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ABSTRACT

1Modern photogrammetric methods as well as laser measurement

systems make it easy to collect large 3D point clouds that sample

objects or environments. Several mechanisms are available in liter-

ature for storing and compressing point clouds, e.g., applying con-

ventional image based compression methods to 3D point clouds. In

this challenge entry however, we make use of octree subsampling

and compression, which is nicely suited for unstructured, registered

3D point clouds of arbitrarily shaped objects.

Index Terms— 3D Point Cloud Reduction, 3D Point Cloud

Compression, Octrees.

1. INTRODUCTION AND STATE OF THE ART

There are two basic principles for obtaining range measurements:

Triangulation and Time-of-Flight (ToF). Triangulation is the under-

lying principle in stereo vision and structure from motion, where

3D point clouds are generated by finding or matching corresponding

image points. But also sensors like the Microsoft Kinect (version 1)

and other structured light scanners use triangulation as basic mea-

surement principle. In contrast, ToF is often used by laser scanners,

which emit a laser beam and measure the reflected light. While sen-

sors measuring the phase shift of a modulated light source calculate

the ToF from the measured shift, pulsed systems determine the ToF

directly, sometimes including a full-wave-analysis [1]. LiDAR (light

detection and ranging) systems, sometimes also called Ladar (laser

detection and ranging) include a mechanism for steering the laser

over the object of interest. Sometimes, the mechanism includes mo-

bile vehicles or even drones and aircrafts. In this case, one talks

about mobile or airborne mapping. The amount of data such LiDAR

systems acquire is huge. Typical measurement rates in mobile or air-

borne measurement campains are in the order of 100k to 1M points

per second which need to stored and processed.

The majority of the sensors work in a spherical way, i.e., the

measurement is done from a central source. It is important to note,

that this applies to triangulation based systems as well as to ToF

systems. The result is, that objects closer to the sensor are gauged

in a higher resolution than objects further away, where resolution is

defined as measurement points per volume. This fact implies a lot of

potential for point cloud reduction and compression.

Definition: 3D Point Cloud Reduction means reducing the

amount of 3D points in a point cloud, i.e., the resulting point cloud

contains less points. Thus, reduction is a form of subsampling.

Thanks to our former colleague Jan Elseberg for implementing the octree
in 3DTK – The 3D Toolkit, cf. http://www.threedtk.de

1This text was the authors entry to the ICIP 2019 challenge, which was
canceled to a lack of participants. Thus, it is published as technical report.

Definition: 3D Point Cloud Compression consists of encoding

and decoding a 3D point cloud in terms of bit-rate reduction which

means the point cloud is represented with fewer bits than the original

representation. Compression is either lossy or lossless and therefore,

in the lossy case, 3D point cloud reduction is a form of point cloud

compression.

Driven by the huge amount of airborne laser scan data, the

American Society of Photogrammetry and Remote Sensing (AS-

PRS) created a simple binary exchange format, namely the LAS

format [2]. The The LAZ format, a compressor for LAS, is a

widely-used lossless, non-progressive, order-preserving compressor

for LiDAR measurements. Data stored in LAS format as presented

in [3] and Mongus et al. [4] shows predictive coding, a variable-

length coding and an arithmetic coding for compression of LiDAR

LAS files.

Other approaches employ special data structures such as k-d

trees [5, 6] and octrees [7, 8, 9, 10]. Both data structures are well-

suited for 3D point cloud processing, as they also support other tasks

like nearest-neighbor search, which is often needed for registration.

Point clouds can be encoded with images. For example Neci et

al. present a method that exploits H.264 compression to reduce the

size of the data stream from sensors such as the Kinect [11]. Depend-

ing on the sensors, the images might be panorama images [12] which

store range information as pixel values, forming so-called range im-

ages. There is a one-to-one correspondence between range images

and the resulting 3D point clouds. The images can be down-scaled

and thus the point clouds are reduced. Additionally, conventional

image compression methods are applicable and in case of lossy com-

pression combined with filtering. There is a reduction as well [12],

especially in combination with resizing the range image. The differ-

ent compression schemes have an impact on the 3D points [13], e.g.,

using the 265/HEVC video compression results showed good visual

quality with lossless video compression, while lossy compression in-

troduced additional noise in projection images, resulting a in lower

visual quality of the 3D point cloud.

