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Abstract— The great majority of path following control laws
for either kinematical or dynamical mobile robot models are
designed assuming ideal actuators, i.e. assuming that any com-
manded velocity or torque (in the kinematical and dynamical
cases respectively) will be instantly implemented regardless of
its value. Real actuators are far from being ideal. In particular,
only bounded velocities and torques can be realized for any
given command. With reference to the kinematical model of a
differential drive mobile robot, a known path following control
law is modified to account for actuator velocity saturation. The
proposed solution is experimentally shown to be particularly
useful for high speed applications where accounting for actuator
velocity saturation may have a large influence on performance.

I. INTRODUCTION

In the last few years tremendous progress in mobile
robot motion control has been achieved. Typical problems
addressed in literature include point stabilization, trajectory
tracking and path following [3] for which either kinematic
or dynamic solutions are derived. In real implementations
it is important that the controller outputs are bounded to
prevent hardware damages. When actuator bounds are not
explicitly taken into account during the control design phase,
a common practical solution is to artificially saturate the
actuator inputs (i.e. the controller outputs) to their upper
bounds at cost of performance. This paper proposes a path
following control law that takes actuator velocity bounds
explicitly into account. The resulting solution appears to
be particularly well suited for high speed path following
applications.

Given a curve l ∈ Rp (where p = 2 or 3) parametrized
by some scalar s ∈ R (by example the curvilinear abscissa),
denoting with r ∈ Rq the pose (position and orientation) of
the vehicle being

ṙ = f(r, ξ, u) : u control input (1)

(ξ non manipulable input) and with d(r, l) ∈ R a suitable
distance between the vehicle and the path, the path following
control law design problem consists in finding a function
u = u∗(r, l) (u∗ may eventually depend by ξ too) such that

lim
t→∞

d(r|u=u∗ , l) = 0. (2)
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Indeed most often the design procedure aims at making the
origin an asymptotically (possibly globally) stable equilib-
rium point for the dynamics of d(r|u=u∗ , l). This design
technique will guarantee not only closed loop convergence
of d(r, l) to zero (as required by (2)), but also its stability
implying a certain degree of robustness to model uncertainty
and measurement noise. In mobile robotics applications p is
usually assumed to be 2 (planar case) whereas the dimension
of the state variable q depends on whether a kinematical
or dynamical robot model is used to design the controller.
Although from the perspective of physics the system model
is obviously always dynamical, dynamics may be negligible
if the actuators should be able to produced much larger
accelerations than the desired ones. In this case, a closed
loop controller may be designed on the basis of a kinematical
robot model: The system inputs (i.e. the controller outputs
u∗) would be the actuator velocities q̇i and the system outputs
would be robot velocities and their integrals. In practice, the
kinematically computed actuator velocities u∗ = q̇i will be
used as reference values for the (fast) actuator dynamics:
If the lag between such reference values and the actuator
produced velocities should be sufficiently small (with respect
to smallest time constant associated to the spectrum of q̈i),
the kinematically designed control law will perform well.
When the actuator dynamics should not be much faster than
the desired closed loop system dynamics, it could not be
neglected and the control law would need to be designed
on the basis of a full dynamic model. In short, the choice of
using a kinematical or dynamical vehicle model to design the
controller depends on the actuator dynamics as compared to
the desired closed loop one. If, by example, a mobile robot
should be equipped with high torque / low speed motors able
to produce high accelerations as compared to the desired
ones, a kinematical based path following design coupled
with a sufficiently fast and accurate lower level speed motor
controller could be proper. If, instead, low torque / high
speed motors should be employed, a full dynamic model
based design would need to be considered. It should be
noticed that the path following control design problem has
been solved for either the dynamical or kinematical case, but
usually assuming ideal actuators. Namely any commanded
torque (in the dynamic case) or speed (in the kinematical
case) is assumed to be instantly implemented regardless of
its value. Real actuators are far from being ideal and will
exhibit saturation in case the commanded signals should
exceed given thresholds. In this paper the case of kinematical
path following control for a differential drive mobile robot is
considered, but taking explicitly into account actuator satura-
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Fig. 1. Differential drive.

tion limits. The problem at hand is particularly relevant when
mobile robots equipped with high torque (eventually due to
high gear ratio) motors are considered. In order to drive
such systems at high speeds without the risk of performance
degradation due to saturating wheel speeds, saturation needs
to be explicitly taken into account in the control law. The
proposed solution builds on the path following controller
described in [10].

