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Common wisdom has it that all knowledge has to go

through the senses first. While this is sort of true, it is

only part of the story. The other direction does also make

sense: Expectation matters for perception. In semantic robot

mapping, the two directions need to meet.

In prior work [1], [2], we have developed the technology

for acquiring 3D geometry maps in 6DOF on a mobile robot,

for interpreting data in terms of building structures (floor,

walls, ceiling) and for detecting objects in the geometry data.

Part of interpreting is to process the data using, e.g., matching

and filtering algorithms. All these algorithms, however, were

local and “syntactic” in the sense that the laser scanner data

were massaged and squeezed out as good as possible, but

there was no model-based feed-back from prior findings to

subsequent hypotheses. There was no explicit expectation

about what might be perceived.

Without a semantic model, errors in the sensor data could

only be corrected locally in the sense of outlier rejection and

the like. Model-based perception would allow furthermore

to complete the data (I know the wall continues behind

the bookcase, although I have never seen it) and to correct

illusions (I can tell the image of a robot from a robot if

the image is hanging high on the wall). This has been way

beyond our previous approaches.

We describe here a first small step into the direction of

model-based sensor data correction. It was motivated by a

systematic error of our 3D laser scanner equipment, which,

due to poor calibration of the pitch control servo, tends to

map a ground plane to a slightly bent surface.

3D mapping of environments consists of several steps

to be executed, namely 3D scan acquisition, range image

registration, and global relaxation. Since every step may po-

tentially introduce errors, we are using semantic constraints

to reduce the errors in all steps. Scans are acquired by our

robot in a nodding fashion of the 3D laser range finder. The

controlled pitch rotation can only be performed with limited

accuracy, so a horizontal plane scanned by the laser may

not be perfectly horizontally adjusted in the measured data.

The key idea of our horizontal scan justification is to extract

scanned planes, i.e., the floor plane and the ceiling plane in

the scanned data, and to readjust the 3D scan using these

horizonal information, according to the following scheme:

a) Point Labeling: Using the algorithm of [3], all scan

points are labeled as floor, ceiling, or object points, based on

a local geometric criterion wrt. their neighbor points.
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Fig. 1. Left: Map, top view. Right, top: The unconstrained 3D mapping
shows a banana-shaped form. Right, bottom: The horizontal justification
and the constrained mapping lead to qualitatively correct maps.

b) Bottom Plane Extraction: For an estimate of a 3D

plane, we use all points labeled as floor. First, an initial plane

is estimated using three data points. Second, the plane is

adjusted so that the mean point-to-plane distance is minimal

for all floor points.

c) Scan Justification: Floor points are horizontal in an

office building and all on one plane, unless a clear jump edge

is measured. The extracted 3D floor plane is used to rotate

the 3D scan, such that the estimated plane – and therewith the

3D scan – is horizontal, i.e., parallel to the ground plane of

the first scan, which defines the coordinate system. Hereby,

pitch and roll errors are corrected.

Preliminary experiments were carried out in an indoor

office environment. 33 scans, containing 88000 3D data

points each, have been acquired. Fig. 1 shows the qualitative

result of the constraint mapping. For quantitative results, we

compared several distance measurements both in the map

and in reality, using a high precision distancemeter (Leica

DISTO). The accuracy of the constrained map differs only

by several centimeters from ground truth, with a mean error

of 2.11%, compared to 3.19% in the non-constrained case.

In the end, data-driven interpretation and model-driven

data correction would have to come together. Fusing them is

obviously a hen-and-egg problem. In probabilistic robotics,

an EM-type approach might be suitable. For the time be-

ing, we would opt for a more flexible way of integrating

the different knowledge sources that are relevant for the

overall process, favoring a classical blackboard architecture.

In addition, floor classification comes in handy for object

segmentation and interpretation as well as path planning.
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