In this challenge, we have applied our octree based compres-

sion [14] to the given data sets and this paper reports our results.

The input data are –compared to what current scanners yield– small

point clouds, which probably have been sampled from 3D meshes.

We want to emphasize that we do not see point cloud processing

as a means for working with meshes, since the corresponding com-

munity has its own algorithms for mesh simplification and compres-

sion [15, 16].

2. OCTREE FOR REPRESENTING 3D POINT CLOUDS

In general, an octree is a tree data structure that is used for index-

ing 3D data. An octree node has up to eight children, each corre-
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Fig. 1. The encoding of an octree node optimized for memory efficiency. Left: The child pointer as the relative pointer is the largest part of an

octree node, in our implementation for 64 bit systems, it is 48 bit. valid and leaf are 8 bit large and denote whether the subtree is pruned

or a leaf node containing a pointer to the points. Right: An example of a simple octree as it is stored using the proposed encoding. The node

in the upper left has three valid children, one of which is a leaf. Therefore, the child pointer only points to 3 nodes stored consecutively in

memory. The leaf node in this example is a simple pointer to an array which stores both the number of points and the points with all their

attributes.

sponding to one octant of the associated parent volume/node. A node

having no children usually implies that the corresponding volume is

empty and can be pruned. For 3D point clouds this is often the case,

as large volumes are simply empty space and typically most octree

nodes will only have few children. We define the smallest possible

leaf size, also referred to as the voxel size, as a stopping criteria. If

the voxel size falls below a a given limit, a leaf node with the list of

points in the corresponding enclosing volume is created. Volumes

containing only a single point are not further subdivided. Alterna-

tively, the maximal depth serves as stopping criteria. This leads to

strongly varying leaf volumes, depending on the volume covered by

the point cloud.

2.1. Memory efficient encoding of an octree

Octrees with pointers are often sparse voxel octrees in the computer

graphics community, where an octree structure is used to efficiently

access otherwise large amounts of data. In contrast, there also exist

serialized pointer-free encodings. These have the highest potential

for memory efficiency, since they do not need to store the actual

octree structure. One such encoding is given by [17] and is imple-

mented in the point cloud comparison software CloudCompare [18],

which is interestingly used as a viewer for this ICIP challenge. Cloud

Compare employs the Morton order to store only the leaf level of an

octree at 16 bytes per leaf. The Morton order or Z-order is an order-

ing of, in this case, 3-dimensional data. A drawback of this approach

is that traversing the tree is not possible. Due to its encoding of the

index in a 64-bit integer, CloudCompare’s octree has a maximum

depth of 20.

Serialization is a very useful tool when storing the data for later

use or when communicating over channels with limited bandwidth.

[7] combine a serialized octree with arithmetic coding to provide su-

perior point cloud compression. Modification, i.e. adding or deleting

points from a serialized octree involves shifting the entire region be-

fore or after the position where the modification takes place.

We opt for a pointer based octree since it allows for several op-

erations and applications which are not feasible with the above de-

signs. We create an efficient octree implementation that is free of

redundancies and is nevertheless capable of fast access operations.

Our implementation allows for access operations with a time com-

plexity of O(log n), where n being the number of points stored in

the octree.

For the sake of memory efficiency, we omit any information that

is computable by traversing the tree. Our implementation uses a sin-

gle byte, where each of its eight bits corresponds to one octant of the

node and denotes, whether the node is present or pruned. We use an-

other byte, where each bit signals whether the corresponding octant

is a leaf node. This allows the removal of the point information that

is unnecessary in inner nodes. The encoding that results from these

considerations is presented in Fig. 1, left.