The robot model is described in Section II while the path
following algorithm is derived and analyzed in Section III.
Experimental results are presented in Section IV. Conclu-
sions and future work are briefly discussed in Section V.

II. ROBOT MODEL

Consider a differential drive vehicle having two indepen-
dently actuated wheels on a common axis at a distance 2b
one from the other. Call u e1 and ω e2 the linear and angular
velocities of the mid point of such axis being e1 and e2 body
fixed unit vectors as depicted in Fig. 1. Call e1vr and vle1

the velocities of the center of the right and left wheels that
are assumed to roll perfectly. The kinematic model linking
the scalars u, ω, vr and vl is:

u =
1
2

(vr + vl) (3)

ω =
1
2b

(vr − vl) (4)

where |vr| and |vl| will be bounded by some given value Vm.
As known, a differential drive vehicle modeled by equations
(3-4) can move on paths of arbitrary curvature κ, as

κ =
1
b

vr − vl

vr + vl
. (5)

Indeed for any vl = −vr the corresponding path curvature
would be infinite, i.e. the vehicle would turn on the spot.
Arbitrarily large curvature values can be implemented if the
wheels rotate in opposite directions. Yet if the vehicle should
be required to move at high linear speeds, commanding
wheel speeds of different sign in order to make sharp turns
should be avoided in practice in order not to overstress the
electromechanical structures (gear boxes, tires, DC motor H-
Bridge power circuits) of the robot. If the wheel speeds vl

and vr should be constrained to positive values only, than
the curvature κ given by equation (5) would be bounded

κ ∈
[
−1

b
,
1
b

]
if vl, vr ∈ [0, Vm] (6)

Fig. 2. Differential drive curvature and total linear velocity as functions
of the wheels speeds.

and the linear speed u > 0 should be constrained to u ≤
Vm/2 to let κ span its full range [−1/b, 1/b] [6].

The plots of the curvature (5) and of the linear velocity
u(t) = uo (constant) (3) with respect to vl, vr ∈ [0, Vm] are
reported in Fig. 2 on a common vertical axis. The bottom
part of the z-axis (from point −1/b to 1/b) refers to curvature
whereas the upper part (from point 1/b to the upper end of
the scale) refers to the u(t) velocity. With reference to the
u(t) plane depicted in the upper part of the plot, point D
corresponds to uo = 0, point C to uo = Vm and the line
B A corresponds to uo = Vm/2. All points belonging to lines
parallel to B A refer to constant values of uo, in particular all
points in the region {B A D} refer to linear vehicle velocities
in [0, Vm/2] and all points in {B A C} refer to linear vehicle
velocities in [Vm/2, Vm]. Points on the (non depicted) line
D C from D to C refer to increasing linear speeds with
zero curvature (i.e. angular velocity) due to the fact that the
two wheels have the same speed. The picture shows that
in order to exploit the full range [−1/b, 1/b] of possible
curvatures at all times with the constraints that 0 ≤ vl ≤ Vm

and 0 ≤ vr ≤ Vm, the linear speed u(t) of a differential
drive vehicle should always be smaller or equal to Vm/2.
Notice that this may be a rather conservative bound as if
the reference path should be a straight line (κ = 0), the
maximum feasible linear velocity would be of course Vm

corresponding to vl = vr = Vm. Notice that in the above
hypothesis that the wheels of differential drive robot turn
in one direction only (i.e. vl ≥ 0, vr ≥ 0), given that the
resulting admissible curvature is bounded (|κ| ≤ 1/b), in
any path following application the reference path curvature
κr will need to be bounded too. In the sequel, the upper
bound on the absolute value of the reference path curvature
will be denoted with κr max > 0 and it will be assumed that

|κr| < κr max < 1/b. (7)
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III. PATH FOLLOWING CONTROL

