High Speed Differential Drive Mobile Robot Path Following Control With Bounded Wheel Speed Commands

Giovanni Indiveri, Andreas Nüchter, Kai Lingemann

UNIVERSITÄT

OSNABRÜCK

Motivation – SICK robot day

SICK - Public Relations -	Events - Robot day 2007 - Mozilla Firefox
<u>D</u> atei <u>B</u> earbeiten <u>A</u> nsicht	<u>G</u> ehe <u>L</u> esezeichen E <u>x</u> tras <u>H</u> ilfe
🔷 • 🎝 • 🛃 😣 🤅	👔 📄 http://www.sick.com/home/public_relations/events/robotday/de.html 🛛 🔽 🖸 Go 💽
🔯 Aktuelle Nachrichten 🗋 f	reeos 📄 BReLS 🦵 OpenGL Redbook 🞯 Stud. IP 📄 Wumpus World <u>G</u> Google 📄 Leo
Sensor Intelligence.	> Home > SICK wettweit > english > Sitemap > Kontakt Suche > Starten
» Über SICK	Fabrikautomation > Prozessautomation
	Pressemeldungen
Events	Robot day 2007 der SICK AG
Robot day 2007	Slalomrennen für autonome Fahrzeuge
	Als ergänzende Veranstaltung zu den Jubiläumsfeierlichkeiten aus Anlass des 550-jährigen Bestehens der Universität Freiburg veranstaltet die SICK AG am Samstag, den 27.10.2007 ein Slalomrennen für autonome Fahrzeuge auf dem Betriebsgelände der SICK AG in Waldkirch.
SICK	Zur Teilnahme eingeladen sind neben den Instituten der Uni Freiburg alle anderen Universitäten und Hochschulen, Forschungsinstitutionen und Schulen. 31.07.2007
	Das Rennen wird in 2 Klassen durchgeführt, die unterschiedliche Ansprüche an die am Wettbewerb teilnehmenden Fahrzeuge stellen. Um unterschiedliche Voraussetzungen auszugleichen, werden die Teilnehmer in die Kategorien Hochschulen / Forschungseinrichtungen und Schulen unterteilt. Kategorien Hochschulen / Forschungseinrichtungen und Schulen unterteilt.
	Für die jeweils besten Teams, deren Fahrzeuge den vorher nicht bekannten Parcours in der kürzesten Zeit durchfahren, werden von der SICK AG Geld- und Wolfgang Bay

Challenges when driving fast

- Ideal actuators:
 - any control value is assumed to be instantly implemented regardless of its value.
 - Dynamical case: torque
 - Kinamatical case: speed
 - No saturation
- Real actuators:
 - Exhibit saturation in case the commanded signals should exceed given thresholds.
 - Usually the controller outputs are bounded to prevent hardware damages
- Here we consider the case of kinematical path following control for a differential drive mobile robot with actuator velocity saturation.

Kinematical model

• We build our solution on the C. Canudas de Wit et al. [3] and D. Soetanto et al. [10] control for differential drive robots.

Velocity and angular velocity

$$u = \frac{1}{2}(v_r + v_l)$$
$$\omega = \frac{1}{2b}(v_r - v_l)$$

• Can move on a path with arbitraty curvature

$$\kappa = \frac{1}{b} \frac{v_r - v_l}{v_r + v_l}.$$

$$\kappa \in \left[-\frac{1}{b}, \frac{1}{b}\right] \text{ if } v_l, v_r \in [0, V_m]$$

Deriving the Control Law

• Lyapunov candidate function

$$V_1 = \frac{1}{2} \left(s_1^2 + y_1^2 \right) + \frac{1}{2\gamma} \left(\theta - \delta(y_1, u) \right)^2$$

UNIVERSITÄT OSNABRÜCK

• D. Soetanto et al. derived the follwoing control law

$$\dot{\theta} = \dot{\delta} - \gamma y_1 u \frac{\sin \theta - \sin \delta}{\theta - \delta} - k_2 (\theta - \delta) \dot{s} = u \cos \theta + k_1 s_1 : k_1 > 0, k_2 > 0$$

$$V_1 = \frac{1}{2} \left(s_1^2 + y_1^2 \right) + \frac{1}{2\gamma} \left(\theta - \delta(y_1, u) \right)^2$$

UNIVERSITÄT

High speed path following

• Skipping ...

 $\kappa_{\text{closed loop}} = \kappa_r \cos \theta + T(\cdot)$

• Command wheel velocities corresponding to the highest possible linear velocity should satisfy:

$$\begin{split} \max\left\{ v_l, v_r \right\} &= \left| u \right| \left(1 + b ~ \left| \kappa_{\text{closed loop}} \right| \right) = V_m \Longrightarrow \\ u &= \frac{V_m}{\left(1 + b ~ \left| \kappa_{\text{closed loop}} \right| \right)}. \end{split}$$

• From this we derive:

$$u = \begin{cases} V_m/2 & \text{if } V_1 \ge \varepsilon \\ V_m/(1+b \left|\kappa_r(s)\right|) & \text{if } V_1 < \varepsilon \end{cases}$$

Implementation on a real robot

Two 90W (200W) motors

- 48 NiMH a 4500mAh
- C167 Microcontroller
- CAN Interface
- PIV-1400
 Notebook
- The robot KURT2 is a leightweight (22.5 kg).

Path Following depends on pose estimation!!!

UNIVERSITÄT

OSNABRÜCK

KURT2 (KTO)

Pose estimation

- Revival of Gyrodometry as formulated by Brenstein/Feng ICRA 1996
- Iterative Closest Point (ICP) Scan Matching in near Real Time (timing issues) for precise pose estimation

Algorithm 1 Gyrodometry
if
$$|\Delta \theta_{odo}| > c_1$$
 then
 $\theta \leftarrow \theta + \Delta \theta_{gyro} - e$
else if $|\delta \theta_{gyro} - e| > c_2$ then
 $\theta \leftarrow \theta + \Delta \theta_{gyro} - e$
else
 $e \leftarrow \lambda \ e + ((1 - \lambda) \ (\Delta \theta_{gyro} - \Delta \theta_{odo})))$
 $\theta \leftarrow \theta + \Delta \theta_{odo}$
end if

Conclusions and Future Work

- We have presented
 - An path following scheme for differential drive / skid steered robots
 - Actuator saturation
 - Fast localization for path following
- Future work
 - Participation in robot race
 - Considering dynamics

Thank you for your attention!