Our encoding consists of three parts. The child pointer is the

largest part of each node and is implemented as a relative pointer to

the first child. All other valid children are arranged linearly in mem-

ory as shown in Figure 1. For 64 bit architectures we have chosen 6

bytes. The AMD64 architecture defines a 64-bit virtual address for-

mat, of which only the low-order 48 bits are used in current imple-

mentations. This allows up to 256 TB (248 bytes) of address space.

The octree is stored in a linear array in breadth first order, with each

child pointer simply indexing the array. valid and leaf are each

a single byte large, one bit for each subvolume. valid bits signal

whether the corresponding octant is present, while leaf bits signal

whether the corresponding child is a leaf node.

Our implementation stores points in the leaf nodes, thus they

need to be represented differently from inner nodes. In Figure 1,

right, leaf nodes are pointers to arrays of points. The first entry is

always the total number of points, then sequentially the information

for each point, i.e., the coordinates and additional attributes such as

reflectance values or, for this challenge, RGB values.

2.2. Octree based reduction of 3D point clouds

Given a large number of points from a laser scan we propose to uni-

formly subsample the entire point cloud to reduce the number of

points. This is achieved by first binning the point cloud in a reg-

ular 3D grid and then randomly selecting a fixed number of points

in each voxel. Both, the number of points and the side length of a

voxel, may be adjusted to allow for many different point densities.

An additional advantage of the uniformity of the subsampling is that

differences in density caused by the data acquisition process are re-

duced. Surfaces closer to the scanner are more densely sampled than

surfaces further away. Selecting a fixed number of points from each

voxel will remove more points in voxels close to the scanner than in

the voxels further from the scanner. After reduction the points will

be uniformly distributed across the scanned object or environment.

2.3. Octree based compression of 3D point clouds

The octree encoding drastically decreases the overhead for obtaining

the data structure itself [14]. Next, we can compress the point list as

well. For a simple technical reason we like to store each point coor-

dinate using only two bytes. Two bytes are exactly the resolution at

which most laser scanners measure additional point attributes, such

as reflectance and deviation. To store floating point coordinates in

only two bytes without significant loss of precision, we use each bit

of the two byte coordinate as s/216 increments to the lower left front

corner of the rectangular cuboid of the leaf node, where s is the side



Table 1. Reduction results for the data sets of the challenge. Achieved vs. requested compression rates are shown.

dataset R1 = Rmax R2 R3 R4

amphoriskos 0.292 94 0.30 0.749 50 0.75 1.248 06 1.25 1.991 68 2.00

head 0.307 15 0.30 0.994 75 1.00 2.495 41 2.50 3.991 22 4.00

plane 0.298 20 0.30 1.000 26 1.00 2.498 90 2.50 3.999 96 4.00

romanoillamp 0.300 14 0.30 0.996 73 1.00 2.502 85 2.50 3.999 36 4.00

longdress 0.349 25 0.35 0.752 06 0.75 1.501 29 1.50 2.999 01 3.00

loot 0.349 65 0.35 0.750 48 0.75 1.502 63 1.50 2.998 67 3.00

the20smaria 0.350 34 0.35 0.750 40 0.75 1.504 01 1.50 2.995 67 3.00

ulliwegner 0.347 75 0.35 0.751 08 0.75 1.496 64 1.50 2.999 97 3.00

length of the cuboid. This is similar to color quantization as used for

example by [19] and a type of lossless compression.

Terrestrial laser scanners have a high dynamic range. Typical

measurement ranges to 500 m with precision and accuracies in the

millimeter range. A four byte floating point value has a precision

of approx. 100µm (100 micrometer) at the maximal distance of

500 m. At a smaller distance, e.g., at 1.5 m, the precision increases

to 1µm. To achieve the same 1µm precision the smallest volume

in the octree must have a side length of 6.5 cm. Assuming a desired

precision of 10µm, which is still orders of magnitude smaller than

typical specified measurement precisions, the largest node is allowed

to have a side length of 65 cm. At this voxel size the octree overhead

is minimal even for large scans.

3. RESULTS AND DISCUSSION

As already stated, the data sets provided in the ICIP 2019 Chal-

lenge on Point Cloud Coding are small point clouds, from objects

and probably meshes of the provided point clouds exists. In our un-

derstanding 3D point clouds are more basic and close to sensor data

than data from meshes.