Consider the path following controller designed in [10]:
given a Serret-Frenet frame {F} moving along the planar
path, call P its origin having curvilinear abscissa s with
respect to an arbitrary path point (origin of the curvilinear
abscissa). Call {I} a fixed inertial frame and Q the mid
point of the differential drive robot axis such that Q has
coordinates (s1, y1) in {F} and (x, y) in {I} (refer to figure
(cf. Fig. 3). Calling κr the curvature of the reference path,
the kinematics of Q in {I} would be given by the unicycle
model

ẋ = u cos θm (8)
ẏ = u sin θm (9)

θ̇m = ω (10)

and by

ṡ1 = −ṡ (1− κr y1) + u cos θ (11)
ẏ1 = −κr ṡ s1 + u sin θ (12)
θ̇ = ω − κr ṡ (13)

in {F} (refer to [10] for details) being θm and θ the
vehicle’s heading in {I} and {F} respectively. Following
[10], consider the Lyapunov candidate function

V1 =
1
2

(
s2
1 + y2

1

)
+

1
2γ

(θ − δ(y1, u))2 (14)

for some positive γ. In the assumptions that i)
limt→∞ u(t) 6= 0, ii) δ(0, u) = 0 and iii)
y1 u sin δ(y1, u) ≤ 0 ∀ y1, u the time derivative of
V1 can be made globally semi-negative definite by the
choice

θ̇ = δ̇ − γ y1 u
sin θ − sin δ

θ − δ
− k2 (θ − δ) (15)

ṡ = u cos θ + k1 s1 : k1 > 0, k2 > 0 (16)

that implies

dV1

dt
= −k1 s2

1 −
1
γ

(θ − δ)2 + y1 u sin δ ≤ 0. (17)

Closed loop asymptotic global stability of the equilibrium
(s1, y1, θ) = (0, 0, 0) can be shown by invoking LaSalle’s
Invariant Set Theorem or Barbalat’s Lemma [7] to the above
Lyapunov candidate function and to the closed loop state

Fig. 3. The used Frenet frame.

equations. Notice that as already pointed out in [1], global
stability and convergence of the path following error to zero
can be achieved by exploiting the extra degree of freedom
provided by ṡ. Alternative solutions as the by now classical
one described in [3] guarantee only local stability of the
error to zero and require rather stringent initial conditions on
the system’s state to avoid kinematical singularities that are
absent in the model used in [10] and in this paper. Also notice
that the function δ(y1, u) introduced in equation (14) has
the only purpose of shaping the transient convergence of the
state to zero and should thus be regarded as an extra design
degree of freedom. Possible choices for δ include δ := 0
or δ(y1, u) = sign(u)k3 tanh(y1) for some nonnegative k3

as suggested in [10]. In the sequel it will be assumed that
δ(y1, u) does not depend on |u|, namely that δ is invariant
with respect to the absolute value of the robot’s linear
velocity.
By combining equations (3), (4), (13), (15) and (16) the
commanded wheel speeds result in

vr = u + b
(
κr ṡ + θ̇

)
(18)

vl = u− b
(
κr ṡ + θ̇

)
(19)

As reported in [10], the control law given by equations (15)
and (16) guarantees all the state variables to remain bounded.
Notice that replacing equations (18) and (19) in (5) the closed
loop curvature of the vehicle results in

κclosed loop =
κr ṡ + θ̇

u
. (20)

In the light of the above and of section II, in order for the
path following problem to be solved with the constraints that
vl, vr ∈ [0, Vm], it must be assumed that the gain constants in
equations (18) and (19), the robot initial conditions and the
reference path are such that the absolute value of the closed
loop curvature given by equation (20) is always bounded by
1/b. This assumption will be considered satisfied throughout
the remaining of the paper. This implies, in particular, that the
reference curvature κr should be bounded as already noticed
in section II. Without entering in the details of the analysis
for the sake of brevity, it should be noticed that the closed
loop curvature can be written as:

κclosed loop = κr cos θ + T (·) (21)

T :=
1
u

(
krk1s1 + δ̇ − k2 (θ − δ)+

−γ y1 u
sin θ − sin δ

θ − δ

)
(22)

where as long as u ∈ [Vm/2, Vm] : Vm > 0 the term T (·) can
be made arbitrarily small for any initial condition by acting
on the design terms δ, γ, k1 and k2. In particular such design
terms need to be selected such that |T (·)| ≤ 1/b−κr max in
order to guarantee that |κclosed loop| ≤ 1/b. Hence the above
hypothesis on the boundedness of the closed loop curvature
is not particularly restrictive. Moreover being (0, 0, 0)T a
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(closed loop) globally asymptotically stable equilibrium for
the path following error (s1, y1, θ)T , notice that

lim
t→∞

κclosed loop = κr.

