matched
accurately with this object and the results are observed in
Tables I and II. In each column, we present the error value,
the starting rotation used to obtain this score and the image
of the model provided by Google Warehouse. The 89 models
downloaded contain not only cars, but also random compo-
nents as chosen by their creators. Our error function ranks
the accurate car models first. As the models resemble less a
Mercedes C350, they have a lower rank and at the very last
are other random objects, which do not resemble a car at all.
The Mercedes C350 is a good balance between the quality of
the segmented object and reliable collection of 3D models.

We extracted Audi A4 from the environment scan containing
18801 points and we found 80 models responding to the
equivalent search query. Unlike the Mercedes, the models
vary more and have additional decorations. The error function
does not take into consideration the model unmatched points,
because in every case the model contains more points than the
segmented object. In contrast, the segmented object has points
on maximum three sides. To solve this problem without mod-
eling the visibility of points, a shape descriptor could be used

TABLE I: Mercedes C350 – three best matched models

Error θy Google SketchUp model

49.0 π/2

49.0 π/2

49.0 π/2

TABLE II: Mercedes C350 – two models with highest error

Error θy Google SketchUp model

19865.0 3π/2

21221.0 0

to differentiate between models with extra elements. Being a
sports car, Audi A4 is prone to user design experiments, thus
making the model collection less reliable in some respects
(Fig. 7).

The extracted Volkswagen Golf is an unidentified older
version of the popular German car and it has 44686 points
and 233 downloaded models. The difficulties in matching
this model stem out exactly from the fact that it is an old
version and the models in Google Warehouse focus mostly on
the latest Golf models. However, SICP identified and ranked
higher the models resembling an older version as opposed to
newer versions of the same car (Fig. 6).

Another class of cars is represented by a segmented Renault
Kangoo, containing 13597 points and with 18 models in
Google Warehouse. Even though the number of available

models is reduced, they have a very good quality and we found
a very good match. This suggests that the proposed algorithm
is not only fit for small cars or limousines, but also for larger
objects such as vans (Fig. 7).

The last segmented vehicle is a Citroen C5 with 10089
points and only 11 available models in Google Warehouse.
Unlike the previous car, the quality of these models is very
low and all SICP matchings have a high error rate as it can be
observed in Fig. 8. This means that for the less popular type
of cars Google Warehouse is useful in identifying the class of
the object, but it is probably not enough in determining a finer
classification and finding out the brand of the car.

We considered the segmented Mercedes C350 versus the
top 3 models from all the other cars. SICP ranked the models
starting with the Mercedes C350 as being the best, followed by
two Audis, then, with larger errors, Citroen and lastly Golf and
Renault. SICP found the right brand of car among different
models and moreover, the next matched models were similar
in shape and size with the segmented car, which gives us
an insight in similar shapes and objects that share particular
properties as observed in Table III.

We matched an Audi A4 with all objects automatically
segmented by using the best matched Audi A4 as the model.
By applying the growing regions algorithm we identified 67
candidate objects and the best matches are shown in Table IV.

The best matching object is the Audi A4. The next two
best-matching objects are also cars, but different brands. The
rest of the objects have error values of 2000 to 77000 and are
therefore very poor matchings.

For the purpose of this evaluation, we have used the
following constants and thresholds: α = 500, ∆ = 500,
δ = 25, ε = 5. Matching animations are available at
http://www.youtube.com/watch?v=DQ3Vxcz2HFE and

Fig. 7: Left column: Segmented Audi A4 and its best SICP
match. Right column: Segmented Renault Kangoo and its best
SICP match.

Fig. 8: Segmented Citroen C5 and its best SICP match.

TABLE III: Mercedes C350 vs. different car brand models
(top 5).

Error θy Google SketchUp model

49.0 π/2

49.0 π/2

57.0 π/2

59.0 0

60.0 0

TABLE IV: Find Audi A4 in entire scan.

Error θy Google SketchUp model

105.0 π/2

178.0 π/2

400.0 π/2

http://www.youtube.com/watch?v=FTuEQxCny0c.

VII. CONCLUSION AND FUTURE WORK

The current work presents a simple and feasible approach,
proven to work in practice by thorough experiments and re-
sults, which solves the problem of identifying a given object in
an outdoor environment. Semantic mapping is thus improved
and the method is applicable for a better understanding of the
scene. The work raises a number of new questions and future
work sheds some light on short and long term improvements
for SICP.

The runtime of our approach is linear in the number of
models. This might be a drawback in online applications. For
the task of creating semantic, i.e., annotated 3D maps, runtime
is not an issue at the moment.

The error function presented does not take into account extra
points which are present on the model but not on the scan. A
further difficulty in the attempt to improve the error function is
that the glass areas of cars are not captured by a laser scanner.
In future work, we plan to project all points to a plane and
compare the resulting 2-dimensional convex hull shapes by
shared surface.