Table 1 presents the requested results for compressing each of

the reference contents using the five target bitrates, namely, “R1”,

“R2”, “R3”, “R4”, and “Rmax” that are expressed in target bits-per-

point (bpp). Please note that we assign R1 to Rmax, but higher re-

ductions are easily possible. The target bpp is computed as the total

number of bits at the output of the encoder divided by the number

of points of its corresponding original version. Figure 3 showcases

compressed version for each pointcloud as submitted to the chal-

lenge. For rendering, we use the program show that is included in

3DTK – The 3D Toolkit. The submitted screenshots have been ren-

dered as colored 3D point clouds using OpenGL GL POINT with a

fixed point size and antialiasing, however also other renderings are

possible. The octree allows for efficient frustum culling. Frustum

Culling is a highly important feature for navigation within 3D point

clouds [20], but is negligible for object centered point cloud views.

Level of detail rendering in show renders only single vertices in any

octree volume that falls below a level-of-detail threshold (number of

pixels on screen). The size of the rendered vertex is then adjusted ac-

cordingly, cf. Fig 2. This trades resolution for speed and appealing

views and meshing is often not needed [21]. However, to the given

data sets these issues do not matter.

Further compression experiments have been carried out using

data acquired with a Riegl VZ400 laser scanner. Fig. 4 shows a 3D

scan of the 2019 class on “3D Point Cloud Processing” in front of the

Maria-Schmerz-Chappel in Randersacker in Spring 2019. Compar-

ing the compression results using panorama images [12, 13], where

we project the points into a panorama image and apply conventional

image resizing techniques, one notices that image-based techniques

produce nice results as long as the viewing pose of the point cloud

is close to the position, where the scan was acquired. This is clear,

as the OpenGL-based 3D viewer does also some projection to an

image plane. However, inspecting other views at the point cloud re-

veals that the point densities are not uniform and surfaces far away

from the scanner contain only a few 3D points.

4. SUMMARY AND CONCLUSIONS

The paper has presented the results of 3DTK – The 3D Toolkit to

the ICIP 2019 Challenge on Point Cloud Coding from University

of Wrzburg. While 3DTK offers two main lines for compression,

namely image-based and octree-based, we have decided to apply the

octree-based method here. The compression was mainly performed

by reducing the number of data points. The 3DTK viewer provides

a performant 3D point cloud inspection, where the octree is used to

support frustum culling and rendering.

Point Cloud Coding is an extremely interesting topic. However,

3D point clouds are a data type which is closely related to the hard-

ware acquiring the data. There is a large need for compression of 3D

point clouds, e.g., in robotics and telematics, where remote machin-

ery must be operated using point cloud sensor data. Therefore, point

cloud coding should not focus on mesh-like data sets.

5. FUTURE CHALLENGES

Needless to say, a lot of work remains to be done. In future work,

we will focus of enhancing our octree-based compression methods.

Instead of just using 16 bits in each voxel to describe the offset of

the point coordinate, one could use more sophisticated lossless com-

pression to the points stored in an actree. One could also fit local

primitives to the points in each voxel, similarly to the 3D normal

distribution transform [22] to enhance subsampling.

Further future work will also address compression using image

based techniques, where the 3D acquisition methods are empha-

sized. A combination of the octree with projections would yield a

Fig. 2. Level of Detail rendering in show. Left: 3D point cloud with

all points using pointsize 1.0. Right: LoD with larger point size.
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Fig. 3. Compressed versions of each pointcloud.

Fig. 4. Visual inspection of a compressed 3D scan. Left: Original data. Middle: Image-based compression. Right: Octree-based. Above:

View from the scanner position. Below: As seen from a distance away from the scanning position. For reduction we used an octree voxel

size of 10 cm, yielding a reduction from 18543615 points to 300645. Parameters for the projection-based reduction, were chosen to yield a

similar compression.



spherical quadtree, similarly to the one presented in [23]. This will

be used as a basis for new compression schemes.
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