Within the described setting, in order to command wheel
velocities (18-19) corresponding to the highest possible (pos-
itive) linear velocity u, the following should be satisfied:

max {vl, vr} = |u| (1 + b |κclosed loop|) = Vm =⇒

u =
Vm

(1 + b |κclosed loop|)
. (23)

Yet, given that κclosed loop depends on u through T (·) in
equation (21), equation (23) cannot be used to compute u.
As a consequence, given the analysis carried out in section
II, in the stated hypothesis that |κclosed loop| ≤ 1/b, that
|κr| < κr max < 1/b, and in the light of the fact that
κclosed loop −→ κr as the path following error tends to zero,
the following strategy is proposed:

u =
{

Vm/2 if V1 ≥ ε
Vm/(1 + b |κr(s)|) if V1 < ε

(24)

being ε > 0 a design threshold parameter to be determined
based upon the reference path and the initial robot conditions.
The rationale behind equation (24) is that the linear speed
u should be allowed to take values larger than Vm/2 only
when the path following error (as measured by the Lyapunov
function V1) is small and hence κclosed loop tends to κr. In this
limit, the value of u given by equation (24) when V1 < ε
tends to the optimal value given by equation (23). In practical
applications, the ε parameter can be tuned by monitoring the
closed loop value of max{|vl|, |vr|}: in particular, for van-
ishing ε the maximum wheel speed max{|vl|, |vr|} should
remain bounded by Vm. Persistent values of max{|vl|, |vr|}
significantly below the Vm threshold suggest that ε may be
increased.

IV. EXPERIMENTAL RESULTS

The following section describes preliminary experiments
to test the control law.

A. The Mobile Robot Kurt3D

In our experiments the skid steered mobile robot Kurt3D
has been used. Kurt3D is based on a KURT2 mobile robot
platform that is available with different wheels, motors
and gear boxes. The outdoor version (Fig. 4 left) has six
16 cm wheels, where the two center wheels are shifted
sideways/outwards to shorten the overall length of the robot.
With its two 90W motors that power the six wheels the
robot reaches a maximal velocity of 1.1 m/s. The high speed
indoor version (Fig. 4 right) drives with the same motors
and a different, low torque gear box up to 4.1 m/s. On both
vehicles types front and rear wheels have no tread pattern to
enhance rotation. Therefore, the differential drive model is
applicable. The robot has a C-167 microcontroller and two
Centrino laptops for sensor data acquisition and transmission.

To cope with the different characteristics of the KURT2
robots, we have implemented a motor controller that consists

Fig. 4. KURT2 variants. Slow outdoor (left) and high speed indoor Kurt3D.

of a feed forward PI controller combined with a lookup table
for mapping speed to PWM values and linearizing the motor
signal. It combines open and closed loop control concepts
and ensures a fast response time with only a small overshoot.
Details of the low level control can be found in [8].

B. Following a Circular Curve

In order to evaluate the performance of the proposed
control law, we first used a circular curve as path to follow. In
an initial experiment, a test without load has been performed,
i.e., the robot wheels had no contact with the ground. Fig. 5
shows the path the robot would have driven, based on wheel
encoder measurements only. To test the path following, we
applied two kind of perturbations to this no load operation:
First, we stopped one wheel manually and second, we put
additional acceleration on one wheel by turning it faster than
the controlled speed. Top priority is to keep the vehicle on the
path, thus the second wheel stops or accelerated accordingly
(cf. Fig. 5, bottom).