Our current work focuses on outdoor scans in urban en-
vironments and does not cover any experiments with indoor
data. One very important assumption for our rotation model
is that the objects are on the ground, thus favoring rotations
on the y-axis. While the major indoor objects (chairs, tables
etc.) are similar in nature to the outdoor objects, refining to
smaller, harder segmentable objects with unknown rotations
(objects on a shelf) is an open problem. Solving this issue is
important in the context of completely identifying real-world
objects with Google SketchUp models.

The candidate models are currently found based on the
search results of Google Warehouse database. However, it is
desired to identify a scanned object with a SketchUp model
without a search string. For this purpose, further research work

is needed in order to devise an accurate classifier. We currently
have no methods to reject objects which share no similarities
to the real-world scanned object without running the SICP
algorithm.

The presented method is extendable to a full-scene under-
standing algorithm – both labeling and completion of occluded
areas. The SICP algorithm is run on each real-world object of
a segmented scan to find the best matching SketchUp model
and its orientation. The real-world objects are then replaced
with the SketchUp point cloud thus resulting in both a higher-
resolution scan and semantic labeling. Further work will be
conducted to allow SICP to adjust the guess based on future
scans and achieve backward corrections.

ACKNOWLEDGMENT

This work was partially supported by the SEE-ERA.NET project
ThermalMapper under the project number ERA 14/01.

REFERENCES

[1] S. Albrecht, T. Wiemann, M. Guenther, and J. Hertzberg. Generating
3D Semantic Environment Models using Ontologies and CAD Model
Matching. In Proceedings of ICRA 2011 workshop: Semantic Perception,
Mapping and Exploration, SPME ’11, Shanghai, China, May 2011.

[2] M. Beetz, M. Tenorth, A. Perzylo, and R. Lafrenz. A Knowledge Repre-
sentation Language for RoboEarth. In Proceedings of the IEEE/RSJ 2010
International Conference on Intelligent Robots and Systems, Workshops
and Tutorials, IROS 2010, Taipei, Taiwan, October 2010.

[3] B. K. P. Horn. Closed-form solution of absolute orientation using unit
quaternions. Journal of the Optical Society of America, 4:629, 1987.

[4] A. E. Johnson and M. Hebert. Using Spin Images for Efficient Object
Recognition in Cluttered 3D Scenes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 21(5):433, May 1999.

[5] H. A. Kestler, S. Sablatnog, S. Simon, S. Enderle, A. Baune, G. K.
Kraetzschmar, F. Schwenker, and G. Palm. Concurrent Object Identi-
fication and Localization for a Mobile Robot. International Journal of
Intelligent Systems, 14, March 2000.

[6] K. Lai and D. Fox. Object Recognition in 3D Point Clouds Using Web
Data and Domain Adaptation. The International Journal of Robotics
Research (IJRR ’10), May 2010.

[7] L.-J. Li, R. Socher, and L. Fei-Fei. Towards Total Scene Understanding:
Classification, Annotation and Segmentation in an Automatic Frame-
work. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR ’08), Miami, FL, USA, June 2009.

[8] D. Meger, P.-E. Forssen, K. Lai, S. Helmer, S. McCann, T. Southey,
M. Baumann, J. Little, and D. Lowe. Curious George: An Attentive
Semantic Robot. Robotics and Autonomous System Journal, June 2008.

[9] A. Nüchter, J. Elseberg, P. Schneider, and D. Paulus. Study of param-
eterizations of the rigid body transformations of the scan registration
problem. Journal Computer Vision and Image Understanding (CVIU),
Elsevier Science, 114(8):963–980, 2010.

[10] A. Nüchter and J. Hertzberg. Towards semantic maps for mobile robots.
Robotics and Autonomous Systems, 56:915–926, August 2008.

[11] F. Remondino, S. El-Hakim, S. Girardi, A. Rizzi, S. Benedetti, and
L. Gonzo. 3D Virtual Reconstruction and Visualization of Complex
Architectures - The 3D-ARCH Project. In Proceedings of International
Society for Photogrammetry and Remote Sensing (ISPRS ’09), Trento,
Italy, February 2009.

[12] S. Stiene, K. Lingemann, A. Nüchter, and J. Hertzberg. Contour-
Based Object Detection in Range Images. In Proceedings of the Third
International Symposium on 3D Data Processing, Visualization and
Transmission, 3DPVT ’06, Chapel Hill, NC, June 2006.

[13] J. W. Tangelder and R. C. Veltkamp. A Survey of Content Based 3D
Shape Retrieval Methods. In Proceedings of International Conference of
Shape Modeling and Applications (SMI ’04), Genova, Italy, June 2004.

[14] S. Thrun and M. Montemerlo. The GraphSLAM Algorithm With
Applications to Large-Scale Mapping of Urban Structures. International
Journal on Robotics Research, 25(5/6):403–430, 2005.