Exact path following is only possible if and only if the self
localization of the robot is precise. Exact and continuous
pose estimation is the key for real applicability of the
proposed controller. Kurt3D’s odometry and gyro measure-
ments take place with a frequency of 100 Hz, whereas
two dimensional laser range scans are taken with 75 Hz.
Fusing odometry with the gyro data is done by the following
deterministic method: If a rotation is measured, the gyro
value is taken [11]. Otherwise the drift e is learned with
the rate λ:

Algorithm 1 Gyrodometry
if |∆θodo| > c1 then

θ ← θ + ∆θgyro − e
else if |δθgyro − e| > c2 then

θ ← θ + ∆θgyro − e
else

e← λ e + ((1− λ) (∆θgyro −∆θodo))
θ ← θ + ∆θodo

end if

In addition to correcting the robot pose with the gyro,
the scanner data is used. The well known ICP algorithm
is applied to correct the data [2], [9]. The ICP algorithm
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Fig. 5. Following a circular path in no load operation with applied
perturbations: Top: Followed path: In (1) one wheel has been manually
stopped, and in (2) one wheel was accelerated. Bottom: When one wheel
is stopped, the second wheel stops instantly too, to keep the vehicle on the
given path. Thus, the path following is stable.

calculates iteratively point correspondences between two
scans M and D. In each iteration step, the algorithm selects
the closest points as correspondences and calculates the
transformation (R, t) that minimizes the equation

E(R, t) =
Nm∑
i=1

Nd∑
j=1

wi,j ||mi − (Rdj + t)||2 , (25)

where Nm and Nd, are the number of points in the so called
model set M or the data set D, respectively, and wi,j the
weights for the point matches. The weights are assigned as
follows: wi,j = 1, if mi is the closest point to dj within a
close limit, wi,j = 0 otherwise.

We have implemented kd-tree search for fast closest point
computation. However, ICP localization can only be done
with a frequency of about 20 Hz. Therefore, we extrapolate
the Gyrodometry between two consecutive ICP runs in order
to provide the system a continuous control input. Extrapo-
lated pose information are also used as starting guess for
minimizing the ICP error function (Eq. (25)).

Fig. 6 shows the resulting trajectories, using the different
localization methods, with pure ICP as reference. Neverthe-
less, the ICP localization might also be erroneous, since
small errors accumulate. Solutions with multi-hypotheses
methods, e.g., Markov [5] or Monte-Carlo localization [4]
are available, but they show difficulties with providing fast
control input in not-restricted and unmapped environments.

Finally, Fig. 8 shows the wheel velocities, corresponding
to the circular path. While in the original control law
saturation is nearly avoided, in the high speed case one wheel

Fig. 6. Following a circular path using different localization methods.
Top: Odometry based path following. Bottom left: Gyrodometry based path
following. Bottom right: Combined ICP/Gyrodometry path following. All
paths are compared with ICP localization.

is always assigned the maximal control input, due to the
circular path.

C. Following an Arbitrary Shaped Path

For an additional test, we used a longer path, that included
turns with different radii and straight parts. The path is given
in Fig. 7 and the resulting velocities are shown in Fig. 9. The
whole path is driven in about 50% of the time. One wheel
is always saturated, on the straight parts quite often both
motors.

V. CONCLUSION

Building on the path following control law presented in
[10], a kinematic path following control solution taking
explicitly into account the maximum feasible wheel speed
has been derived for a differential drive robot. Differential
drive robots are technically able to drive infinite curvature
paths: in particular, in order to drive on paths with curvature
κ > 1/b being b the intra-wheel distance, the wheels need
to spin in opposite directions. As in high speed applications
such commands could over stress the electromechanical drive
systems (in particular the H bridge motor amplifiers and the
motor gear boxes) and trigger undesired dynamical effects
as sliding, it might be desired to avoid them. If the reference
path has a maximum curvature bounded by |κ| ≤ 1/b, the
proposed schema guarantees globally converging path fol-
lowing error to zero while driving at the maximum possible
linear speed. Preliminary experimental results are reported
validating the proposed solution.

In future work we are going to concentrate on improving
the robot’s self localization to ensure fast, exact and reliable
pose and velocity estimates as input for the proposed con-
troller, since the control quality depends crucially on these
parameter. We will set up an experiment with an external
laser scanner to track the robot path in order to provide
ground truth for localization.
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Fig. 7. Following a path with long straight parts and curves with different
curvatures.

Finally, we plan to test the high speed path following
system in a robotic slalom competition.
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